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ABSTRACT some items are allowed to be members of two or more discov-

While the vast majority of clustering algorithms are péotigl,
many real world datasets have inherently overlapping etasiThe
recent explosion of analysis on biological datasets, whiehfre-
quently overlapping, has led to new clustering models tHatva
hard assignment of data points to multiple clusters. Ongcpar
larly appealing model was proposed by Segal et al. [33] irctre
text of probabilistic relational models (PRMs) appliedhe ainaly-
sis of gene microarray data. In this paper, we start with &sédmap-
proach of Segal et al. and provide an alternative interpogtaf the
model as a generalization of mixture models, which makessiye
interpretable. While the original model maximized likeldd over
constant variance Gaussians, we generalize it to work wigtreg-
ular exponential family distribution, and correspondinge@man
divergences, thereby making the model applicable for a wide
ety of clustering distance functions, e.g., KL-divergentakura-
Saito distance, I-divergence. The general model is appécto
several domains, including high-dimensional sparse daspauch
as text and recommender systems. We additionally offerrakve
algorithmic modifications that improve both the performamand
applicability of the model. We demonstrate the effectivsnaf our
algorithm through experiments on synthetic data as welubsets
of 20-Newsgroups and EachMovie datasets.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications - Data Min-
ing; 1.2.6 [Artificial Intelligence ]: Learning

Keywords

Overlapping clustering, exponential model, Bregman djgaces,
high-dimensional clustering, graphical model.

1. INTRODUCTION

Almost all clustering methods assume that each item muss-be a
signed to exactly one cluster and are hence partitional.edewyin
a variety of important applicationeyerlapping clusteringwherein
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ered clusters, is more appropriate. For example, in biglggges
have more than one function by coding for proteins that gigdie

in multiple metabolic pathways; therefore, when clusigmmicro-
array gene expression data, it is appropriate to assigregemaul-
tiple, overlapping clusters [33, 4]. In the popul2®-Newsgroups
benchmark dataset used in text classification and clugt§2iy,

a fair number of the original articles were actually crosstpd

to multiple newsgroups; the data was subsequently manégzlla
to produce disjoint categories. ldeally, a clustering athm ap-
plied to this data would allow articles to be assigned to iplgt
newsgroups and would rediscover the original cross-poatad
cles. In the populaEachMoviedataset used to test recommender
systems [30], many movies belong to more than one genre, such
as “Aliens”, which is listed in the action, horror and scierfiction
genres. An overlapping clustering algorithm applied t tthata
should automatically discover such multi-genre movies.

In this paper, we generalize and improve an approach toayerl
ping clustering introduced by Segal et al. [33], hereafedenred
to as the SBK model. The original method was presented as a
specialization of a Probabilistic Relational Model (PRNIB] and
was specifically designed for clustering gene expressita. d&le
present an alternative (and we believe simpler) view ofrthasic
approach as a straightforward generalization of standaxture
models. While the original model maximized likelihood oeen-
stant variance Gaussians, we generalize it to work with egylar
exponential family distribution, and corresponding Bregndiver-
gences, thereby making the model applicable for a wide tyaoie
clustering distance functions [2]. This generalizatiomrisical to
the effective application of the approach to high-dimenaisparse
data, such as typically those encountered in text miningeoam-
mender systems, where Gaussian models and Euclideanadistan
are known to perform poorly.

In order to demonstrate the generality and effectivenessupf
approach, we present experiments in which we produced axid ev
uated overlapping clusterings for subsets of2BeNewsgroupand
EachMoviedata sets referenced above. An alternative “straw man”
algorithm for overlapping clustering is to produce a stadgsoba-
bilistic “soft” clustering by mixture modeling and then nea& hard
assignment of each item to one or more clusters using a thresh
old on the cluster membership probability. The ability ofetsh-
olded soft clustering to produce good overlapping clustgriis an
open question. Consequently, we experimentally comparau
proach to an appropriate thresholded soft clustering aod shat
the proposed overlapping clustering model produces gngsgghat
are more similar to the original overlapping categoriesh@20-
NewsgroupsndEachMoviedata.

The main contributions of the paper can be summarized as:
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Figure 1: Basic graphical model for overlapping clustering

1. We show that the basic SBK model [33] for overlapping clus-
tering can be (more simply) understood as an extension of
the mixture modeling with Gaussian density functions,eath
than a simplification of PRMs.

. We extend the basic SBK model to work with any regular
exponential family. Using a connection between exponen-
tial families and Bregman divergences [2], we show that the
basic computational problem is that of matrix factorizatio
using Bregman divergences to measure loss.

. We outline an alternating minimization algorithm for tfen-
eral model that monotonically improves the objective func-
tion for overlapping models for any regular exponential fam
ily distribution.

ping clustering model works better than some alternative ap
proaches to overlapping clustering.

A brief word on notationR¢ denotes the-dimensional real vector
space;p denotes a probability density function while other lower-
case letters liké& denote scalars; uppercase letters kkeignify a
matrix, whose™ row vector is represented X, jth column vec-
tor is represented a$!, and whose entry in rowand columnj is

represented a%; or X/

2. BACKGROUND

In this section, we give a brief introduction to the PRM-lzhse
SBK model. Probabilistic Relational Model§PRMs) [18, 23] ex-
tend the basic concepts of Bayesian networks into a frantefeor
representing and reasoning with probabilistic relatigpsbetween
entities in a relational structure. PRMs provide a very gane
framework, allowing for the learning of graphical modelgobba-
bilistic dependencies from arbitrarily complex relatibdatabases.

