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Abstract

The problem of learning qualitative models of
physical systems from observations of its be-
haviour has been addressed by several researchers
in recent years. Most current techniques limit
themselves to learning a single qualitative di�er-
ential equation to model the entire system. How-
ever, many systems have several qualitative dif-
ferential equations underlying them. In this pa-
per, we present an approach to learning the mod-
els for such systems. Our technique divides the
behaviours into segments, each of which can be
explained by a single qualitative di�erential equa-
tion. The qualitative model for each segment can
be generated using any of the existing techniques
for learning a single model. We show the results
of applying our technique to several examples and
demonstrate that it is e�ective.

Introduction

Qualitative reasoning is an elegant approach to
studying the behaviour of a physical system with-
out going into as much detail as in a numerical sim-
ulation. Model building and model simulation con-
stitute the two major sub-problems of qualitative
reasoning. There are several approaches to qual-
itative simulation, such as QSIM (Kuipers, 1986)
and QPT (Forbus, 1984). Rapid advances have
been made to improve the e�ciency of the simu-
lations and to �ne tune them. However, the model
building problem remains somewhat of an art form.
Building models for a complex system requires sig-
ni�cant knowledge of how the system works and is
a time-consuming process.
Many researchers are addressing the problem of

automatic model generation. One approach is to
build models from existing libraries of model frag-
ments (Forbus, 1984; deKleer and Brown, 1984;
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Crawford et al., 1990; Rickel, 1992). However,
these techniques still require complete knowledge
of all the model fragments. Another approach is
to learn the model of a physical system from ob-
servations of its behaviour. Doyle (1988); Amster-
dam (1993) have proposed techniques for learning
models from behaviours using existing knowledge
of processes and mechanisms commonly found in
physical systems. These approaches are knowledge-
intensive as well.
A number of researchers have formulated tech-

niques for generating qualitative models of physical
systems from a set of qualitative behaviours using
inductive techniques (Coiera, 1989; Kraan et al.,
1991; Richards et al., 1992; Dzeroski and Todor-
ovski, 1993; Bratko et al., 1991). These require lit-
tle knowledge of the system being modeled. Given
a set of input behaviours, these techniques gener-
ate a single qualitative di�erential equation (QDE)
that is consistent with the behaviours. The models
generated are represented so that they can be used
by QSIM.
Many complex physical systems cannot be de-

scribed by a single QDE. They are explained by
di�erent QDEs that hold under di�erent operating
conditions or regions. For example, water boiling in
a closed container requires three QDEs to explain
its behaviour depending on whether it is below or at
its boiling and whether all of the water has evapo-
rated. A typical behaviour shown in Figure 1 passes
through several of these regions.
However, MISQ (Kraan et al., 1991; Richards

et al., 1992) and the other systems cannot learn
models described by multiple QDEs. Given the be-
haviour in Figure 2, they will incorrectly learn a
single QDE that explains the entire behaviour. It
is desirable to have inductive model generators that
can recognise that the behaviour is best described
by multiple QDEs and learn them.
This paper describes a simple technique for auto-

matically recognising that there are multiple QDEs
underlying a physical system. It assumes only the
QSIM (Kuipers, 1986) formalism and is indepen-
dent of the induction algorithm used to generate



Structure: Heating liquid in a closed container..
Initialization: Heat water in a pot  (S-1)
Behavior 6 of 14:    (S-1 S-2 S-10 S-13 S-28 S-41 S-56 S-82 S-93 S-99 S-104).
Final state: (GF QUIESCENT COMPLETE), (NIL), NIL.
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Figure 1: The Boiling-Water System: Typical Behaviour

the model. Given qualitative observations of the
behaviours of a system, this technique identi�es the
various operating regions of the system where dif-
ferent QDEs hold.
We have evaluated our technique on the follow-

ing physical systems: the Plant Water-balance sys-
tem, the Boiling-Water system and the Divided-
Tank system. Ultimately, we would like to be able
to learn multiple QDEs from quantitative data as
well.
In the next section, we will describe our tech-

nique in detail. Section 3 describes an experimen-
tal evaluation of this technique. In Section 4, we
discuss future directions.

