
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Part 2,
pp. 111-127, Bled, Slovenia, September 2009.

Learning to Disambiguate Search Queries

from Short Sessions

Lilyana Mihalkova and Raymond Mooney

The University of Texas at Austin
Department of Computer Sciences

1 University Station C0500
Austin, Texas 78712-0233

{lilyanam,mooney}@cs.utexas.edu

Abstract. Web searches tend to be short and ambiguous. It is therefore
not surprising that Web query disambiguation is an actively researched
topic. To provide a personalized experience for a user, most existing work
relies on search engine log data in which the search activities of that par-

ticular user, as well as other users, are recorded over long periods of time.
Such approaches may raise privacy concerns and may be difficult to im-
plement for pragmatic reasons. We present an approach to Web query
disambiguation that bases its predictions only on a short glimpse of user
search activity, captured in a brief session of 4–6 previous searches on
average. Our method exploits the relations of the current search session
to previous similarly short sessions of other users in order to predict
the user’s intentions and is based on Markov logic, a statistical rela-
tional learning model that has been successfully applied to challenging
language problems in the past. We present empirical results that demon-
strate the effectiveness of our proposed approach on data collected from
a commercial general-purpose search engine.

1 Introduction

Personalizing a user’s Web search experience has become a vibrant area of re-
search in recent years. One of the most actively researched topics in this area
is Web query disambiguation, or automatically determining the intentions and
goals of a user who enters an ambiguous query. This is not surprising, given the
frequency of ambiguous searches and the unwillingness of users to enter long and
descriptive queries. For example, Jansen and Spink [1] found that about 30% of
search queries, submitted to several engines, consisted of a single word. Further-
more, Sanderson [2] reports that anywhere between roughly 7% and 23% of the
queries frequently occurring in the logs of two search engines are ambiguous,
with the average length of ambiguous queries being close to one.

Ambiguity exists not only in cases such as the all-too-familiar “jaguar” ex-
ample (which can be a cat, car, or operating system), but also in searches that
do not appear ambiguous on the surface. Queries that are commonly considered
unambiguous often become ambiguous as a result of the wealth of Web sources,

—Search Session 1— —Search Session 2—

98.7 fm → www.star987.com/main.html huntsville hospital → www.huntsvillehospital.org
kroq → www.kroq.com/ ebay.com → ebay.com
scrubs → scrubs-tv.com scrubs → www.scrubs.com

Table 1. Two sessions in which the users searched for the query “scrubs.”

which examine different aspects of a given topic. For example, as we observed
in our data, a search for “texas”1 may be prompted by at least two different
kinds of intentions. In one session, a user who had first searched for “george w.
bush” proceeded to search for “texas” and selected www.tea.state.tx.us, thus
indicating an interest in Texas government agencies. In another session, the user
intended to learn about travel to Texas because repeated searches for “georgia
travel” were followed by a search for “texas” and a click to www.tourtexas.com.
This indicates that even a query, such as “texas” that normally refers to a single
entity, may become ambiguous.

Most approaches to Web query disambiguation leverage a user’s previous
interactions with the search engine to predict her intentions when entering an
ambiguous query. Typically, the actions of each user are logged over long periods
of time, e.g., [3–5]. While techniques that assume the availability of long search
histories for each user are applicable in some situations, in many cases such
approaches may raise privacy concerns and may be difficult to implement for
pragmatic reasons. After the release of AOL query log data allowed journalists to
identify one user based on her searches [6], many people have become especially
wary of having their search histories recorded. To address such concerns, we
present an approach that bases its predictions only on short glimpses of user
search activity, captured in a brief search session. Our approach relates the
current search session to previous short sessions of other users based on the
search activity in these sessions. Crucially, our approach does not assume the
availability of user identifiers of any sort (i.e. IP addresses, login names, etc.)
and thus such information, which could allow user searches to be tracked over
long periods of time, does not need to be recorded when our approach is used.

As an example, consider the query “scrubs,” which could refer either to the
popular television show or to a type of medical uniform. Table 1 juxtaposes the
users’ actions in two sessions. The sessions are short, with each containing only
two searches preceding the ambiguous query; nevertheless, this short glimpse of
the users’ actions is sufficient to provide an accurate idea of the users’ intentions
because by examining historical data, one may discover that people who search
for radio stations are probably “ordinary” users and would therefore be interested
in the television show. On the other hand, by relating Session 2 to sessions of
other users who searched for medical-related items, we may be able to predict
that the second user has more specialized interests.

1 We write these queries in lower-case because this is how they were typed by the
searchers in our data set.

Our proposed approach is appealing also from a pragmatic standpoint be-
cause it does not require search engines to store, manage, and protect long
user-specific histories. Identifying users across search sessions is another diffi-
culty arising from methods based on long user-specific search histories. One
possibility, to require users to log in before providing personalized search, may
be cumbersome. The alternative of using as an identifier the IP address of the
computer from which the search was initiated is also unsatisfactory, especially in
cases when entire organizations share the same IP address or when all members
of a household search from the same computer. Disambiguation techniques that
explicitly do not use such identifiers and instead rely only on information from
brief sessions avoid such difficulties.