The SBK model is an instantiation of a PRM for capturing the
relationships between genes, processes, and measuregsgpr
values on DNA microarrays. The structure of the instantiatedel
succinctly captures the underlying biological understagaf the
mechanism generating the observed microarray values —Ipame
that genes participate in processes, experimental conditause
the invocation of processes at varying levels, and the obdezx-
pression value in any particular microarray spot is due éocthm-
bined contributions of several different processes. ThK 8idel
places no constraints on the number of processes in whichemey
might participate, and thus gene membership in multiplegsses,
i.e., overlapping clustering, naturally follows.

The SBK model works with three matrices: the observed real
expression matriX (genesx experiments)a hidden binary mem-
bership matrixM (genesx processes)containing the membership
of each gene in each process, and a hidden real activity xrfatri
(processesx conditions)containing the activity of each process

. We present empirical evidence that the proposed overlap-

X,

Figure 2: Instantiation of the PRM model to 2 data points
(genes), 2 dimensions (experiments) and 3 clusters (proses).

for each experimental condition. The key modeling assusngt

as follows: the expression vall)(;:J corresponding to geniein ex-
perimentj has a Gaussian distribution with constant variance. The
mean of the distribution is equal to the sum of the activitels

A,‘1 of the processelsin which gene participates. From the model

assumption, we have
1
, 1
V210 > @

The SBK model assumes thit and A are independent apriori

so thatP(M,A) = P(M)p(A) and thatX/’s are conditionally in-
dependent giveM; andAl. Further,M andA are assumed to be
component-wise independent as well so @l ), P(A) can be de-
composed into products over each component. All the above as
sumptions for the SBK model can be represented as a graphical
model as shown in Figures 1 and 2. The joint distributiotX oM
andA, that the SBK model tries to optimize is given by

P(M,A)p(X|M,A) = p(M)p(A)p(X|M,A)

(m p(MF>> (H p(A&)) <r]| p(&jMi,AJd) .

Assuming thaA*j1 are uniformly distributed over a sufficiently large

pOXI M, A) =

202

exp<<>¢ ~MiAl)?

p(X,M,A)

compact set, and noting that the conditional distributibr)(ib is
Gaussian, considering the log-likelihood of the joint disition,

we have
g 33

1
ozl X MAI2 - logp(w)

MAJ

1
log p(X,M,A =
m%wm,,) 52

min
M,A

To find the value of the hidden variabliek A, the SBK model uses
an EM approach [15]. The E step involves finding the best esti-
mates of the binary genes-process memberskipsThe M step
involves computing the prior probability of gene membepsimi
each procesp(M) and the process-condition activatiohs

The core parameter estimation problem is much easier taunde
stand if we recast it as a matrix decomposition problem, rigigo
the priors for the time-being. With the knowledge that therek
relevant processes in the observations, we want to find axjseo
sition of the observed expression matxe R™* into a binary
membership matri# € {0,1}"* and a real valued activation ma-



trix A € R¥*d such that|X — MAJ|? is minimized. In [33], estimat-
ing M andA for a givenX proceeds as follows:

1. M is seeded with a first estimate of the clustering in the data
usually the output of a partitional clustering such as Iiiera
chical or k-means run on the rows Xf

. Next, the least-squares approximationAdfor the givenX
andM is found asA = MTX, whereMT is the pseudo-inverse
of M.

. Using theA from step 2, the next approximation M is
found by relaxing the requirement tHdtbe binary and solv-
ing a bounded least squares optimization for each gekt in
This effectively seeks a solutioM; = [0,1]¥ for each row
such that|X — M;A||? is minimized.

. A binary solutionM is then recovered from the real-valued
solutionM found in step 3 by thresholding. Since thresh-
olding potentially moves the solution away from optimal, a
local search is performed over every possible O-flip of the
post-threshold 1’s to find thal; = {0,1}K that minimizes
X — MiA| 2.

until || X — MA||? is less than the desired convergence criteria.

The next section describes how the overlapping clusteriadein

a multinomial random variable, since it can take oné dfscrete

values. If the matrixZ is known, one can directly estimate the

parameter® of the most likely model explaining the data by max-
' imizing thecompletdog-likelihood of the observed data, given by

Ip(X.Z/0) = 5 Iz P (X 62)

However, theZ matrix is typically unknown: the optimum param-
eters® of the log-likelihood function with unknowi, called the
incompletdog-likelihood function, can be obtained using the well-
known iterativeExpectation Maximization (EMjlgorithm [15].

3.2 Overlapping Clustering with Mixture Model

Mixture models are often used to generate a partitionatetus
ing of the data, where the points estimated to be most prgbabl
generated from the™" mixture model component are considered to
constitute theht" partition. The probability value(z = h|X;,0)
after convergence of the EM algorithm gives the probabdityhe
point X; being generated from tHé" mixture component.

In order to use the mixture model to get overlapping clustgri
where a point can deterministically belong to multiple tus, one
can choose a threshold valdesuch thatX; belongs to the parti-

. Using the nevM calculated in step 4, steps 2-4 are repeated tion X if p(z = h|X;,®) > A. Such a thresholding technique can

enableX; to belong to multiple clusters. However, there are two
problems with this method. One is the choice of the parameter
which is difficult to learn given onlyX. Secondly, this is not a

we propose generalizes the PRM-based SBK model. We also pro-natural generative model for overlapping clustering. inrhixture

vide a simple interpretation of our model as a modificatiothi
standard mixture modeling using exponential family disttions,
that has been widely used for generative modeling of data.

3. THE MODEL

In this section, we present a quick review of basic mixturelmo
eling, and outline a simplistic way of getting overlaps frtime re-
sulting soft-clustering. Then, we propose our model forriaye
ping clustering, hereafter referred to as MOC, as a geretain
of the SBK model, and study the fixed point equations of the pro
posed model.