Learning Models with Multiple
QDEs

A QDE is valid over some operating region. The
conditions, expressed in terms of the values of the
variables involved, over which the QDE is valid are
called the operating conditions of the QDE. The
movement of a system from the operating region
of one QDE to that of another is called a region
transition.
Behaviours of physical systems that pass through

multiple operating regions exhibit region transi-
tions. The segment between two consecutive tran-
sitions is governed by a single QDE. Our approach

to learning models with multiple QDEs is to �rst
break up the behaviours into such segments. Then,
the system can use any of the existing induction
algorithms to generate the QDE for each segment.
Thus, the problem of learning models for systems

with multiple operating regions can be divided into
the following sub-problems.

1. Break up the example behaviours into segments
that fall within a single operating region.

2. Learn the QDE for each of the segments.

3. Identify the operating conditions for each QDE.

4. Unify the QDEs that describe the same operating
region.

Although step 2 involves an induction algorithm
to learn QDEs for each region, in the following sub-
sections we describe techniques for performing steps
1, 3 and 4 that are independent of the learning al-
gorithm used.

Step 1: Breaking up the behaviours
into segments

To break up a behaviour into segments, it is su�-
cient to detect the time points where the behaviour
moves from one region to another, i.e., to detect
the region transitions. Our system uses the follow-
ing heuristics to recognise transition points.



� Discontinuous-Change heuristic

One of the interpretations of a region transition is
that the actual state of the mechanism undergoes
a discontinuous change (Kuipers, 1994). Thus, a
discontinuity in the behaviour of any variable in
the system can be used to detect a region transi-
tion. A discontinuity can be any of the following
kind.

1. Discontinuity in the magnitude of a variable.
An example of this is a variable whose magni-
tude goes from being positive to being negative
without going through zero.

Figure 2 shows the variable uptake undergoing
a discontinuous change in magnitude at time
point T2.

2. Discontinuity in the sign of the derivative of a
variable. For instance, this happens when the
derivative of a variable goes from being posi-
tive to being negative without going through
zero.

For example, in Figure 2, the derivative of the
variable net inow undergoes a discontinuous
change at time point T2.

This heuristic is justi�ed by the fact that QSIM
does not predict discontinuous behaviour unless
it encounters a region transition that introduces
the discontinuity. In order to learn a model that
covers the given discontinuous behaviour, MISQ
has to hypothesise a region transition at the point
of discontinuity.

� Non-analytic-Function heuristic

This heuristic relies on the properties of a cer-
tain class of functions called analytic functions.
If a function is analytic over an interval, and is
constant over any open sub-interval, it must be
constant over the entire interval (Kuipers, 1994).
Thus, under the assumption that the actual be-
haviours exhibited by all the variables in the sys-
tem being modeled are analytic, if a variable
is observed to be constant over some interval,
but not over some other interval in the same
behaviour, then the two intervals must be gov-
erned by di�erent constraints and hence di�erent
QDEs.

For example, in the behaviour shown in �g-
ure 2, the variable turgor exhibits non-analytic
behaviour. It is non-constant over the inter-
val (T0, T5) and is constant over the interval
(T5,T6).

This heuristic is justi�ed because, under the an-
alytic function assumption, QSIM will never gen-
erate a non-analytic behaviour unless it encoun-
ters a region transition that introduces the non-
analyticity.

Step 2: Learning the QSIM models for
each operating region

The previous section described the heuristics to
break up behaviours into segments corresponding
to di�erent operating regions. The learner can now
generate a single QDE to model each segment using
any of the existing induction algorithms (Coiera,
1989; Kraan et al., 1991; Richards et al., 1992; Dze-
roski and Todorovski, 1993; Bratko et al., 1991).
In our implementation, we have used

MISQ (Kraan et al., 1991; Richards et al., 1992)
to generate the QDEs. Given a set of qualitative
behaviours, MISQ uses a most speci�c generalisa-
tion algorithm to generate QSIM models that are
guaranteed to be consistent with the behaviours.

