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Abstract

We describe a method of automatically abducing
qualitative models from descriptions of behaviors. We
generate, from either quantitative or qualitative data,
models in the form of qualitative differential equations
suitable for use by QSIM. Constraints are generated
and filtered both by comparison with the input behav-
iors and by dimensional analysis. If the user provides
complete information on the input behaviors and the di-
mensions of the input variables, the resulting model is
unique, maximally constrained, and guaranteed to repro-
duce the input behaviors. If the user provides incom-
plete information, our method will still generate a
model which reproduces the input behaviors, but the
model may no longer be unique. Incompleteness can
take several forms: missing dimensions, values of
variables, or entire variables.

1 Introduction
Qualitative simulation of physical systems provides
researchers with insights by giving an overview of system
behaviors without the deluge of detail inherent in quantita-
tive simulation. Perhaps even more important, it may be
possible to develop a qualitative simulation where develop-
ing a quantitative one would be impossible due to inexact
knowledge of the system's internal workings. But even
with the power of qualitative simulation systems like
QSIM ([Kuipers, 1986, 1989]), developing qualitative
models remains something of an art. For this reason, many
researchers are investigating automatic model building.
The most common approach is to construct models from
given model fragments ([Forbus, 1984], [Forbus, 1986],
[deKleer and Brown, 1984], and [Crawford, Farquhar, and
Kuipers, 1990]).

In this paper, we present MISQ, a method for building
models purely from behavioral information. Given some
or all of the behaviors1 exhibited by a particular system,
we abduce a model which reproduces those behaviors. If
the user provides sufficient information on the input behav-
iors, the resulting model is unique, maximal, and correct
in the sense that it reproduces the input behaviors. The
models we build are qualitative differential equations
(QDEs) suitable for use by QSIM.

The QSIM framework provides explicit functions,
landmarks, and corresponding values, all of which are

critical to the success of MISQ. A weaker framework such
as confluences would be inadequate.

MISQ was first implemented as a special-purpose
system, and a preliminary description appeared in [Kraan,
Richards, and Kuipers, 1991]. Since then, MISQ has been
reimplemented as a domain theory within the general-
purpose learning system Forte [Richards and Mooney,
1991]. The relational pathfinding method in Forte, de-
scribed in [Richards and Mooney, 1992], allows MISQ to
infer the existence of missing variables.

The remainder of this paper is organized as follows:
Section 2 provides an overview of our method of model
building. Section 3 proves the theorem central to the
correctness of our approach. Section 4 gives detailed
examples of models we constructed automatically. Section
5 presents our method for introducing new variables into
a model. Section 6 summarizes related work. Finally,
Section 7 gives our conclusions and suggests directions for
further research.

2 Model Building in MISQ
Overview. MISQ's model generation process is broken
into three major phases. In the first phase, if we are given
quantitative data, we convert it into qualitative behaviors.
It is also possible to input qualitative behaviors directly.
In the second phase, we generate and test individual con-
straints, creating constraints consistent with the input
behaviors. In the third phase, we construct models (QDEs)
from the set of constraints generated in the second phase.
If the models are not connected, i.e., they consist of
independent sub-models, we use relational pathfinding to
search for variables that connect the sub-models.

Conversion of quantitative data. We can execute on two
forms of quantitative input: high-resolution sensor data or
hand-generated quantitative behaviors. If the input is high-
resolution sensor data, we convert the data to the required
numeric precision and align events which occur in different
variables at insignificantly different times2. We then
discard all but the "interesting" points in the data; i.e.,
points where some variable reaches a maximum, a mini-
mum, or zero. Hand-generated quantitative behaviors are
the analog of processed sensor data: quantitative behaviors
which include only interesting time points.



The quantitative behaviors are converted into qualita-

Figure 1. Single qualitative behavior of the simple bathtub. This
information can be automatically generated from high-resolution
sensor data.