3.1 Basic Mixture Model

Given set ofn data points, each point being a vectorRf, let
them be represented byrex d observation matrixX, such that
row X; denotes thét" data point andk; j represents itgt" feature.
Fitting a mixture model tX is equivalent to assuming that each
data pointX; is drawn independently from a probability density

Z OhPh(

where® = {eh}ﬁzl, k is the number of mixture components,

is the probability density function of the" mixture component
with parameter$y,, anday are the component mixing coefficients
such thati, > 0 andzﬁzlo(h = 1. To sample a point following the
density of this mixture model, first a component density fiorc
pn is chosen with a probability}, and then a point is sampled from
RY following pp.

Let Z be an x k boolean matrix such tha; is 1 if the j'" com-
ponent density was selected to genefdteand O otherwise. In
mixture model estimation, since each pofhts assumed to be gen-
erated from only one underlying mixture component, evewy 7p
is ak-dimensional boolean vector constrained to have 1 in ondy on
column and 0 everywhere else. Ltbe a random variable corre-
sponding to the index of the 1 in each r@y everyz is therefore

p(Xi|©) = Xi[8n)

model, the underlying model assumption is that a point iegeed
from only one mixture component, apdz = h\X. O©) simply gives
the probability ofX; being generated from tH#" mixture compo-
nent. However, an overlapping clustering model should geae
X; by simultaneously activating multiple mixture componeée
describe one such model in the next section.

3.3 Proposed Overlapping Clustering Model

The overlapping clustering model that we present here inarge
alization of the SBK model described in Section 2. The SBK etod
minimizes the squared loss betweémandMA, and their proposed
algorithms is not applicable for estimating the optinvdland A
corresponding to other loss functions. In MOC, we genegdtie
SBK model to work with a broad class of probability distrilouts,
instead of just Gaussians, and propose an alternate matiiz
algorithm for the general model.

The most important difference between MOC and the mixture
model is that we remove the multinomial constraint on therixat
Z, so that it can now be an arbitrary boolean matrix. To distin-
guish from the constrained matr we denote this unconstrained
boolean matrix as the membership matvix Every pointX; now
has a correspondirigdimensional boolean membership vedir
thehth componenMih of this membership vector is a Bernoulli ran-
dom variable indicating whethé§ belongs to thét" cluster. The
membership vectaW; for the pointX; effectively encodes*2con-
figurations, starting fronf00...0], indicating that; does not be-
long to any cluster, t¢11...1], indicating thatX; belongs to alk
clusters. So, a vectdd; with multiple 1's directly encodes the fact
that the pointX; belongs to multiple clusters.

Let us now consider the probability of generating the obeerv
data points in MOCA is the activity matrix of this model, such
tha’[Aijq represents the activity of clustawhile generating thgt"
feature of the data. The probability of generating all theagiints
is

p(X|®) = p(X|M,A) =

|‘|p>¢\M Al) &)



where® = {M, A} are the parameters pf and)(iJ 's are condition-
ally independent giveM; andAl. In MOC, we assume to be the
density function of any regular exponential family distrilon, and
also assume that the expectation parameter corresporaiXgs
of the formM; A, so thatE[X;] = M;A. In other words, using vector
notation, we assume that eaxhis generated from an exponential
family density whose meal;A is determined by taking the sum
of the activity levels of the components that contributehte gen-

eration ofX;, i.e.,Mih is 1 for the active components. For example,

Taking gradient with respect # and setting it to the zero matrix
of sizep x m, we have

~MT@(MA) — (~MT)@ (MA) ~ MT [(X — MA) o @' (MA)] 0
= MT [(X ~MA)og@' (MA)] = 0.

An exactly similar calculation with respect i, with a zero matrix
of sizen x p, gives

[(X —MA) o’ (MA)]AT = 0.

if prepresents a Gaussian density, then its mean would be the sum

of the activity levels of the components for which the menshgr
variableM!" of the pointX; has a value 1.

Using the above assumptions and the bijection betweenaegul

exponential distributions and regular Bregman divergsii2g the
conditional density can be represented as:

PO |Mi, Al) O exp{—dg(X], MiAl)} 3)

whered, is the Bregman divergence corresponding to the chosen

exponential densityp. For example, ifp is the Poisson density,
is the I-divergence; ip is the Gaussian densitgly, is the squared
Euclidean distance [2].

Similar to the SBK model, the overlapping clustering modekt
to optimize the following joint distribution oX, M andA:

P(X,M,A) P(M,A)p(X|M,A) = p(M)p(A)p(X|M,A)

(m p(MP>) (H p(A&)) <|‘]| p(&"Mi,Ah) :

Now, note that any, A with X = MA satisfies both the fixed point
equation. The corresponding loss function

dg(X,MA) = dy(X,X) =0,

which is the global minimum for the objective function. Heran
exact factorization oK asMA is sufficient forM, A to be globally
optimal. O

4. ALGORITHMS AND ANALYSIS

In this section, we propose and analyze algorithms for ediimg
the overlapping clustering model given an observation imatr In
particular, from a given observation matix we want to estimate
the prior matrixx, the membership matrid and the activity matrix
A so as to maximizep(M, A, X), the joint probability distribution
of (X,M,A). The key idea behind the estimation is an alternating
minimization technique that alternates between updatiig and
A

Making similar model assumptions as in Section 2, we assume 4.1 Updatinga

thatM and A are independent of each other apriori ehds dis-
tributed uniformly over a sufficiently large compact setplging
that p(M,A) = p(M)p(A) O p(M). Then, maximizing the log-
likelihood of the joint distribution gives

maxlogp(X,M,A) = max
na gp(X,M,A) na

> 109 P(MP) 5 dg(X! MiA))

]

min {zd(p(xijv(MA)ij)%l()gaih} :
AL B

whereaj, = p(Mih) is the (Bernoulli) prior probability of thé-th
point having a membershidi, to theh-th cluster.