Step 3: Identifying the operating
conditions for each region

Identifying the operating condition for each QDE
can be thought of as an inductive process. The
behaviour segment associated with each QDE pro-
vides positive examples of the condition under
which it is active. We have used a most speci�c
conjunctive generalisation approach to induce the
operating conditions from positive examples, where
the operating condition induced for a region is the
range of all the qualitative values observed for each
variable in the behaviour segment. Table 1 shows
the operating condition for the region between T0
and T1 in the behaviour shown in Figure 2.
An operating condition represents the interior of

a region, whereas QSIM represents a region by its
boundaries. The region of validity of each QDE is
speci�ed in terms of transition mappings. These
mappings specify transition conditions, i.e., condi-
tions under which the system moves out of the op-
erating region of one QDE into that of another.
It is easy to derive the boundary conditions of

each QDE from its operating conditions. We view
the variables that de�ne the boundary of a QDE
as triggers that cause the transition out of the re-
gion. Table 4 shows some examples of triggers that
cause transitions between regions. The following
observations help us in identifying such triggers.

1. Since discontinuities cannot occur spontaneously,
a variable that changes discontinuously cannot
cause a transition.

2. A variable that is steady over a region or does not
cross a landmark value cannot cause a transition.

The rest of the variables are potential triggers
and the transition condition is speci�ed as the con-
junction of their boundary values.

Step 4: Uni�cation of regions

At the end of step 3, there are as many QDEs
as there are behaviour segments. However, many
of the segments could have the same underlying



Structure: Effect of decreasing soil moisture on plant water..
Initialization: Normal plant, decreasing soil moisture.  (S-0)
Behavior 66 of 209:    (S-0 S-1 S-3 S-22 S-27 S-37 S-52 S-55 S-75 S-123 S-139 S-187 S-219 S-235 S-236 S-237).
Final state: (TRANSITION FINAL GF COMPLETE), (TRANSITION-IDENTITY), T<INF.
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Figure 2: The Plant Water-Balance System: Input Behaviour

Variable Qualitative interval

soil water amount (SW-0 SW-1)
soil water potential (SO-0 SO-1)
root water potential (R-0 R-2)
soil/root psi gradient (G-0 G-2)
water uptake rate (U-0 U-6)
transpiration rate TR-0
plant water net inow (0 N-12)
plant water amount (P-0 ABA-TRIG)
plant symplast turgor (TU-0 ABA-TRIG)
stomates ST-0

Table 1: An Example of an operating condition



model. It is important to identify such segments
and unify them.
A simple criterion to decide whether a set of re-

gions should be uni�ed is to check the set of con-
straints in the QDEs associated with the regions.
In principle, two QDEs are identical if and only if
their constraints sets are identical. However, since
each QDE is learned inductively, two QDEs that
should be identical may have di�erent constraint
sets. In practice, we have to rely on heuristics to
guide region uni�cation. We use two heuristics to
identify the regions to be uni�ed.

1. Identical Constraints heuristic

If two regions have QDEs with identical sets of
constraints, then they are uni�ed. The operat-
ing condition for the uni�ed region is the dis-
junction of the operating conditions of the indi-
vidual regions, if they are disjoint. Otherwise,
the two operating regions are combined by com-
bining the qualitative intervals for each variable
across the regions uni�ed. Two operating condi-
tions are disjoint if and only if there is at least one
variable with non-overlapping qualitative values
across the two regions.

2. Identical Operating Conditions heuristic

Two regions are uni�ed if they have identical op-
erating conditions. The set of constraints de�n-
ing the uni�ed QDE is the intersection of the sets
of constraints in the regions uni�ed.

Our system applies the two heuristics repeatedly
until no more regions can be uni�ed.

Experimental Evaluation
We have implemented this technique in a system
called MISQ-RT. We have used MISQ-RT to gen-
erate multiple QDE models for the following phys-
ical systems: the Plant Water-balance system, the
Boiling-Water system and the Divided-Tank sys-
tem.
We will �rst outline our experimental methodol-

ogy and then describe the results for each of the
three systems.