When so little is known about a searcher, the problem of query disambigua-
tion becomes very challenging. In fact, it has previously been argued that “it
is difficult to build an appropriate user profile even when the user history is
rich” [5]. We develop an approach that successfully leverages the small amount
of information about a user captured in a short search session to improve the
ranking of the returned search results. Our approach is based on statistical rela-
tional learning (SRL) [8] and exploits the relations between the session in which
the ambiguous query is issued and previous sessions.

SRL addresses the problem of learning from multi-relational data models that
support probabilistic reasoning. SRL is appealing for our problem because, first,
the data is inherently relational—there are several types of entities: queries,
clicked URLs, and sessions, which relate to each other in a variety of ways,
e.g., two sessions may be related by virtue of containing clicks to the same
URLs; queries may be related by sharing words. Second, data recording human
interactions with a search engine is likely to be noisy. SRL models allow for
probabilistic inference, helpful when reasoning from noisy data.

We used Markov logic networks (MLNs) [9]. An MLN consists of a set of
weighted formulae in first-order logic and defines a Markov network when pro-
vided with a set of constants. The probability of a possible world decreases
exponentially in the weight of formulae it fails to satisfy. We chose MLNs be-
cause of their generality, their successful application to other language-related
tasks, e.g., [11–13], and the availability of a well-maintained code base [14].

2 Related Work

Personalized search is an important problem that has been studied under many
settings and assumptions. We review some of this research and draw distinctions
between previous work and ours.

Several authors have proposed techniques addressing the case where, for each
particular user, a relatively long history of that user’s interactions with the
search engine is available. Sugiyama et al. [3] present a personalization method
that builds a user preference model by modeling separately the long-term and
“today’s” user interests. In addition to relying on long-term records of user
activity, their approach also uses the content of browsed pages. In contrast, we

are interested in a more light-weight approach that does not necessarily use
page content. Sun et al. [4] use spectral methods to perform personalization by
organizing the data into a three-dimensional tensor comprised of users, queries,
and clicked pages. These tensor-based methods are unlikely to be effective in our
case because of data sparsity. A comprehensive empirical study of Web search
personalization techniques is presented by Dou et al. [5]. These techniques also
use longer-term histories (up to 12 days) of the same user. The authors find
that the best-performing methods are based on the intuition that the Web pages
most relevant to a user are those clicked frequently in the past by that user or by
related users, where user similarity is measured by estimating user membership
in a pre-defined set of categories. Such a strategy is unlikely to work in our
setting because the sessions in our data represent one-time interactions that
usually do not contain repeated clicks to the same URL. Joachims [15] and
Radlinski and Joachims [16] use a clever method for deriving constraints about
user preferences by observing whether or not the user clicked on or skipped over
particular search results. These preferences are then used to train a system for
ranking search results. All work discussed in this paragraph assumes that long-
term information about each user is available. In contrast, we study the setting
where personalization is performed based on records of very short interactions
with the search engine.

To the best of our knowledge, the only previous work that targets query dis-
ambiguation from short sessions is that of Almeida and Almeida [17] in which
users are identified as belonging to a set of communities in order to determine
their interests. The authors experimented with data from online bookstore search
sites for computer science literature, and their approach is tailored for situations
when user interests fall into a small set of categories, organizing users into 10
communities. While in a more restricted application of search, such as special-
ized book search, this small number of communities may be sufficient to model
different aspects of user interests, if, as in our case, the goal is to disambiguate
queries in a general-purpose search engine, a small number of communities is
likely to be insufficient to effectively model the variety of user interests, and
allowing for more communities may be prohibitively costly. Privacy-aware Web
personalization has been addressed by Krause and Horvitz [18], whose method
considers the privacy cost of a given piece of user information and explicitly
models the improvement in personalization versus the cost of the used informa-
tion. While the ability to trade off performance with cost is highly desirable,
their method relies on more information about the user than is available to us.

Query disambiguation is also related to determining user goals and inten-
tions, as done by the TaskPredictor [19], which learns to predict the current
task of a user based on the properties of the currently open window, or of an ar-
riving e-mail message. Because training this system requires potentially sensitive
information, it is intended to be run on the user’s local machine. Another project
[20] that relies on sensitive user information studies ways for personalizing Web
search by constructing a user profile from long-term observations on the user’s
activities, ranging from browsing history to e-mail.

An orthogonal issue is producing a diverse set of documents for a given query.
Recent work includes that of Chen and Karger [21], whose technique ranks results
so as to cover as many different aspects of interest as possible, and that of Yue
and Joachims [22] whose technique is based on structural SVMs. A related area
is that of clustering search results in groups of common topics. Wang and Zhai
[23] use search log data to learn useful aspects of queries in order to cluster
them. The ability to disambiguate user intent complements these contributions
because it would allow the most relevant cluster, or the most relevant results
from a diverse set, to be placed ahead of all others on the search page.