Variable Initial Qspace Dimensions
Inflow 0, in1, ∞ mass/time
Outflow 0, ∞ mass/time
Netflow -∞, 0, net1, ∞ mass/time
Amount 0, ∞ mass

State 0 (initial state) successors: state 1
Variable Magnitude Direction-of-Change
Inflow in1 steady
Outflow 0 increasing
Netflow net1 decreasing
Amount 0 increasing

State 1 successors: state 2
Variable Magnitude Direction-of-Change
Inflow in1 steady
Outflow (0, ∞) increasing
Netflow (0, net1) decreasing
Amount (0, ∞) increasing

State 2 successors: none
Variable Magnitude Direction-of-Change
Inflow in1 steady
Outflow out1 steady
Netflow 0 steady
Amount amount1 steady

tive behaviors. For each variable at each time point, the
quantitative value is turned into a qualitative value consist-
ing of a qualitative magnitude and a direction-of-change.
The qualitative magnitude is constructed by generating a
landmark value and, if it is new, inserting it into the
qspace constructed so far3. The direction-of-change is
determined by comparing the numeric value of the variable
at the current time point with those of the preceding and
subsequent time points. Further, we add qualitative states
to behaviors as needed. If, for example, a variable is at a
minimum at one time point and at a maximum at the next,
the qualitative state for the interval during which the
variable is increasing is added to the behavior.

Constraint generation. The input to the second phase is
a set of consistent qualitative behaviors, the landmark
values (qspaces) of the initial state, and dimensional
information. In the first step of this phase, we select an
arbitrary behavior and generate all constraints satisfied by
any combination of variables. This is done by generating
tuples of variables and testing their values against the
satisfaction conditions for each constraint type. We do not
generate tuples that lead to immediately redundant con-
straints, e.g., (M+ x y) and (M+y x).

We currently implement the following constraint
types4: arithmetic constraints (add, mult, and minus),
differential constraints (d/dt), functional constraints (M+

and M- for strictly monotonically increasing and decreasing
functions), and direction-of-change constraints (constant).
These constraints are a subset of the constraints provided
in QSIM. Nevertheless, they are expressive enough to
build many interesting qualitative models.

The satisfaction conditions are similar to those in
QSIM, though somewhat simpler. Since the input behav-
iors are assumed to be correct, we need not check the
continuity criteria from a state to its successor. And, since
the satisfaction criteria within a state are the same for time
points and intervals, we need not distinguish between time
points and intervals. The constraint satisfaction criteria are
based on the magnitudes, signs, directions of change, and
corresponding values of the variables; these criteria are
defined in detail in [Kuipers, 1986]. For example, the
constraint (M+ x y) is satisfied if the directions of change
of x and y (expressed as increasing, decreasing, or steady)
are always identical, and there are no conflicting
corresponding values. If, for instance, there are corre-
sponding values at (x1 y1) and (x1 y2), and y1 and y2 are
known to be distinct values, the relationship between x and
y cannot possibly represent a function. The constraint (d/dt
x y) is satisfied if the direction-of-change of x is increasing,
decreasing, or steady and the sign of y is +, -, or 0,
respectively.

Finally, we ensure that the dimensions of the variables
in each constraint are compatible. If, for example, the
constraint (d/dt x y) has been generated, MISQ will test
whether the dimensions of x can be the dimensions of y
divided by time. This ensures that the constraints are

abstractions of equations potentially representing real
physical systems. Functional constraints impose no
a priori restrictions on the dimensions of their arguments.
Since we are working with qualitative data, dimensions are
generally stated in terms of fundamental types like mass,
time, or length rather than in units of measurement such as
meters or grams. Since MISQ is only interested in the
relationship between the dimensions of variables, users are
free to define their own types, except for time.

In some cases, the user may be able to reduce the
number of constraints in the final QDE by making dimen-
sions more specific. For example, if a system contains
both oxygen and water, and the user knows that it makes
no sense to combine amounts of oxygen and water, the
user can use different dimensions, such as amount-of-
oxygen and amount-of-water.

After generating all possible constraints from a single
behavior, we test all remaining behaviors against these
constraints, eliminating any constraint that violates any
satisfaction condition.

Model generation. If the user provided complete informa-
tion on the input behaviors, the set of constraints from the
second phase forms a unique model guaranteed to repro-
duce the input behaviors (see Section 3). If, on the other
hand, the user provides incomplete information, the set of
constraints from the second phase may not form a valid
model. In this case, further processing is required (see
Section 4).



As an example of model generation with complete
information, consider an empty bathtub with a finite
capacity, a constant inflow, and a constant drain opening.
This bathtub exhibits three behaviors: reaching equilibri-
um at a level below the top of the tub, reaching equilib-
rium exactly at the top, and overflowing. We simulated
the bathtub using QSIM, and presented MISQ with a
complete qualitative description of the behavior with an
equilibrium point less than full (see Figure 1). MISQ
abduced the exact QDE used to produce the behavior, with
the addition of two redundant constraints:

(constant inflow)
(add outflow netflow inflow)
(M- outflow netflow)
(M+ outflow amount)
(M- netflow amount)
(d/dt amount netflow)

The redundant constraints are added since MISQ generates
maximal QDEs. For example, since the M+ constraint is
transitive, if M+ constraints hold between variables a and
b and between b and c, MISQ would also include a
redundant M+ constraint between variables a and c.