Methodology

We designed our experiments to test the e�ective-
ness of our approach and our heuristics. We con-
sidered the heuristics for the identi�cation of region
transitions to have been e�ective if they could suc-
cessfully detect all the region transitions. We eval-
uated the heuristics for region uni�cation by com-
paring the regions generated by MISQ-RT with a
model of the same physical system generated by
an expert. We expected the heuristics to unify ex-
actly those regions deemed identical by the expert.
The speci�cation of the conditions for region tran-
sitions were also evaluated by comparing the gen-
erated models with the expert model.

In each of the experiments, we generated be-
haviours by using QSIM to simulate the expert
model. We picked a few of these behaviours as
input for MISQ-RT, making sure that the selected
behaviours traced di�erent trajectories through the
regions and exhibited di�erent region transitions.
The input to MISQ-RT also included totally or-
dered quantity spaces and dimensions for each vari-
able.
The output from MISQ-RT was the generated

model in a format that could be used by QSIM. The
speci�cation for each QDE included the constraints
and the transition mappings.
QSIM indicates region transitions in the be-

haviours that it generates. This made it easy to
check if MISQ-RT has identi�ed all the region tran-
sitions in a behaviour.
Since the behaviours were generated by QSIM,

there was a correspondence between the behaviors
and the QDEs in the expert model that generated
them. Thus, we could establish a correspondence
between the regions generated by MISQ-RT and
the expert QDEs. This was crucial in evaluating
the heuristics for region uni�cation. We expected
MISQ-RT to unify only those regions that corre-
spond to the same expert QDE.
The following subsections present the results of

our experiments, followed by a discussion of the
results.

Results

Water Boiling in a Closed Container This
experiment modeled the scenario of water being
brought to boil in a closed container. The model
de�ned by the expert had three QDEs, Heating,
Boiling and Gas-only. The QDE Heating is active
when the water is being heated up to its boiling
point. Boiling is active when the water has reached
its boiling point. Gas-only is active when all the
water has evaporated.
Figures 1 shows one of the four inputs to MISQ-

RT. The other input behaviours showed all the wa-
ter evaporating before it reached its boiling point.
MISQ-RT identi�ed three regions as well.
Before region uni�cation, MISQ-RT generated as

many QDEs as the number of behaviour segments
between transitions. In this case, it generated nine
QDEs. Table 6 shows the correspondence between
these QDEs and those de�ned by the expert. Ta-
ble 7 shows the correspondence between the gener-
ated QDE and the expert QDE after uni�cation.
MISQ-RT identi�ed exactly those regions corre-
sponding to the same QDE in the expert model.
Table 4 shows the transitions for each of the

QDE as de�ned by the expert. Table 5 shows
the transitions learned by MISQ-RT for each QDE.
These tables show that MISQ-RT was successful in
identifying all the variables that cause transitions
out of each QDE. The transition condition for the



Generated QDE Expert QDE

r106498 Boiling
r106493 Heating
r106487 Heating
r106481 Heating
r106464 Heating
r106486 Gas-only
r106479 Gas-only
r106492 Gas-only
r106503 Gas-only

Table 2: The Boiling-Water System: Region correspondence before uni�cation

Uni�ed QDE Component QDE Expert QDE

q106521 r106498 Boiling
q106522 r106493 r106487 r106481 r106464 Heating
q106523 r106486 r106479 r106492 r106503 Gas-only

Table 3: The Boiling-Water System: Region correspondence after uni�cation

QDE q106521 seems overly-speci�c. However, it is
merely redundant since the two conditions would
occur simultaneously. This brings up the question
of the interpretation of the landmark value M-9 for
the variablemgas. This is discussed in the section 4.

Plant Water-balance system In this experi-
ment, we modeled a plant balancing the amount
of water in its system, as the level of water in
surrounding soil decreases. The model de�ned
four QDEs, healthy-stomates-closed-uptake, water-
stress-uptake, healthy-stomates-closed-no-uptake,
water-stress-no-uptake. The main factors that de-
termine the region that is active at any point are
(1) whether the plant is healthy, and (2) whether
there is any uptake of water from the soil. When
the plant is healthy, i.e., when the concentration of
water in its system is above a threshold, the size
of stomatal-opening is constant. When the plant is
water-stressed, i.e., not healthy, the stomates start
closing. When the concentration of water in the
soil falls below a certain level, there is no uptake
of water. When the stomates are closed, the size of
the stomatal-opening is constant. Thus, both the
healthy and the stomates-closed condition result in
the same QDEs. This example is similar to the one
described in (Rickel and Porter, 1992).