Collaborative filtering, where the goal is to suggest items that would be of
interest to a user, based on that and other users’ previous preferences, is also
related. Early comparative studies of collaborative filtering algorithms include
[24, 25]. More recently, Popescul et al. [26] and Melville et al. [27] proposed
approaches that combine collaborative and content-based information in forming
recommendations. These were not applied to personalizing Web search.

3 Background

This section provides some necessary background on first-order logic and MLNs.
First-order logic uses 4 types of symbols—constants, variables, predicates,

and functions [28]. Constants describe the objects in the environment, e.g.,
www.ecmlpkdd2009.net and 1acadc00158440d9 are constants representing a url
and a sessionId. Predicates represent relations, such as ClickOn, and can be
thought of as functions that evaluate to true or false. A term is a constant, a
variable, or a function applied to terms. Ground terms contain no variables. An
atom is a predicate applied to terms. A positive (negative) literal is a (negated)
atom. For example, ClickOn(www.ecmlpkdd2009.net, 1acadc00158440d9) is a
ground positive literal. Its value is true iff www.ecmlpkdd2009.net is clicked in
session 1acadc00158440d9. A possible world is a truth assignment to all possible
ground literals in an environment. A first-order formula uses conjunction (∧) and
disjunction (∨) to combine positive and negative literals into a logical statement.
A grounding is a ground formula or literal.

A Markov logic network (MLN) [9] consists of a set of first-order formulae,
each of which has an associated weight. MLNs can be viewed as relational analogs
to Markov networks whose features are expressed in first-order logic. In this way
MLNs combine the expressivity of first-order logic with the ability of probabilistic
graphical models to reason under uncertainty.

Let X be the set of all possible ground literals in the environment, F be
the set of all first-order formulae in the MLN, and wi be the weight of formula
fi ∈ F . Then, the probability of a particular truth assignment x to X is given
by

P (X = x) =
exp

“

P

fi∈F
wini(x)

”

P

x
′ exp

“

P

fi∈F
wini(x′)

” [9], where ni(x) is the number of ground-

ings of fi that are true given the truth assignment x to X. Intuitively wi deter-
mines how much less likely a world is in which a grounding of fi is not satisfied

than one in which it is satisfied. The first-order formulae are called the structure.
By grounding the formulae of an MLN with the constants in the environment,
one defines a Markov network, over which inference can be performed to deter-
mine the probability that each of a set of unknown ground literals is true, given
the truth values of a set of evidence ground literals. In our case, the evidence
literals, which we define in Section 4, provide information on the user activity in
the current session and how it relates to previous search sessions, and the goal is
to predict the probability that each grounding of the clickOn predicate is true.
Several algorithms are available to perform inference over a ground MLN. We
used MC-SAT [10], which has been demonstrated to give good performance.

4 Proposed Approach

Our general approach follows that of previous applications of MLNs to specific
problems, e.g., [12]: we hand-coded the structure of the model as a set of first-
order formulae and learned weights for these formulae from the data. The key
idea behind our approach is to relate the current, active, session A in which
an ambiguous query Q is issued to previous, background, sessions from histori-
cal data, where it is assumed that both the active session and the background
sessions are short. Sessions are related by sharing various types of information.
We define the following predicates to capture these relationships. Since every
training/testing example refers to a single (Q,A) pair, A and Q are implicit in
the example and do not need to appear as arguments of the predicates.
-result(r): r is a search result for Q.
-choseResult(s, r): Background session s clicked on r after searching for Q.
-clickOn(r): User in session A clicks on result r in response to the search for Q.
-sharesClick(s, d): Sessions s and A share a click to URL with hostname d.
-sharesKeywordBtwnClicks(s, k): Background session s and A share a keyword
k, found in the hostnames of clicked URLs in each of the sessions.
-sharesKeywordBtwnClickAndSearch(s, k): Background session s and A share
a keyword k, found in the hostname of a clicked URL in A and a search in s.
-sharesKeywordBtwnSearchAndClick(s, k): Background session s and A share
a keyword k, found in a search in A and the hostname of a clicked URL in s.
-sharesKeywordBtwnSearches(s, k): Sessions s and A share a keyword k that
appeared in searches in both sessions.
-clicksShareKeyword(r, d, k): Keyword k appears in the hostname of both re-
sult r and previous click d from session A.
-clickAndSearchShareKeyword(r, s, k): Keyword k appears in the hostname of
result r and in previous search query s from session A.