3 Correctness and Uniqueness Theorem
A central feature of our method is that, given sufficient
information on the input behaviors, it will generate a
unique maximal QDE which is guaranteed to reproduce the
input behaviors. This further implies that, if the user
presents all system behaviors as input, we will produce a
correct system model. This section presents the essential
definitions and proves this central feature.

Consistent set of behaviors. A set of behaviors is
consistent if it (potentially) represents a real physical
system. This can be summarized by two criteria: First,
relationships among variables must be qualitatively
consistent among behaviors. In other words, if two vari-
ables are related by some constraint, then this constraint
must be the same in all behaviors (e.g., not M+ in one
behavior and M- in another). Second, dimensions must
make sense (as they must in a real system). We might
imagine a system in which a variable and its derivative
have the same dimensions, and create behaviors for the
system, but such a system could never actually exist.

Complete description. A description of a behavior is
complete if three criteria are met. First, all variables in the
system are identified. Second, values of the variables are
given for all time points and intervals. Finally, dimensions
are given for all variables. We do not require that all
behaviors of a system be given. However, specifying too
few behaviors may result in a model which is too con-
strained to produce behaviors of the system which were not
given as input. The more behaviors that are given, the
more constraints may be eliminated, thus making it less
likely that the resulting model will be overconstrained and
more likely that it is the intended model.

Theorem. Given a complete description of a consistent set
of behaviors, we will produce the most constrained QDE
which reproduces those behaviors. Furthermore, this QDE
is unique.

Proof of Theorem. Given a fixed set of variables, two
sets of constraints on these variables C1 and C2, and the
behaviors consistent with these constraints Beh(C1) and
Beh(C2), the set of behaviors consistent with both sets of
constraints is given by the relation

Beh(C1 ∪ C2) = Beh(C1) ∩ Beh(C2) (1)

Given a complete and consistent set of input behaviors, we
exhaustively generate all constraints which are individually
consistent with the behaviors. If we combine these
constraints using (1), the intersection of their behavior sets
will include all input behaviors. Thus, a correct model
exists. Since we generate all consistent constraints, the
resulting QDE is maximally constrained and unique.

4 Incomplete Information
Overview. The user may not always provide complete
behavioral information. There are two ways in which
behavioral information may be incomplete. First, entire
variables may be missing from the behaviors. Second,
information on variables may be partial in that their
dimensions or some of their qualitative values are not
given. Entire variables may be missing if the user does
not know what set of variables are important to a system.
Qualitative values may be omitted either when a variable
is difficult to measure or when measurements are not
available for all time points. Dimensions will generally be
given for all variables specified by the user, but will be un-
available for variables created by MISQ.

If we have only partial information on some variables,
constraints generated during the second phase of model
building may be mutually inconsistent. We must eliminate
these inconsistencies in order to generate a final model.

Once we have a consistent model, we check whether
the model forms a connected graph. If it does not, either
the behaviors describe independent processes or an essen-
tial system variable is missing. In this case, we consider
adding new variables to the model.

Missing Qualitative Values and Dimensions. When
qualitative values or dimensions are left unspecified, some
generated constraints may make incompatible assumptions
about the missing values. MISQ resolves this incompati-
bility by dropping one or more of the conflicting con-
straints. Since there is a choice of which constraints to
delete, the resulting model is no longer unique. However,
the model still reproduces the input behaviors.

One type of incompatibility arises with qualitative
values. For example, suppose we have the constraints:

(d/dt a b) (M+ a c)

At a particular time-point, let the direction-of-change for a
be unknown, the sign of b positive, and the direction-of-
change of c decreasing. The constraints are mutually



inconsistent, since the derivative constraint assumes the
direction-of-change of a to be increasing, while the M+
constraint assumes it to be decreasing.

Incompatibilities arising from missing dimensions are
detected by an analysis which ensures that a set of con-
straints makes sense as a model of a physical system. For
example, even without any dimensional information, we
know that the following constraints are inconsistent:

(d/dt a b) (add a b c)

They are inconsistent because variables in an add con-
straint must have identical dimensions, but the dimensions
of a variable and its derivative differ by a factor of 1/time.

As an example, we presented MISQ with the bathtub
behavior in Figure 1, but with no dimensional information.
MISQ generates six models. One of these is the desired
model shown earlier. The others reflect the fact that,
without dimensional information, MISQ is no longer able
to distinguish between outflow and amount, as they are
qualitatively indistinguishable in the specified behavior.