3.4 Fixed Point Equations

We now present the fixed point equations of the overlappingr-cl
tering model that are satisfied for any Bregman divergendee T
equations specify the connection betweéiM, A at a fixed point
of the model. It further suggests a general gradient desqatdte
technique that we revisit later in Section 4. For notaticwaive-
nience, letp(X) on its own denotg; j @(Xij) andX oY denote the

matrix dot product #XTY) = ¥; j Xi;Y;j.

LEMMA 1. For any Bregman divergenceg,énd any matrix X,
the optimal values of M and A that minimizg(¥, MA) must satisfy
the fixed point equations

MT [(X —MA) o ¢'(MA)] 0 4)
[(X—MA)og(MAJAT = 0. ®)

Further, X = MA is a sufficient condition for the corresponding
M, A to be optimal.

PROOF The objective function to be optimized is
do(X, MA) = @(X) — G(MA) — (X — MA) T (MA) .

The prior matrixa can be directly calculated from the current
estimate oM. If 1, denotes the prior probability of any point be-
longing to clusteh, then, for a particular poirit we have

Qi = Tﬁ’:/lp(lf )M (6)

Sincerty, is the probability of a Bernoulli random variable, and the
Bernoulli distribution is a member of the exponential famthe
maximum likelihood estimate is just the sample mean of tHie-su
cient statistic [2]. Since the sufficient statistic for Beutli is just
the indicator of the event, the maximum likelihood estinaftéhe
prior T, of clusterhis just

1
=52 Ly - @)

Thus, one can compute the prior matnixrom (6) and (7).

4.2 Updatingm

In the main alternating minimization technique, for a give,
the update for M has to minimize

zd(P(XIJ ) (MA)ij) :
]

SinceM is a binary matrix, this is integer optimization problem and
there is no known polynomial time algorithm to exactly sotkie
problem. The explicit enumeration method involves evahgpall

2% possibilities for every data point, which can be prohitgitfor
even moderate values kf So, we investigate simple techniques of
updatingM so that the loss function is minimized.

There can be two ways of coming up with an algorithm for up-
dating M. The first one is to consider a real relaxation of the
problem and allowM to take real values if0,1]. For particular
choices of the Bregman divergence, specific algorithms easheb
vised to solve the real relaxed version of the problem. Farmgtle,



when the Bregman divergence is the squared loss, the cormésp
ing problem is just the bounded least squares (BLS) probigeng

by
min (X MAJ2,
0<Mjp<1

for which there are well studied algorithms [6]. Now, fronetteal
bounded matriM, one can get the cluster membership by round-
ing Mj, values either by proper thresholding [33] or randomized
rounding [31]. Ifkg clusters get turned “on” for a particular data
point, the SBK model performs an explicitzearch over the “on”
clusters in order get improved results. Another altereatiould

be to keepM in its real relaxed version till the overall alternating
minimization method has converged, and round it at the vedy e
The update equation of the priamg andai, has to be appropriately
changed in this case.

Although the real relaxation approach seems simple enoogh f
the squared loss case, it is not necessarily so for all Bragiivar-
gences. In the general case, one may have to solve an optoniza
problem (not necessarily convex) with inequality consiisi be-
fore applying the heuristics outlined above. In order toidvbat,
we outline a second approach that directly tries to solvértteger
optimization problem without doing real relaxation.

We begin by making two observations regarding the problem of
estimatingM:

1. In arealistic setting, a data point is more likely to be émy
few clusters rather than most of them; and

2. For each data point estimatingM; is a variant of thesub-
set sum problerthat uses a Bregman divergence to measure
loss.

Taking the first observation a step further, for a domainis iwell

understood (or desirable) that each data point can beloaignmst
ko clusters, for somky possibly significantly smaller thdq then it
may be computationally feasible to perform an explicit shaver

all the possibilities:
ek>“°
kO )

(3)+(5) () =

where the last inequality holds k§ < k/2. Note that forky = 1,
the overlapping clustering model essentially reduceseaadiular
mixture model. However, in general, such a brute-forcecteamay
only be feasible for very small value &f. Further, it is perhaps
not easy to decide on suchka apriori for a given problem. So,
we focus on designing an efficient way of searching through th
relevant possibilities using the second observation.

The subset sum problem is one of the hard knapsack probldrhs [1

that tries to solve the following:

Given a set ok natural numbersy,...,a and a tar-
get numbel, find a subseS of the numbers such that

2aesh =X

In a more realistic setting, one works with a set of real nursend
tries to find a subset such that the sum over the subset dabest

possible tax. In our case, we measure closeness using a Bregman

divergence and we have multiple targets to which we wantuhe s
to be closé. In particular, then the problem is to find" such that

m

M{" = argmin dy(X, MjA) = argmin Z do(Xij » Z M Ah
M;€{0,1}k Mie{0,1}k j=1

1The problem is different from the so-called multiple subsain
problem [8].

Thus, there aren targetsXy, ..., Xm, and for each targeX;; the
subset is to be chosen fro .,AK. The total loss is the sum
of the individual losses, and the problem is to find a siridjehat
minimizes the total loss.

Using the inherent bias of natural overlapping problemsub p
each point in low number of clusters, and the similaritieof
formulation to the subset sum problem, we propose the akgori
dynanmi cM(Algorithm 1). The algorithm is motivated by the Apri-
ori class of algorithms in data mining [34] and Shapley valom-
putation in co-operative game theory [22, 14]. It is impotte
note that no theoretical claim is being made regarding thiena-
ity of dynam cM The belief is that such an efficient algorithm will
work well in practice, as the empirical evidence in Sectiosu§-
gests.