Fig. 1 illustrates the predicates used to relate two sessions. The last two
predicates capture information local to the active session. In the active session A,
only the clicks and searches temporally preceding Q are used. For the predicates
in which a keyword relates two sessions, we used only keywords that appeared
at least 100 times (i.e., we removed keywords appearing less than 0.00083% of
the time) and at most 10, 000 times (i.e., we removed the top 61 most popular

Fig. 1. An illustration of predicates that relate sessions. Tokens in boxes represent
queries, whereas tokens preceded by an arrow represent the clicked result. The active

session, on the left, is related to some of the background sessions, on the right, by shared
clicks or keywords. Not all possible relations are drawn.

1: result(r) ∧ sharesClick(s, d) ∧ choseResult(s, r) ∧ clickOn(r)
2: result(r) ∧ sharesKeywordBtwnClicks(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
3: result(r) ∧ sharesKeywordBtwnClickAndSearch(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
4: result(r) ∧ sharesKeywordBtwnSearchAndClick(s, k) ∧ choseResult(s, r) ∧ clickOn(r)
5: result(r) ∧ sharesKeywordBtwnSearches(s, k) ∧ choseResult(s, r) ∧ clickOn(r)

6: result(r) ∧ choseResult(s, r) ∧ clickOn(r)

7: result(r) ∧ clicksShareKeyword(r, d, k) ∧ clickOn(r)
8: result(r) ∧ clickAndSearchShareKeyword(r, s, k) ∧ clickOn(r)

9: result(r1) ∧ result(r2) ∧ r1 6= r2 ∧ clickOn(r1) ⇒ ¬clickOn(r2)

Table 2. Formulae included in the model.

keywords) over our training data. This was done to avoid rare or misspelled
keywords and to make the size of the data more manageable. The goal is to
predict the clickOn(r) predicate, given as evidence the values of the remaining
ones. The search results available for a given query are then ranked by the
predicted probability that the user will click on each of them.

4.1 Model Structure

This section describes the formulae used in our MLN models.
Collaborative Formulae: The collaborative formulae, shown in lines 1-5 of

Table 2, draw inferences about the interests of the active user based on the
choices made by related users from background sessions. For example, formula 1
establishes a relationship between the event that the active user chooses result r

and the event that the user in a previous session s, related to the active session
by sharing a click to a URL with hostname d, chose result r after searching
for the current ambiguous query. This formula exploits one type of relation
between the active session and background sessions to provide evidence of the

active user’s intentions. This formula is always false when one of the first three
evidence predicates is false, and in such cases it does not influence the probability
that a particular search result is chosen; i.e., this formula plays a role only
for background sessions that share clicks with the active session and chose a
particular result r. The larger the number of such sessions, the stronger the belief
that the active user will also pick r. Formulae 2-5 encode analogous dependencies
using each of the remaining session-relating predicates.

Popularity Formula: Formula 6 in Table 2 encodes the intuition that the user
will click the result that was the most popular among background users that
searched for this ambiguous query. As before, the result for which there are the
largest number of clicks in background data, and thus the largest number of
groundings of this formula that are not falsified by the evidence, will have the
largest probability of being clicked.

Local Formulae: Formulae 7-8 in Table 2 use information local to the active
session to predict the user’s preferences. Formula 7 (8) states that the user will
click a result that shares keywords with a previous result (search) from the active
session. We clarify that keywords were not extracted from the pages to which a
URL points, but only from the URL itself because we are interested in developing
a light-weight re-ranker. Because in our setting sessions are very short, we do not
expect the local formulae to contribute much to the overall model performance.
We include them in order to verify this.

Balance Formula: Formula 9 in Table 2 sets up a competition among the
possible results by stating that if the user clicks one of the results, the user will
not click another one. This formula prevents all possible results from obtaining
a very high probability of being clicked. This makes the model more discrimi-
nating and allows the same set of weights to perform well even as the number
of groundings of the other formulae varies widely across active sessions.

These formulae encode “rules of thumb” and useful features, which we expect
will hold in general, but may sometimes be violated, e.g., the balance formula is
violated when a user clicks more than one result for a query. The ability of MLNs
to combine such varied sources of information effectively and in a principled way
is one of the main considerations that motivated our choice of model. Using these
formulae, we defined three MLNs:
MLN 1 – Purely Collaborative: Contains only the collaborative formulae
(1-5) and the balance formula (9).
MLN 2 – Collaborative and Popularity: Contains formulae 1-6 and the
balance formula (9).
MLN 3 – Collaborative, Popularity, and Local: Contains all formulae. It
can be viewed as a mixed collaborative-content-based model, e.g., [26, 27].

4.2 Weight learning

To learn weights for the structures defined above, we used the contrastive diver-
gence algorithm (CD) described by Lowd and Domingos [29]. CD can be viewed
as a voted-perceptron-like gradient descent algorithm in which the gradient for
updating the weight of formula Ci is computed as the difference between the

number of true groundings of Ci in the data and the expected number of true
groundings of Ci, where the expectation is computed by carrying out a small
number of MCMC steps over the model using the currently learned weights. Like
Lowd and Domingos [29], we computed the expectations with MC-SAT [10]. We
used the implementations of these algorithms in the Alchemy package [14], ex-
cept that we adapted the existing implementation of CD so that learning can
proceed in an online fashion, considering examples of sessions containing am-
biguous queries one by one. This was done because otherwise our data was too
large to fit in memory. We set the learning rate to 0.001 and the initial weight of
formulae to 0.1 and kept all other parameters at their default values. Parameter
values were selected on a validation set, strictly disjoint from our test set.