Figures 2 shows one of the two input be-
haviours to MISQ-RT. MISQ-RT identi�ed six
QDEs, whereas the expert model had only four.
Table 6 shows the correspondence between the

generated QDEs and the expert QDEs. Table 7
shows the correspondence after uni�cation.

MISQ-RT uni�ed only those QDEs that corre-
sponded to the same QDE in the expert model.
However, it did not unify all such QDEs. It could

not identify that the QDE for the condition of a
plant being healthy with the QDE for the condition
when the stomates are closed. In region q105961,
the plant is healthy but the stomates are open.
Whereas in region q105963, the plant is unhealthy
but the stomates are closed. These two condi-
tions are explained by the same QDE in the ex-
pert model. However, this would a�ect neither the
correctness of the model nor its generality.

Table 8 shows the transitions for each of the four
QDEs de�ned by the expert. Table 9 shows the
transitions for the QDEs generated by MISQ-RT.
The transition conditions for the generated QDEs
are more speci�c than for the expert QDEs. MISQ-
RT did not propose transitions that did not occur
in the input behaviours. For example, for the QDE
corresponding to the region water-stress-uptake, it
did not generate a transition when the variable tur-
gor increases beyond the value aba-trig. This is be-
cause it did not encounter any behaviour with such
a transition. We are investigating techniques for
proposing transitions that did not occur in the in-
put behaviours. This can be done by examining the
generated regions pairwise for variables that could
cause transitions between them.

The Divided-Tank system Figure 3 shows the
Divided-Tank system. It has a tank with a parti-
tion in the middle. There is an inow into region
A and a drain in each of the regions A and B. This
example is from (Soderman and Stromberg, 1991).

Figure 4 shows the behaviour tree and one of the
predicted behaviours when the tank is �lled from
empty. QSIM predicted 7 behaviours, all of which
were included in the input to MISQ-RT.

The expert model de�ned three QDEs, FillA,



From QDE Transition Condition To QDE
Variable Qmag Qdir

Heating pdi� 0 inc Boiling

Mliq 0 dec Gas-only

Boiling Mliq 0 dec Gas-only

Gas-only No transition

Table 4: The Boiling-Water System: Transition table for the expert model

From QDE Transition Condition To QDE
Variable Qmag Qdir

q106522 pdi� 0 inc q106521

Mliq 0 dec q106523
Mgas M-9 NIL

q106521 Mliq 0 dec q106523
Mgas M-9 NIL

q106523 No transition

Table 5: The Boiling-Water System: Transition table for the generated model

Generated QDE Expert QDE

r105904 water-stress-uptake
r105918 water-stress-no-uptake
r105924 healthy-stomates-closed-uptake
r105899 healthy-stomates-closed-uptake
r105929 healthy-stomates-closed-no-uptake
r105934 water-stress-no-uptake
r105939 healthy-stomates-closed-no-uptake
r105923 healthy-stomates-closed-no-uptake

Table 6: The Plant Water-Balance System: Region correspondence before uni�cation

Uni�ed QDE Component QDEs Expert QDE

q105958 r105904 water-stress-uptake
q105959 r105918 water-stress-no-uptake
q105960 r105924 r105899 healthy-stomates-closed-uptake
q105961 r105929 healthy-stomates-closed-no-uptake
q105962 r105934 water-stress-no-uptake
q105963 r105939 r105923 healthy-stomates-closed-no-uptake