Algorithm 1 dynamicM

Input: Row vector{x]1.4, distance functiom, activity matrix[Alkxq, initial
guesgmMo|1xk

Output: Boolean membership vectdm];.k that gives a low value for
d(x,mA)

Method:
Forh=1,... k, setimp]ixk, [Wh]1xk @s all zeros

Set|t]1.k as all ones
for h=1tokdo
whlh] «+ 1
mp[h] < 1
I+ d(x,mpA)
for r =2tokdo
for h=1tokdo
if th = 1then
0 ¢
for p=0to(k—1)do
if (mp Vwp # mp) N (d(x, (my+wp)A) < ¢y) then
Mp <= Mp +Wp
Ih + d(X,mpA)
if £9'4 = ¢y then
th=0
m = mo, £ = d(X,mpA)
for h=1tokdo
if £ < ¢then
m < mp
l fh
Output[m]1k

The algorithmdynam c¢M starts with 1 cluster turned “on” and
greedily looks for the next best cluster to turn “on” so as i@-m
imize the loss function. If such a cluster is found, then it 2a
clusters turned “on”. Then, it repeats the process with teki&-
ters turned “on”. In general, ficlusters are turned “ontlynam cM
considers turning each one of the remainikg- h) clusters “on”,
one at a time, and computes loss corresponding to the mehijpers
vector with (h+ 1) clusters turned “on”. If, at any stage, turning
“on” each one of the remainingk — h) clusters increases the loss
function, the search process is terminated. Otherwiseclkisghe
best(h+ 1) cluster to turn “on”, and repeats the search for the
next best on the remainir{g— h— 1) clusters.

Such a procedure will of course depend on the order in which
clusters are considered to be turned “on”. In particula,choice
of the first cluster to be turned “on” will partly determine igh
other clusters will get turned “on”. The permutation depamzy of
the problem is somewhat similar in flavor to that of pay-offrco
putation in a co-operative game. lfplayers are already in co-
operation, the value-add of ttib+ 1)t partner will depend on the
permutation following which the firgh were chosen. In order to
design a fair pay-off strategy, one computes the averageadd
of a player, better known as Shapley value, over all perrutaof



forming co-operations [22, 14].

Then, in theorydynam ¢Mshould consider each one of tke
permutation$, keep turning clusters “on” following each permuta-
tion to figure out the lowest loss achieved along that pdetiqoer-
mutation, and finally compute the best membership vectomgmo
all permutations. Clearly, such an approach would be iitiéas
in practice. Insteadgdynani cM starts withk threads, one corre-
sponding to each one of theclusters turned “on”. Then, in each
thread, it performs the search outlined above for addingnthe
“on” cluster, till no such clusters are found, or all of theravk
been turned “on”. The search is similar in flavor to the Aprédgo-
rithms, or, dynamic programming algorithms in general, rgren
optimal substructure property is assumed to hold so thegehech
for the best membership vector with+ 1) clusters turned “on”
starts from that witth clusters turned “on”. Effectivelydynam cM
searches ovek permutations, each starting with a different clus-
ter turned “on”. The other entries of the permutation arexivied
greedily on the fly. Sincdynani cMrunsk threads to achieve par-
tial permutation independence, the best membership veceorall
the threads is selected at the end. The algorithm has a wasgst ¢
running time ofO(k®) and is capable of running with any distance
function.

4.3 Updatinga

We now focus on updating the activity matix Since there are
no restrictions o\ as such, the update step is significantly simpler
than that forM. Note that the only constraint that such an update
needs to satisfy is thdflA stays in the domain op. First, we
give exact updates for particular choices of Bregman damcgs:
the squared loss and the I-divergence, since we use onlg thes
section 5. Then, we outline how the update can be done in ¢ase o
a general Bregman divergence.

In case of the square loss, since the domaig isfR, the prob-
lem

®)

is just the standard least squares problem that can be yxabibd
by

min || X — MA|?
A

A=MT"X 9)

whereMT is the pseudo-inverse M, and is equal oM™ M)~ IMT
in caseMT M is invertible.

In case of I-divergence or un-normalized relative entrapg
problem

mAin di(X,MA) = mAin ; <Xij log (MAJ;

= Xij +(MA)ij> ;

(10)
has been studied as a non-negative matrix factorizatitmigae [7,
26]. The optimal update fok for given X, M is multiplicative and
is given by

Loy Mhxd /vy
diM
In order to prevent a divide by 0, it makes sense to use((Mw()ij ,€)
and maxy Mih,s) as the denominators for some small constant
£>0.
With the above updates, the respective loss functions ane pr
ably non-increasing. In our experiments, we focus on ongs¢h

2Since the permutations decide clusters to turn “on”, certan-
figurations repeat. A simple check for repeating configaretican

bring computations down td2as one would expect.

two loss functions. In case of a general Bregman divergethee,
update steps need not necessarily be as simple. In gengraljia
ent descent update can be derived using the fixed point equ#i
in Lemma 1. For a learning rate gf the gradient descent update
for Ais given by

AV A MT[(X—MA) o ¢'(MA)] . (12)
As in many gradient descent techniques, an appropriateeiodi
involves a line search along the gradient direction at eitergtion.
Note that the simple I-divergence updates in (11) are defirem
auxiliary function based methods. Existence of efficiendaips
based on auxiliary functions for the general case will begtiv
gated as a future work.

5. EXPERIMENTS

This section describes the details of our experiments #vaiah-
strate the superior performance of MOC on real-world dats, se
compared to the thresholded mixture model.

5.1 Datasets

We run experiments on three types of datasets: syntheti dat
movie recommendation data, and text documents. For the high
dimensional movie and text data, we create subsets fronritje o
nal datasets, which have the characteristics of having d soma-
ber of points compared to the dimensionality of the spacestét-
ing a small number of points in a high-dimensional space @mna-c
paratively difficult task, as observed by clustering reskars [16].
The purpose of performing experiments on these subsetsésite
down the sizes of the datasets for computational reasorest tiu¢
same time not scale down the difficulty of the tasks.