5 Data and Methodology

We used data provided by Microsoft Research containing anonymized query-log
records collected from MSN Search in May 2006. The data consists of times-
tamped records for individual short sessions, the queries issued in them, the
URLs clicked for each query, the number of results available for each query and
the position of each result in the ranked results. We removed queries for which
nothing was clicked. The average number of clicked results per session, over all
sessions in the data, is 3.28. The data does not specify what criteria were used
to organize a set of user interactions into a session; e.g., we do not know how
multiple open tabs in a browser were treated. Although some of the sessions
may belong to the same users, the data excludes this information through the
lack of user-specific identifiers. This dataset therefore perfectly mirrors the sce-
nario of disambiguating user intent from short interactions that we address in
this research. Because there is a one-to-one correspondence between users and
sessions, we will use these two terms interchangeably.

The data has two main limitations. First, it does not state which search
queries are ambiguous. Automatically detecting ambiguity from user behavior
is an interesting research question but is not the focus of this work. We there-
fore employed a simple heuristic to obtain a (possibly noisy) set of ambiguous
queries, using DMOZ (www.dmoz.org): a query string is considered ambiguous if,
over all URLs clicked after searching for this string, at least two fall in different
top-level DMOZ categories. This heuristic does not require human effort beyond
that already invested in constructing DMOZ. We did not include DMOZ cate-
gory information into our models because many Web pages are not classified in
the hierarchy. We limited ourselves to strings containing up to two words, thus
obtaining 6, 360 distinct ambiguous query strings. Limiting the length of poten-
tially ambiguous queries to two was motivated by the fact that most ambiguity
occurs in short queries. For example Sanderson [2] found that the average length
of ambiguous queries in two search log datasets ranges from 1.02 to 1.26 words.
Queries of length at most two constituted 43.7% of all queries in our data. Of
these queries, using the above method, we identified 2.4% as ambiguous, which

(a) (b)

Fig. 2. Histograms showing (a) the distribution over the number of possible results
available for an ambiguous query and (b) the distribution over the number of clicks
preceding an ambiguous query in the test data. The X axis in (b) is drawn in log-scale.

agrees with the statistics reported by Sanderson, who found that between 0.8%
and 3.9% of all queries are ambiguous [2]. 2

Another limitation is that our data does not list all URLs presented to the
user after a search but just the clicked ones. To overcome this, we assumed that
the set of all URLs clicked after searching for a particular ambiguous query
string, over the entire dataset, was the set of results presented to the user. Our
approach contrasts with that used in previous work, e.g., that of Dou et al. [5], in
which missing possible results lists are generated by separately querying the MSN
search engine (on which data was collected) for each query. Although the queries
were performed less than a month after the data was collected, the authors found
that 676 queries from 4, 639 “lost the clicked web pages in downloaded search
results.” Because in our case almost 3 years have passed since the MSN06 data
was collected, we preferred the simpler approach based on the available data.
With this method, the average number of possible results for an ambiguous
query string was 9.10. Figure 2 (a) shows the distribution over the number of
ambiguous queries for which we have a particular number of possible results.
Although this heuristic is imperfect, it is likely to bias the results against our
proposed solution—since every possible result was found to be relevant by at
least one user, our systems cannot get high scores by simply separating the
useful results from the totally irrelevant ones.

Figure 2 (b) shows the distribution over the number of clicks preceding an
ambiguous query in our test data. As can be seen, our test sessions, are indeed
very short. Several of the predicates we define use keywords. To generate a list of
keywords, we performed a pass over all training sessions. Any token separated by
spaces was considered a keyword. As mentioned in Section 4, we then kept key-
words that appeared at least 100 times and at most 10, 000 times. To determine
which keywords occur in a given hostname, we first use the non-alphanumeric
characters in the hostname to break it down into pieces and then match each

2 In the Introduction, we cited Sanderson’s findings for frequently occurring queries,
whereas here we refer to his findings over all queries.

piece with keywords such that as much of the piece is covered as possible, using
the smallest number of keywords.

To ensure a fair evaluation, the data was split into training and testing peri-
ods. The training period was used for training, validation, keyword generation,
and idf [30] calculations (idfs were used by one of the baselines) and consisted of
the first 25 days of data. The remaining 6 days were reserved for testing. Sessions
that started in the training period and ended in the test period were discarded
to avoid contaminating the test data. As validation/testing examples we used
sessions that contained an ambiguous query from the training/testing periods
respectively. To decrease the amount of random noise in the results, we removed
from the test set sessions that contained no relational evidence, i.e., we removed
the sessions that contain no true groundings of the sharesKeyword/Click pred-
icates introduced in Section 4. In this way we obtained 11, 234 test sessions,
which constitutes 72% of the available test sessions. The distribution over the
number of previous clicks in these sessions is shown in Figure 2 (b). As can be
seen, the peak is at 3 distinct clicks before the ambiguous query.