Missing Variables. Once we have a consistent set of
constraints, we check to see whether they form a connected
graph. If so, we consider our model complete. If not,
there are two possibilities: we may be missing one or
more variables, where the constraints associated with those
variables would connect the model, or the behaviors may
describe multiple independent processes.

These two possibilities define a spectrum of choices.
At one extreme, we can choose to always consider the
processes independent. At the other extreme, we can
always generate some sequence of intermediate variables
to connect any set of processes. In this spectrum, we have
chosen the following position: We assume that the user
has omitted only a small number of variables, and there-
fore only connect isolated parts of the model if we can do
so by introducing at most one intermediate variable for
each connection. Any portions of the model which cannot
be connected in this way we consider independent.

New variables are added by a method called relational
pathfinding, which is part of the general-purpose learning
system Forte. We give a brief description of this method
here. A complete description may be found in [Richards
and Mooney, 1992]. Relational pathfinding provides a
natural way to introduce new variables into a model. It is
based on the assumption that relational concepts can be
represented by one or more fixed paths between the
constants that define an instance of the relation. In the
case of qualitative modeling, we are looking for paths,
composed of constraints, which will join model fragments
into a coherent whole.

The pathfinding method seeks to find these paths by
successively expanding the paths leading from each known
system variable. To expand a path, we try adding all
possible constraints involving one new variable. The
added constraint and existing variables restrict the possible
behaviors of the new variable. We take the set of new
variables generated for each model fragment and look for
an intersection between them. An intersection occurs when

two new variables have consistent restrictions placed on
their behaviors. When we find an intersection, the inter-
section point becomes a new system variable and the
constraints leading to it are added to the model.

While relational pathfinding potentially amounts to
exhaustive exponential search, it is generally successful for
two reasons. First, by searching from all model fragments
simultaneously, we greatly reduce the total number of
paths explored before we reach an intersection. Second,
we limit the length of the missing paths and hence the
depth of search.

An example of a model containing variables added by
relational pathfinding is included in the following section.

5 Examples
We have run MISQ on a variety of common models,
including the U-tube modeled by GOLEM [Bratko,
Muggleton, and Vars  ek, 1991], a nonlinear pendulum, a
system of two cascaded tanks, and a system of two
independent bathtubs. The latter two are discussed in
detail below.

The U-tube consists of two tanks connected by a pipe
at the bottom. GOLEM required one positive behavior,
one hand-tailored positive timepoint, and six hand-generat-
ed negative timepoints. MISQ produced a correct model
using only the positive behavior given to GOLEM. The
nonlinear pendulum is a simple second-order system.
MISQ produces a correct model given the first few states
of a single damped behavior.

Cascaded tanks. Cascading two tanks so that the drain
from one provides the inflow to the next provides a more
complex system than the u-tube. We ran MISQ on various
types of input:

-- qualitative, quantitative, and high-resolution data
-- with and without missing variables

A graph of the high-resolution data for the amount vari-
ables is shown in Figure 2. In all cases with complete
dimensional information, MISQ produced the model in
Figure 3, which is exactly the one we would expect. The
constraints are:

(constant inflow_a)
(add outflow_a netflow_a inflow_a)
(add outflow_b netflow_b outflow_a)
(d/dt amount_b netflow_b)
(d/dt amount_a netflow_a)
(M+ amount_a outflow_a)
(M- amount_a netflow_a)
(M+ amount_b outflow_b)
(M- outflow_a netflow_a)

When we omitted system variables, we selected those
that a user might realistically forget. We supposed the
user measured all the flows and amounts but did not
realize that the calculated netflow for each tank would be
important. We therefore provided MISQ with the same
qualitative behaviors as above, but omitted the netflow
variables. The standard model generation process, before



relational pathfinding, produces the constraints:

Figure 2. High-resolution quantitative data.

Figure 3. Correct model for cascaded tanks.

(constant inflow_a)
(M+ amount_a outflow_a)
(M+ amount_b, outflow_b)

Note that these constraints are not connected. Relational
pathfinding finds the missing two variables and six
constraints, and again produces the correct model.

Two tubs. As a test of our ability to identify independent
processes, we presented MISQ with two behaviors of a
system containing two independent bathtubs. The standard
model generation process produces the model:

(M+ amount_a outflow_a)
(M+ amount_b outflow_b)
(d/dt amount_a netflow_a)
(d/dt amount_b netflow_b),
(add netflow_a outflow_a inflow_a)
(add netflow_b outflow_b inflow_b)

This model includes all constraints needed for the two tubs
(note that neither inflow is constant). The model is not
connected, and relational pathfinding tries to add new vari-
ables. It is unable to connect the two bathtubs with one
intermediate variable, and the model remains unchanged.