5.1.1 Synthetic data

In [33], Segal et al. demonstrated their approach on gene mi-
croarray data and evaluated on standard biology datab&sese
these biology databases are generally believed to be okirov-
erage, we elected to create microarray-like synthetic détfa a
clear ground truth. The synthetic data is generated by sagpl
points from the MOC model and subsequently adding noise.

To generata points from MOC, where each point has a dimen-
sionalityd and the maximum number of processes it can belong to
is k, we first generate a x k binary membership matrikl from a
Rayleigh distribution using rejection sampling. For eaoinp we
first sample a value from a Rayleigh distribution [32] with aan
of 2. The actual number of procesgefor the point is obtained by
adding 1 to the sample value, so that the mean number of preges
to which a point is assigned is effectively 3. Note that thislia
tive shift assigns each point to at least 1 process sinceripmal
Rayleigh distribution has a rang@, «), and we also truncate pro-
cess values op > k to k. This makes the synthetic data closer to a
biological model of gene microarray data, where the avenamge-
ber of processes a gene belongs to has been empiricallyvelger
be close to 3 [33]. The final membership vector for the poihis
tained by selecting processes uniformly at random from the total
possible set ok processes and turning on the membership values
for those processes, the rest being set to 0. The memberstiprs
for all n points defines the overall membership matvix

We next generate lax d activation matrixA, where every point
is sampled from a Gaussian N (0,1) distribution. We form the
observationX as MA and corrupt it with additive Gaussian noise
N (0,0.5): the noise makes the task of recoveryMofand A by
performing the decomposition a4 non-trivial. Three different
synthetic datasets of different sizes were generated:



¢ small-synthetica small dataset with = 75,d = 30 andk =
10;

e medium-synthetia medium-sized dataset with= 200,d =
50 andk = 30;

¢ large-synthetic a large dataset with = 1000,d = 150 and
k = 30.

For the synthetic datasets we used squared Euclidean ahstan
as the cluster distortion measure in the overlapping dlingt@lgo-
rithm, since Gaussian densities were used to generate ise fnee
datasets.

5.1.2 Movie Recommendation data

The EachMovie dataset has user ratings for every movie in the
collection: users give ratings on a scale of 1-5, with 1 iatig
extreme dislike and 5 indicating strong approval. There7drd24
users in this dataset, but the mean and median number of user
voting on any movie are 1732 and 379 respectively. As a result
if each movie in this dataset is represented as a vector ioigsat
over all the users, the vector is high-dimensional but tghyovery
sparse.

For every movie in the EachMovie dataset, the corresponding
genre information is extracted from the Internet Movie bate
(IMDB) collection. If each genre is considered as a sepazate
egory or cluster, then this dataset also has naturally appithg
clusters since many movies are annotated in IMDB as belgrtgin
multiple genres, e.g., Aliens belongs to 3 genre categoaietson,
horror and science fiction.

We created 2 subsets from the EachMovie dataset:

e movie-taa 300 movies from the 3 genres — thriller, action
and adventure;

e movie-afc 300 movies from the 3 genres — animation, fam-
ily, and comedy.

We clustered the movies based on the user recommendations to

rediscover genres, based on the belief that similarity Gomemen-
dation profiles of movies gives an indication about whetheytare
in related genres. For this domain we use I-divergence vétildce
smoothing as the cluster distortion measure, which has stemmn
to work well on the movie recommendation domain [1].

5.1.3 Textdata

Experiments were also run on 3 text datasets derived from the
20-Newsgroupsollectior?, which have the characteristics of be-
ing high-dimensional and sparse in the vector-space modab
collection has messages harvested from 20 different Usmvet-
groups, 1000 messages from each newsgroup. This datasgt-is p
ular among practitioners for evaluating text clusteringclassifi-

cation algorithms — it has each message annotated by one news

group, creating a non-overlapping categorization of ngssdy
newsgroup membership. However, the original dataset hewdiap+
ping newsgroup categories — many messages were crosstposte
multiple newsgroups, e.g., multiple messages discuskm@avid
Koresh/FBI standoff were cross-postedt & k. pol i tics. guns,
tal k. politics.nmscandalt.athei smnewsgroups. The multi-
ple newsgroup labels on the messages were artificially rechamnd
replaced by one label; so, interestingly, #&Newsgroupsataset
had natural category overlaps, but was artificially coraatiinto
a dataset with non-overlapping categories. We parsed ie or
nal newsgroup articles to recover the multiple newsgrobpl&on

Shitp://www.ai.mit.edu/people/jrennie/20Newsgroups

each message posting. From the full dataset, a subset vatedre
having 100 postings in each of the 20 newsgroups, from witieh t
following datasets were created:

e news-similar-3 consists of 300 messages posted to 3 re-
duced newsgroups on similar topics(p. gr aphi ¢s, conp-
. 0S. ms- W ndows, andconp. wi ndows. x), which had signif-
icant overlap between clusters due to cross-posting;

e news-related-3 consists of 300 messages posted to 3 re-
duced newsgroups on related topical k. pol i tics. m sc,

tal k. politics.guns,andtal k. politics.nm deast);

news-different-3 consists of 300 messages posted to 3 re-
duced newsgroups that cover different topaist ( at hei sm
rec.sport.basebal |, sci.space).

The vector-space model néws-similar-dhas 300 points in 1864

%imensions,news-related-éhas 300 points in 3225 dimensions,

while news-different-zhad 300 points in 3251 dimensions. All
the datasets were pre-processed by stop-word removal arayaé
of very high-frequency and low-frequency words, followittge
methodology of Dhillon et al. [17]. The raw counts of the réma
ing words were used in the vector-space model, and in thestoas
I-divergence was used as the Bregman divergence for oyenigp
clustering, with suitable Laplace smoothing.