During testing, only the information preceding the ambiguous query in the
active test session is provided. The set of possible results for this ambiguous
query string is given, and the goal is to rank these results based on how likely it
is that they represent the intent of the user. The user may click more than one
result after searching for a string. This behavior might be indicative of at least
two possible scenarios: either the user is performing an exploratory search and all
clicked results were relevant, or the user was dissatisfied with the results and kept
clicking until finding a useful one. Since the data does not indicate which of these
scenarios was the case, we treated all results clicked by the user after searching
for the ambiguous query as relevant to his or her intentions. This presents yet
another source of noise, and in the future we plan to explore approaches similar
to the implicit feedback techniques described by Radlinski and Joachims [16] to
disentangle these possibilities, although the exact method introduced by these
authors would not be applicable to our data because it requires the availability
of an ordered list of the results returned to the user by the search engine.

Learning was performed as described in Section 4.2. To evaluate the learned
models, we used Alchemy’s implementation [14] of the MC-SAT algorithm [10]
for inference. During inference, we ran for 1,000 burn-in steps and 10,000 sam-
pling steps. All other inference parameters were kept at their Alchemy defaults.

Evaluation Metrics: For evaluation purposes, query disambiguation can
be viewed as an information retrieval problem: rank the set of possible results
so that the URLs reflecting the user’s intentions appear as close to the top as
possible. Thus, we used standard information retrieval metrics to evaluate the
performance of our system [30] (Chapter 8):

(MAP) Area under the precision-recall curve, which is identical to the Mean
Average Precision metric, commonly used in IR. The MAP score is computed
over a set of test instances T as follows: MAP(T) = 1

|T |

∑
t∈T

1
|Rt|

∑
r∈Rt

P@r,

where Rt is the set of possible results for the t-th test instance and P@r is the
precision of the top r results: P@r = Num relevant docs among the top r

r
.

(AUC-ROC) Area under the ROC Curve, which can be viewed as rep-
resenting the mean average true negative rate. Using the notation from above,
this metric is computed as follows: AUC-ROC(T) = 1

|T |

∑
t∈T

1
|Rt|

∑
r∈Rt

TN@r,

where TN@r is the true negative rate of the top r results, defined as TN@r =
Num irrelevant docs in positions >r

Total num irrelevant docs .
Intuitively, the MAP measures how close the relevant URLs are to the top.

One disadvantage of this metric in our case is that it is insensitive to the number
of results to be ranked. For example, ranking a relevant result in the second
position obtains the same score both when the number of possibilities is 2 and
when it is 100, even though in the second case the task is clearly more difficult.
Assuming that the user starts scanning the page of returned results from top to
bottom and does not consider any results appearing after the relevant ones, the
AUC-ROC intuitively represents the percentage of irrelevant results that were
not seen by the user. Thus, a random ranker would obtain an AUC-ROC of
0.5. Another useful characteristic of this measure is that unlike the MAP, it is
sensitive to the number of possible results that are to be ranked.

A final issue is how to break ties when a relevant result has the same score as
some irrelevant results. We report the average case in which the relevant result
is placed in the middle position within the group of results with equal scores.
For the most interesting systems, we also report the worst case in which the
relevant result is placed last within the group of results that share scores. This is
motivated by the goal of performing effective personalization consistently. The
best case is not interesting because for it perfect performance can be obtained
by giving all results the same score.
Systems Compared: We compared the MLNs from Section 4 to:
Random: Ranks the possible results randomly.
Collaborative-Pearson: Implements a standard collaborative filtering algo-
rithm [25] that weights each previous user based on the Pearson correlation
between the preferences (i.e. clicks) of that user and the active user. We consid-
ered a clicked result to have rating 1, and an unclicked result that was clicked
by another user for the same query to have rating 0, and all other results to be
unrated. The n closest neighbors are chosen (we used n = 30 following [25]), and
the prediction that a given result is selected is formed as a weighted average of
the deviations from the mean of each neighbor.
Collaborative-Cosine: Identical to Collaborative-Pearson except that it
computes the similarity between the active user and a previous user as the co-
sine similarity between the idf -weighted vectors of their clicked results.
Popularity: Ranks each result according to the number of previous sessions
that searched for the ambiguous query and chose it.