Table 7: The Plant Water-Balance System: Region correspondence after uni�cation



From QDE Transition Condition To QDE
Variable Qmag Qdir

healthy-stomates-closed-uptake turgor aba-trig dec water-stress-uptake

soil-psi perm-wilt dec healthy-stomates-closed-no-uptake

water-stress-uptake turgor aba-trig inc healthy-stomates-closed-uptake

stomates closed nil healthy-stomates-closed-uptake

soil-psi perm-wilt dec water-stress-no-uptake

healthy-stomates-closed-no-uptake turgor aba-trig dec water-stress-no-uptake

soil-psi perm-wilt inc healthy-stomates-closed-uptake

water-stress-no-uptake turgor aba-trig inc healthy-stomates-closed-no-uptake

stomates closed nil healthy-stomates-closed-no-uptake

soil-psi perm-wilt inc water-stress-uptake

Table 8: The Plant Water-Balance System: Transition table for the expert model

A B

C

inflow

outflow outflow

Figure 3: The Divided Tank system



From QDE Transition Condition To QDE
Variable Qmag Qdir

q105960 pwater aba-trig dec q10598
turgor aba-trig dec

swater perm-wilt dec q105961
soil-psi perm-wilt dec
uptake 0 dec
netow n-9 dec

q105958 swater perm-wilt dec q105959
soil-psi perm-wilt dec
uptake 0 dec

q105961 pwater aba-trig dec q105962
turgor aba-trig dec

q105963 No Transitions

q105959 root-psi R-4 dec q105963
pwater P-3 dec
transp 0 dec
turgor stomates-closed dec
netow 0 inc

v stomates closed dec

q105962 root-psi r-4 dec q105963
pwater p-3 dec
transp 0 dec
turgor stomates-closed dec
netow 0 inc
stomates-closed closed dec

Table 9: The Plant Water-Balance System: Transition table for the generated model



Structure: Two cascaded tanks.
Initialization: Fill from empty  (S-0)
Behavior 2 of 7:    (S-0 S-1 S-2 S-6 S-8 S-9 S-12 S-13 S-15).
Final state: (GF QUIESCENT COMPLETE), (NIL), NIL.
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Figure 4: The Divided-Tank System: Input Behaviour

FillB and Fill-both. FillA is active when region A
is being �lled. FillB is active when region A is full
and region B is getting �lled. Fill-both is active
when both A and B are full and region C is getting
�lled.
The model generated by MISQ-RT de�ned the

same number of QDEs as the expert model. It uni-
�ed exactly those QDEs that corresponded to the
same QDE in the expert model. It identi�ed all
the variables responsible for causing transitions out
of a QDE. Some of the transition conditions were
overly-speci�c.

Discussion

The outcome of the experiments showed that the
heuristics for identifying region transitions in qual-
itative behaviours were e�ective. In all of the ex-
periments, MISQ-RT identi�ed all the region tran-
sitions. These heuristics are independent of the in-
duction algorithm used to learn the QDEs.
The heuristics for recognising and unifying iden-

tical regions were e�ective in unifying a large pro-
portion of the QDEs deemed identical by the ex-
pert. They never made the mistake of unifying re-
gions that the expert did not consider identical.
Sometimes, the technique generated overly spe-

ci�c transition conditions. This could cause QSIM
to miss some transitions when it uses the generated
model for simulation. We are investigating tech-
niques for avoiding this through the use of negative
examples of transitions conditions, i.e., situations
where a proposed transition condition did not lead
to a transition.

Since we used MISQ as our induction module, the
QDEs generated for each region was guaranteed to
be consistent with the behaviour segments for each
region.

Future Work

Evaluation on more complex systems

The techniques we have proposed here rely on
heuristics. These heuristics have to be validated
by extensive experiments. We would like to per-
form experiments on systems more complex than
those we have studied so far. One such system is
the Reaction Control System (RCS) of the space
shuttle (Kay, 1992).
Although, it is not desirable to learn a single

QDE to explain the behaviour of a system with
multiple operating regions, generating too many
QDEs would adversely a�ect the generality of the
model. The number of regions generated should
be of an order less than the number of behaviour
segments in the input. We would like to study the
number of behaviours generated by MISQ-RT in re-
lation to the number of behaviour segments in the
input. We would also like to evaluate the generality
of the models generated by our technique by using
QSIM to simulate them and see how successful they
are in predicting behaviours previously unseen.