5.2 Methodology

We used an experimental methodology similar to the one used
to demonstrate the effectiveness of the SBK model [33]. Bohe
dataset, we initialized the overlapping clustering by ingrk-means
clustering, where the additive inverse of the correspandireg-
man divergence was used as the similarity measure and thizemum
of clusters was set by the number of underlying categorig¢ken
dataset. The resulting clustering was used to initializeoserlap-
ping clustering algorithm.

To evaluate the clustering results, precision, recall Fanteasure
were calculated over pairs of points. For each pair of pdimas
share at least one cluster in the overlapping clusteringtsegshese
measures try to estimate whether the prediction of this gmive-
ing in the same cluster was correct with respect to the uyideyr!
true categories in the data. Precision is calculated agdk&dn of
pairs correctly put in the same cluster, recall is the foactf actual
pairs that were identified, and F-measure is the harmoniairoba
precision and recall:

Number of Correctly Identified Linked Pairs

Precision-= Number of Identified Linked Pairs

Number of Correctly Identified Linked Pairs

Recall= Number of True Linked Pairs
2 x Precisionx Recall
F-measure- —
Precision + Recall
5.3 Results

Table 1 presents the results of MOC versus the standard mixtu
model for the datasets described in Section 5.1. Each expoet
sult is an average over ten trials. For the synthetic dats set
compared our approach to thresholded Gaussian mixturelsyode
for the text and movie data sets, the baselines were thigsthol
multinomial mixture models. Table 1 shows that for all donsai
even though the thresholded mixture model has slightlyebetie-
cision in most cases, it has significantly worse recall: efare



F-measure Precision Recall

Data MOC Mixture MOC Mixture MOC Mixture
small-synthetic 0.64+0.12 | 0.364+0.08 | 0.834+ 0.07 | 0.80+ 0.07 | 0.53+ 0.14 | 0.24+ 0.07
medium-synthetic| 0.71+ 0.06 | 0.24+ 0.01 | 0.73+ 0.05| 0.60+ 0.03 | 0.70+ 0.09 | 0.15+ 0.01
large-synthetic 0.87+0.04 | 0.334+0.01| 0.854+ 0.06 | 0.87+ 0.04 | 0.89+ 0.05 | 0.20+ 0.01
movie-taa 0.62+ 0.03 | 0.504+ 0.04 | 0.554+ 0.01 | 0.56+ 0.01 | 0.71+ 0.07 | 0.46+ 0.08
movie-afc 0.76+ 0.03 | 0.61+ 0.07 | 0.804+ 0.01 | 0.81+ 0.02 | 0.72+ 0.06 | 0.50+ 0.09
news-different-3 | 0.454+ 0.01 | 0.41+ 0.05| 0.34+ 0.01 | 0.40+ 0.05 | 0.684+ 0.05| 0.41+ 0.06
news-related-3 0.54+0.02 | 0.394+0.02 | 0.424+0.01 | 0.444+ 0.02 | 0.76+ 0.08 | 0.35+ 0.01
news-similar-3 0.35+0.02 | 0.2840.01| 0.234+0.01| 0.244+ 0.01 | 0.69+ 0.06 | 0.34+ 0.01

Table 1: Comparison of results of MOC and thresholded mixtue models on all datasets

F-measure Precision Recall

Data dynamicM bls/search| dynamicM bls/search| dynamicM bls/search
small-synthetic | 0.64+ 0.12 | 0.55+ 0.20 | 0.83+ 0.07 | 0.98+ 0.03 | 0.52+ 0.14 | 0.41+ 0.19
medium-synthetic| 0.71+ 0.06 | 0.65+ 0.05| 0.73+ 0.05| 0.91+ 0.06 | 0.70+ 0.09 | 0.51+ 0.06
large-synthetic 0.87+0.04 | 0.87+0.02 | 0.85+ 0.06 | 0.92+ 0.02 | 0.89+ 0.05 | 0.83+ 0.04

Table 2: Results:dynam cMvs Bounded Least Squares (with search) for synthetic data

MOC consistently outperforms the thresholded mixture rhade 10
terms of overall F-measure, by a large margin in most cases. o
Figure 3 plots the improvements of MOC compared to the thresh ‘ jL
olded mixture model on the synthetic data, which shows that t o8
performance of MOC improves empirically as the ratio of théad 07 +

set size to the number of processes increases.

Table 2 compares the performance of usingdyweani cMalgo-
rithm versus the bounded least squares (BLS) algorithnovi@d os
by local search, in th®l estimation step in MOC. BLS/search gets 04
better results on precision, which is expected since BLBa®pti-
mal solution for the real relaxation of tihé estimation problem for

0.6

the Gaussian model. Howewvaynani cMoutperforms BLS/search 02

on the overall F-measure, as shown in Figure 4. Moreover, BLS o1

is only applicable for Gaussian models, wheréasan cMcan be

applied forM estimation with any regular exponential model, by °

small medium large

using the corresponding Bregman divergence to estimatéotise
of approximatingX by MA.

Figure 5 shows normalized reconstruction error, F-meaguee
cision, and recall for a run on the large synthetic data se¢revthe
normalized reconstruction error is defined to |bé — MA||?/nd.
This graph demonstrates evidence validating the centsainas-

Figure 3: Average F-measure of the proposed model of overlap
ping clustering (MOC) and the thresholded Gaussian mixture
model (GMM) on the synthetic datasets.

tion of the model: finding théMA decomposition that minimizes 10

reconstruction error corresponds to finding a good estimftiee 09

true cluster memberships. WL
Detailed inspection at the results revealed that MOC gets-ov o

lapping clustering that is closer to the ground truths fertdxt and o7 +

the movie data. For example, farovie-af¢ the average number o6

of clusters a movie is assigned to is 1.19, whereas MOC clogte
has an average of 1.13 clusters per movie. In the text domeivs-
related-3has each article posted to 1.21 clusters on an average, and 04
MOC assigns every posting to an mean number of 1.16 clusters. 0s
In both these cases, the thresholded mixture model got nimste
probability values very close to 0 or 1, as is very common irR-mi
ture model estimation for high-dimensional data: as a tékate o1
was almost no cluster overlap for various choices of thestiolel
value, and points were assigned to 1.00 clusters on an asérag
the thresholded mixture models.