6 Results

Table 3 (a) presents the performance when ties among results with the same
score are broken as in the average case. The Collaborative-Pearson baseline
performs no better than Random on AUC-ROC and only slightly better than

System MAP AUC-ROC

Random 0.317 0.502

Collaborative-Pearson 0.333 0.502

Collaborative-Cosine 0.360 0.521

Popularity 0.389 0.575

MLN 1 0.375 0.563

MLN 2 0.386 0.587

MLN 3 0.366 0.583

System MAP AUC-ROC

Popularity 0.380 0.525

MLN 1 0.373 0.563

MLN 2 0.385 0.586

MLN 3 0.355 0.572

(a) (b)

Table 3. (a) Results over all test sessions that contain an ambiguous query when ties
in ranking are broken as in the (a) average case and (b) worst case. Numbers in
bold present significant improvements over all preceding systems at the 99.996% level
with a paired t-test. Additional significant differences are: in (a) MLN 1 is a significant
improvement over all baselines except Popularity, and MLN 2 improves significantly
over all preceding systems except for Popularity also in terms of MAP; in (a), there
is no significant difference between the MAP scores of Popularity and MLN 2; in (a)
and (b) the MAP score of Popularity is significantly higher than that of MLN 1.

Random on MAP. Switching to cosine similarity in Collaborative-Cosine
gives modest (but significant at the 99.996% level according to a paired t-test)
improvements. The Popularity baseline is very strong and outperforms the
other baselines, as well as MLN 1. However, combining popularity with re-
lational information in MLN 2 leads to significant gains in performance, and
MLN 2 achieves a significantly higher AUC-ROC score. MLN 2, our strongest
model, highlights the main advantage of using MLNs: we were able to signifi-
cantly improve MLN 1 by incorporating a reliable source of information simply
by adding the popularity formula to the model. Finally, as expected, we ob-
serve that adding local formulae in MLN 3 does not improve performance. This
demonstrates that the interactions of the active user prior to the ambiguous
query are not directly helpful for determining intent and occurs as a result of
the brevity of sessions in our data (cf. Figure 2 (b)). The inefficacy of local for-
mulae may also be due to the fact that a session may continue when the user
is dissatisfied with the results obtained so far. It is interesting to contrast this
result with the findings of Dou et al. [5] who experimented with much longer
sessions (up to 12 days) and reported that the previous interactions of the active
user presented a very strong signal for personalization purposes. This emphasizes
a fundamental difference in our assumptions about the data compared to previ-
ous research: because in our case user-specific session information is so limited,
we cannot rely on only using the past preferences of the active user and must
instead exploit relations to other, historical, users.

Next, we analyze in more detail the performance of the MLN systems to that
of Popularity, which is the strongest baseline. Table 3 (b) presents the per-
formance over all test sessions when ties in ranking are broken as in the worst
case. As can be seen, Popularity’s AUC-ROC score decreases sharply, whereas

the MLN models maintain their performance to almost the same level as in the
average case. This behavior is observed partly because Popularity introduces
many more ties among the scores of possible results than do the MLN models. In
particular, averaged over all test sessions, the ratio between the number of pos-
sible results and the number of distinct scores for Popularity was 1.8, whereas
for MLN2 it was just 1.02. These results indicate that Popularity’s behavior
is erratic and can, for the same user and the same query, lead to rankings that
vary highly in quality. This kind of behavior can give the perception of poor
quality to a frequent user. On the other hand, the MLN models are consistent,
maintaining the quality of their rankings in the worst case.

Finally, we compare the performance of Popularity to that of MLN 2 while
varying the degree to which some of the possible results for an ambiguous query
dominate in popularity over the rest. We formalized this as follows. Let qQ be the
empirical distribution over the results clicked for an ambiguous query Q. This
distribution was measured empirically on the training data, i.e., for every am-
biguous query, we determined from the training sessions the proportion of time
each potential search result was clicked. We then separated the test examples into
bins, such that bin i contains all test sessions s for which ⌊KLqQ||uniform⌋ = i,
where Q is the ambiguous query in session s and KLqQ||uniform is the KL diver-
gence of qQ to the uniform distribution. In other words, bin 0 contains the ses-
sions in which the possible results for the ambiguous query were all chosen with
roughly the same frequency. Higher-numbered bins contain sessions in which one
of the search results strongly dominates in popularity over the other possibilities.
When this is the case, predicting just based on the popularity of a result gives
good performance. The more challenging scenario occurs in the lower-numbered
bins where the preferences over possible results are more uniformly distributed.
Figure 3 compares Popularity to MLN 2 when ties in ranking are broken for
the average and worst cases. MLN 2 maintains a lead over Popularity until
the last two bins in which the distribution over possible results is furthest from
uniform. As we expect, the difference between the performance of the two sys-
tems shrinks as we move to higher-numbered bins, and MLN 2 has a greater
advantage over Popularity in the lower-numbered bins in which the need to
disambiguate is more pressing. The sharp drop in accuracy observed in bin 7 is
due to the fact that one of the ambiguous queries occurring in sessions in this bin
was overwhelmingly followed by clicks to what seems to be a newly appearing
Web page during the test period. That page was selected only 3 times in the
training period while the most popular page in the training period was selected
more than 2000 times. As a final but important note, inference over the learned
models was very efficient and completed in the order of a second.