Identifying Region Transitions from
Quantitative Data

Our current implementation of the technique re-
quires qualitative behaviours as input. However, to



be useful in modeling real systems like the RCS, the
system should be able to handle quantitative data
as well.
The heuristics for identifying region transitions

from behaviours can be applied to quantitative data
as well. Non-analytic behaviour and discontinuous
changes will have to be detected from quantitative
data. So far we have not investigated techniques
for doing this. This task is further complicated in
the presence of noise. We plan to address this issue
in the near future.

Matching Landmarks across Behaviours

The experiments have shown the identical operating
conditions heuristic to be quite useful in unifying
regions. However, the criterion for matching the
operating conditions for regions is purely syntactic.
Two operating conditions are considered identical
if the qualitative intervals for each of the variables
are identical across the two regions. Two qualita-
tive intervals are considered identical is they are
bounded by the same landmark value.
When the inputs to the learner come from dif-

ferent sources, landmarks may not match syntacti-
cally, even if they stand for the same event. Con-
sider the situation where MISQ-RT is modeling a
bathtub and it receives behaviours from two bath-
tubs, A and B. Let FullA and Fullb be the land-
marks for the the event when A and B are full to
capacity, respectively. As MISQ-RT processes the
quantitative data, it has to recognise that FullA and
FullB are qualitatively the same landmarks values,
though they have di�erent quantitative values. If
they are not recognised to be the same, the operat-
ing conditions for the QDEs proposed for the two
bathtubs will not match.
There are certain landmarks like zero that are

special and can be matched easily across be-
haviours. A possible approach to this problem
would be to use these special landmarks and the
qualitative trends in the behaviour to match the
other landmarks. This is an interesting problem
that could arise in other applications of Qualita-
tive Reasoning and is worth pursuing.

Related Work
Many techniques have been proposed for learning
models of physical systems from observations of
their behaviour (Coiera, 1989; Kraan et al., 1991;
Richards et al., 1992; Dzeroski and Todorovski,
1993; Bratko et al., 1991). All of these, however,
can only generate a single QDE model.

Falkenhainer (1990) describes a technique for
building models for systems by analogy with other
systems. This approach requires knowledge in the
form of a library of processes. This is also true
of (Rickel, 1992; Rickel and Porter, 1992) who de-
scribe a method for automatically building mod-
els from process libraries. Since they work at the

process level, they are not concerned with region
transitions directly.
The machine discovery system ABA-

CUS (Falkenhainer and Michalski, 1986) learns the
mathematical equations describing a set of numer-
ical data. It can discover multiple equations that
apply under di�erent conditions. Although their
technique does learn qualitative relations between
variables, its main focus is on learning quantita-
tive laws. The quantitative laws help in recognis-
ing and learning the various operating regions of the
system. MISQ-RT, on the other hand, uses quali-
tative heuristics to identify the di�erent operating
regions. Thus, it can be used with quantitative as
well as qualitative data.

Soderman and Stromberg (1991) have proposed
a technique for learning models of systems that
abruptly change between linear modes of opera-
tion. They address similar issues such as identifying
\jump" in behaviours, �nding correspondences be-
tween various segments of the behaviour and �nd-
ing conditions under which each mode is active.
They use system identi�cation techniques to detect
region transitions and to �t a model for each seg-
ment. However, they have to specify the model
structure in advance. Our approach does not make
any assumptions about the model structure. They
also require knowledge in the form of bond graphs.
The models they �t are quantitative models. Our
approach works on qualitative behaviours and can
be used in situations where quantitative observa-
tions are not available.
Nordhausen and Langley (1993) have proposed a

technique for empirically discovering the laws that
govern scienti�c phenomena. Their system discov-
ers both qualitative and quantitative laws. It can
also identify and model the di�erent operating re-
gions of the system. However, the system does not
break up the observations into di�erent segments
automatically. This information has to be given as
input to the system. The transition conditions have
also to be speci�ed with the input.

Conclusion

In this paper, we have proposed a method for learn-
ing models with multiple QDEs from qualitative
observations of their behaviour. We have proposed
heuristics to detect region transitions and for iden-
tifying corresponding regions. We have also sug-
gested a technique for identifying the operating
conditions of each QDE. The experiments reported
here indicate that our approach is e�ective in iden-
tifying region transitions and learning models with
multiple QDEs.
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