MOC was also able to recover the correct underlying multiple Figyre 4: Comparison of the performances of dynamicM

genres in many cases. For example, the movie “Toy Story”én th  (4ynM) and bounded least squares followed by search (Isg) on
movie-afadataset belongs to all the three genres of animation, fam- he synthetic data sets.

05

00 dynM Isq dynM Isq dynM Isq

small medium large
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Figure 5: Plots of F-measure and Normalized Reconstruction
Error vs. Iteration for a run on the large synthetic data. Note
that decreasing error corresponds to increasing F-measure

ily and comedy in this dataset, and MOC correctly put it in3all
clusters. Similarly in the newsgroup dataset, message @229"
(which has a discussion on the topics of Israel, Judaism and |
lam) is cross-posted to 2 newsgroupal(k. pol i tics. ni deast
andt al k. politics.msc), and MOC correctly putitin 2 clusters
out of the possible 3.

6. RELATED WORK

Possibility theory, developed in the fuzzy logic communéit
lows an object to “belong” to multiple sets in the sense ofiflgv
high membership values to more than one set [5]. In particula
unlike probabilities, the sum of membership values may beemo
than one. The prototypical clustering algorithm in this com
nity is fuzzy c-means [5], which is qualitatively very similar to a
soft k-means algorithm obtained by applying EM to a mixture of
isotropic Gaussians model. Moreover, assigning an objeoiiti-
ple clusters using fuzzg-means is again very similar to applying a
threshold to the posterior probabilifyh|x) obtained through soft
k-means.

In classification, there are several applications wherelgeco
may belong to multiple classes or categories. Typicallg iki
achieved by assigning that object to all classes for whietctrre-
sponding (estimate ofposterioriclass probability is greater than a
threshold, rather that choosing only the class with thedstgpos-
teriori probability. For example, when classifying documents from
the Reuters data set version 3 using k-nearest neighbdatvedy
high value of k=45 was chosen in [35]. A document was assi¢med
every class for which the weighted sum of the neighbors lgghon
to that class exceeded an empirically determined threshétite
that the weighted sum is proportional to a local estimatéefcor-
respondingaposteriori probability, with the weights determining
the effective nature of the Parzen window that is used.

One of the earlier works on overlapping clustering techegu
with the possibility of not clustering all points was pretghin [28].
The more recent interest is due to the fact that overlapping- c
ters occur naturally in microarray data. Researchers seah r
ized that bi-clustering or co-clustering, i.e., simultang cluster-
ing of rows and columns, was suitable for such data sets singe
certain groups of genes are co-expressed given a corrasgond
subset of conditions[27]. Several methods for obtainingriayp-
ping gene clusters, including gene shaving [20] and meaarsqu
residue bi-clustering [10] have been proposed. Before R P

based SBK model was proposed, one of the most notable effort

in adapting bi-clustering to overlapped clustering wastigh the
plaid model [25], wherein the gene-expression matrix wadetex
as a superposition of several layers of plaids (subsetsrefgand
conditions). An element of the matrix can belong to multiplids
while another may not belong to any plaid. The algorithm peats
recursively by finding the most prominent plaid, removingdm

the matrix, and then applying the plaid finding method to tesd-
ual.

Bregman divergences were conceived and have been extgnsive
studied in the convex optimization community [9]. Over thasp
few years, they have been successfully applied to a varfatyae
chine learning issues, for example to unify seemingly disiga
concepts of boosting and logistic regression [13]. Morendy,
they have been studied in the context of clustering [2].

Our formulation has some similarities to but a few very impor
tant differences with a large class of models studied in the ¢
text of generalized linear models (GLMs) [29, 12, 19, 21]. In
GLMs [29], a multidimensional regression problem of thenfor
dy(Y, T(BZ)) is solved whereZ is the (known) input variabley
is the (known) response arfds the so-called canonical link func-
tion derived from@. The problem can be solved using iteratively
re-weighted least squares (IRLS) in the general case. Exien
to the case where botiandZ are unknown and one alternates be-
tween updatin® andZ has been studied by Collins et al. [12] while
extending PCA to the exponential families. Although selvera
tensions [19] of the basic GLM model to matrix factorizatizawve
been studied, expect for the well known instance of non-ega
matrix factorization (NMF) using I-divergence [26, 7], &irmu-
lations use the canonical link function and hence cannotigeo
solutions to our problem. Moreover, our model constrait® be
a binary matrix, which is never a standard constraint in GLMs

7. CONCLUSIONS

In contrast to traditional partitional clustering, oventeng clus-
tering allows items to belong to multiple clusters. In savém-
portant applications in bioinformatics, text managemant] other
areas, overlapping clustering provides a more natural wajis-
cover interesting and useful classes in data. This papeiniras
duced a broad generative model for overlapping clusteM@(C,
based on generalizing the SBK model presented in [33]. It has
also provided a generic alternating minimization alganittor effi-
ciently and effectively fitting this model to empirical daginally,
we have presented experimental results on both artificial aad
real newsgroup and movie data, which demonstrate the dépera
and effectiveness of our approach. In particular, we haesvsh
that the approach produces more accurate overlappingodusian
an alternative “naive” method based on thresholding theltesf
a traditional mixture model.

A few issues regarding practical applicability of MOC neéds
ther investigation. It maybe often desirable to use difieexpo-
nential family models for different subsets of features. @@lows
such modeling in theory, as long as the total divergence dsasx
combination of the individual ones. Further, MOC can patdiyt
benefit from semi-supervision [3] as well as be extended to-a ¢
clustering framework [1].
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