7 Conclusions and Future Work

We addressed Web query disambiguation in the challenging setting when the only
information available about any particular user is that captured in a short search
session of 4–6 previous searches on average. Using the language of MLNs, we

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0 1 2 3 4 5 6 7

A
U

C
-R

O
C

 i
n
 A

v
e
ra

g
e
 C

a
s
e
 t
ie

-b
re

a
k
in

g

floor(KL divergence from uniform distribution)

Popularity
MLN2

(a) (b)

Fig. 3. AUC-ROC when ranking ties are broken so as to simulate the (a) average
case and (b) worst case for different bins of KL divergence of the distribution over
possible results to uniform.

developed an approach that draws heavily on different types of relations between
search sessions and demonstrated that our approach significantly outperforms
several natural baselines by successfully combining the inferences of collaborative
and popularity formulae. In this way, we provided evidence that despite the
sparseness and noise inherently present in a short search session, it is possible
to output meaningful predictions about a searcher’s underlying interests.

Here our goal was a light-weight approach to Web query disambiguation. In
the future, we would like to experiment with richer sources of information, such
as the actual content of clicked pages. A second avenue for future work involves
improving supervision by discovering ways to decrease the amount of noise in
the data and developing learning algorithms that are more tolerant to noise.

Acknowledgment

We thank Tuyen Huynh, Joe Reisinger, and the anonymous reviewers for their
helpful comments. This research is supported by a gift from Microsoft Research
and by ARO grant W911NF-08-1-0242. Experiments were run on the Mastodon
Cluster, provided by NSF Grant EIA-0303609.

References

1. Jansen, B.J., Spink, A.: How are we searching the World Wide Web? A comparison
of nine search engine transaction logs. Information Processing and Management
42 (2006) 248–263.

2. Sanderson, M.: Ambiguous queries: Test collections need more sense. SIGIR-08.
3. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user

profile constructed without any effort from users. WWW-04.
4. Sun, J., Zeng, H., Liu, H., Lu, Y., Chen, Z.: CubeSVD: A novel approach to

personalized web search. WWW-05.
5. Dou, Z., Song, R., Wen, J.: A large-scale evaluation and analysis of personalized

search strategies. WWW-07.

6. Barbaro, M., Zeller, T.: A face is exposed for AOL searcher no. 4417749. New York
Times (August 2006) http://www.nytimes.com/2006/08/09/technology/09aol.

html?ex=1312776000. Accessed on 16 Oct. 2008.
7. Conti, G.: Googling considered harmful. In: New Security Paradigms Workshop,

Dagstuhl, Germany (September 2006).
8. Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. MIT

Press, Cambridge, MA (2007).
9. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62

(2006).
10. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-

terministic dependencies. AAAI-06.
11. Singla, P., Domingos, P.: Entity resolution with Markov logic. ICDM-06.
12. Poon, H., Domingos, P.: Joint inference in information extraction. AAAI-07.
13. Wu, F., Weld, D.: Automatically refining the Wikipedia infobox ontology. WWW-

08.
14. Kok, S., Singla, P., Richardson, M., Domingos, P.: The Alchemy system for sta-

tistical relational AI. Technical report, Department of Computer Science and En-
gineering, University of Washington (2005) http://www.cs.washington.edu/ai/

alchemy.
15. Joachims, T.: Optimizing search engines using clickthrough data. KDD-02.
16. Radlinski, F., Joachims, T.: Query chains: Learning to rank from implicit feedback.

KDD-05.
17. Almeida, R.B., Almeida, V.A.F.: A community-aware search engine. WWW-04.
18. Krause, A., Horvitz, E.: A utility-theoretic approach to privacy and personaliza-

tion. AAAI-2008.
19. Shen, J., Li, L., Dietterich, T.G., Herlocker, J.L.: A hybrid learning system for

recognizing user tasks from desktop activities and email messages. IUI-06.
20. Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis

of interests and activities. SIGIR-05.
21. Chen, H., Karger, D.R.: Less is more: Probabilistic models for retrieving fewer

relevant documents. SIGIR-06.
22. Yue, Y., Joachims, T.: Predicting diverse subsets using structural SVMs. ICML-08.
23. Wang, X., Zhai, C.: Learn from web search logs to organize search results. SIGIR-

07.
24. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms

for collaborative filtering. Technical Report MSR-TR-98-12, Microsoft Research
(1998)

25. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for
performing collaborative filtering. SIGIR-99.

26. Popescul, A., Ungar, L.H., Pennock, D.M., Lawrence, S.: Probabilistic models for
unified collaborative and content-based recommendation in sparse-data environ-
ments. UAI-2001.

27. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering
for improved recommendations. AAAI-02.

28. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2 edn. Prentice
Hall, Upper Saddle River, NJ (2003).

29. Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks.
PKDD-07.

30. Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008).