6 Related Work
Machine learning. Our approach is similar to the general-
izing half of the Version Space algorithm described in
[Mitchell, 1982]. Mitchell presents a method of deriving
logical descriptions from a series of examples. Given a set
of examples of the concept of interest, Version Space
constructs the most specific conjunctive expression which
includes those examples. We construct the most con-
strained model (essentially a conjunction of constraints)
which reproduces all the input behaviors.

Model building . GENMODEL [Coiera, 1989] is a system
which constructs maximally constrained qualitative models
from completely specified qualitative behaviors. MISQ
uses the same method to generate its initial set of con-
straints. However, MISQ generates fewer constraints, since
it performs dimensional analysis. GENMODEL does not
process quantitative behaviors, work with incomplete
information, or perform dimensional analysis.

In [Bratko, Muggleton, and Vars  ek, 1991], the learning
system GOLEM is used to abduce qualitative models.
Their method requires hand-generated negative information
(i.e., examples of behaviors which the system does not
exhibit), it does not completely implement the QSIM con-
straints (e.g., corresponding values are ignored), and it does
not use dimensional information.

The dimensional analysis MISQ performs is similar to
[Bhaskar and Nigam, 1990], which uses dimensions to
derive qualitative relations. However, [Bhaskar and
Nigam, 1990] requires dimensions to be stated in terms of
predefined fundamental types, whereas we allow dimen-
sions to be user-defined or even to remain unspecified.

[DeCoste, 1990] presents a system for maintaining a
qualitative understanding of a dynamic system from

continuous quantitative inputs, but begins with a qualitative
model. [Hellerstein, 1990] discusses the process of
obtaining quantitative predictions of system performance in
the absence of exact knowledge of the target system. And
[Forbus and Falkenhainer, 1990] combines quantitative and
qualitative models to produce "self-explanatory simula-
tions," which produce quantitative predictions along with
qualitative explanations of overall system behavior. But,
again, Forbus and Falkenhainer require system models as
input and exploit the relationship between the quantitative
and qualitative models, rather than deriving the qualitative
model from the input data.

7 Conclusions
Model building can be a difficult and time-consuming task.
It can be simplified by automating some steps of the
process. In this paper, we presented a method for auto-
matically producing models from known behaviors. This
approach is useful both in design and diagnosis.



In design, researchers often want models to produce
specified quantitative or qualitative behaviors; our method
can eliminate the need to handcraft these models. In
diagnosis, our method can derive a model which reproduc-
es a faulty behavior. Comparing the model of the faulty
behavior with the correct model may show where the
system fault lies. The fact that we can work directly with
the available quantitative information is particularly helpful
in this context.

There are several promising directions for further re-
search. First, our approach can be extended to include
other types of constraints like the QSIM S and U con-
straints. Second, when MISQ is given incomplete infor-
mation and generates many potential models, additional
filters could eliminate some of the proposed models.
These filters could make use of behaviors which should not
be produced by the model. Forte is already capable of
using this type of negative information. Third, inconsistent
input behaviors may represent a system which is crossing
a transition. Modeling such a system would require
constructing multiple models connected by well-defined
transitions. Lastly, MISQ represents an extreme, knowl-
edge-free approach to model-building. If more knowledge
is available, for example in the form of a view-process
library, this knowledge should be usable to restrict the set
of possible constraints. Similarly, MISQ could be inte-
grated with qualitative systems which work with partial
quantitative information; rather than converting quantitative
inputs to a purely qualitative model, we could retain the
quantitative information and pass it, along with the model,
to a system like Q2 ([Kuipers and Berleant, 1988]).
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Notes
1A behavior is a continuous time-ordered sequence of variable
values.
2We do not address issues of precision or noise. Our emphasis is
qualitative model building, and in a realistic application we would
expect sensor data to be pre-processed by a system designed to
deal with these problems.

3A qspace is a totally ordered set of landmarks. Landmarks are
values which break the domain of a variable into qualitatively
distinct intervals. For example, the qspace of the temperature of
a pot of water might be {absolute-zero, freezing, boiling, infinity}.

4The constraint (add x y z) means x + y = z, (d/dt x y) means
dx/dt = y, (M+ x y) means a strictly increasing monotonic function
holds between x and y, and so forth.


