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Abstract

This paper presents a preliminary analysis of the sample complexity of theory re-

vision within the framework of PAC (Probably Approximately Correct) learnability

theory. By formalizing the notion that the initial theory is \close" to the correct

theory we show that the sample complexity of an optimal propositional Horn-clause

theory revision algorithm is O((ln 1=� + d ln(s0 + d+ n))=�), where d is the syntactic

distance between the initial and correct theories, s0 is the size of initial theory, n is the

number of observable features, and � and � are the standard PAC error and probability

bounds. The paper also discusses the problems raised by the computational complexity

of theory revision.

�This research was supported by the National Science Foundation under grant IRI-9102926, the NASA

Ames Research Center under grant NCC 2-629, the Texas Advanced Research Program under grant

003658114.
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1 Introduction

Although there has recently been a great deal of empirical work on constraining learning with

prior knowledge (Segre, 1989; Birnbaum and Collins, 1991), there has been relatively little

theoretical analysis of the problem. One way to use prior knowledge to bias learning is to

revise an existing imperfect domain theory to �t empirical data. This approach has important

applications to automatically re�ning knowledge bases for expert systems (Ginsberg et al.,

1988). This paper presents a preliminary analysis of theory revision within the framework

of PAC (probably approximately correct) learnability theory (Valiant, 1984). Speci�cally,

this paper analyzes the sample complexity (the number of examples required to learn a PAC

concept) of propositional Horn-clause theory revision. A number of recent systems modify

an existing incorrect/incomplete propositional Horn-clause theory to �t a set of preclassi�ed

training examples (Ourston and Mooney, 1990; Ginsberg, 1990; Cain, 1991; Matwin and

Plante, 1991).

Empirical results in several arti�cial and real-world domains have shown that revising

an approximate theory results in more accurate de�nitions from fewer examples than pure

induction (Ourston, 1991; Towell, 1991). For example, Figure 1 shows learning curves for re-

vising a theory for recognizing promoter sequences in DNA, a problem introduced by (Towell

et al., 1990). It compares classi�cation accuracy on novel test data for the Either theory

re�nement system (Ourston and Mooney, 1990; Ourston, 1991; Mooney and Ourston, in

press) and the ID3 inductive system (Quinlan, 1986). Since Either uses ID3 as an induc-

tive component, Either's performance without an initial theory is the same as ID3's. It

clearly show the advantage of theory re�nement over pure induction. Although the theo-

retical results presented in this paper are not directly applicable to existing implemented

systems, they provide some theoretical insight into why and when theory revision systems

learn from fewer examples.

The basic approach to analyzing theory revision involves formalizing the notion that the

initial theory is \close" to the correct theory. We introduce a notion of syntactic distance

between two theories based on the the number of primitivemodi�cations needed to transform
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Figure 1: Learning Curves for the DNA Promoter Problem

one theory into another. We show that an upper bound on the number of examples needed

to transform an initial propositional theory into a PAC theory is O(d log(d)) in the syntactic

distance d between the initial and correct theories. We also discuss the computational

complexity of theory revision and what is needed to extend these results to apply to realistic

theory revision algorithms.

2 A Relevant Result from PAC Learnability

PAC learnability theory as originated by Valiant (1984) is primarily concerned with deter-

mining the number of examples required by a learning algorithm to guarantee that with

probability 1� � the concept description produced by the algorithm has an error rate of at

most �.

In this paper, we will use Haussler's notion of the sample complexity of a learning al-

gorithm L for a hypothesis space 1 H de�ned on an instance space X, denoted SL

H
(�; �),

1A hypothesis space is also frequently referred to as a concept class. Typical examples are pure conjunctive,
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which is the minimum number of examples m such that for any target concept h 2 H and

any distribution on X, given m random examples of h, L produces a hypothesis that, with

probability at least 1� �, has error at most � (Haussler, 1988).

A learning algorithm L is said to use a hypothesis space H consistently if it always

returns a hypothesis in H that is consistent with the training set or else correctly indicates

that no hypothesis in H is consistent with the given examples. A general result is that for

any hypothesis space H and any learning algorithm L that uses H consistently: 2

SL

H
(�; �) �

1

�
(ln

1

�
+ ln jHj): (1)

This result clearly indicates that the number of examples needed to learn a PAC concept

description is directly related to the size of the restricted space of concepts in which the target

concept is known to belong, and hence formalizes the notion of inductive bias (Haussler,

1988).

3 An Approach to PAC Analysis of Theory Revision

In order to analyze the sample complexity of a theory revision algorithm, we need to formally

specify the restricted space of hypotheses that are explored by such an algorithm. The

fundamental assumption of theory revision is that although the initial domain theory is


awed, it is still relatively \close" to the correct theory. Therefore, the restricted class of

hypotheses explored by theory revision is probably best formalized as those that are within

a limited \distance" of the initial theory.

Theory revision systems generally syntactically modify the initial theory to make it �t the

training data. Sample modi�cations include adding and deleting rules and their antecedents

(Ourston and Mooney, 1990). Therefore, one way of measuring the distance between two

theories is to determine the minimum number of primitive syntactic modi�cations needed

to transform one theory into the other. The notion that the initial theory is \close" to the

DNF, k-DNF, etc..

2This is a direct consequence of a result in Blumer et al. (1987).
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Figure 2: Restricted Hypothesis Space for Theory Revision

correct one can then be captured by assuming that the syntactic distance between the two

theories is less than some value, d. The hypothesis space can then be limited to all theories

within a distance d of the initial theory.

This basic idea is illustrated in Figure 2, where H is the overall hypothesis space (e.g.

propositional Horn-clause theories), T0 is the initial theory, Tc is the correct theory (which

is a syntactic distance d from the initial theory), and Hd is the space of all theories within

a syntactic distance d of the initial theory. If a learning algorithm is guaranteed to �nd the

closest theory to T0 that is consistent with the training data, then its hypothesis space can

be considered to be Hd.

Therefore, in order to analyze the sample complexity of theory revision, we need to

formalize the notion of syntactic distance and determine the size of the corresponding hy-

pothesis space Hd. In the following section, we do this analysis for the case of propositional

Horn-clause theories.

4 Sample Complexity of Propositional Revision

As previously mentioned, propositional Horn-clauses are used to represent theories in several

recent systems. We will assume that a theory is a set of propositional Horn-clauses for an
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C  stable ^ liftable ^ open-vessel

stable  has-bottom ^ 
at-bottom

liftable  graspable ^ lightweight

graspable  has-handle

graspable  width-small ^ styrofoam

open-vessel  has-concavity ^ upward-pointing-concavity

Features: has-bottom, 
at-bottom, lightweight, has-handle,

width-small, styrofoam, has-concavity, upward-pointing-concavity

Table 1: The Cup Theory

instance space de�ned over n propositional features. A Horn clause is a disjunction of literals,

of which at most one is positive. They are normally written in the form of backward-chaining

rules (as in Prolog). An example of a propositional Horn-clause theory for the standard \cup"

concept (Winston et al., 1983) is shown in Figure 1. We further assume that the theory is

acyclic, i.e. the directed graph constructed by adding a directed edge from every antecedent

of a rule to its consequent (ai to c for every rule c a1 ^ � � � ^ ak) is acyclic. A theory also

contains a special literal C representing the concept to be learned. An instance is classi�ed

as a positive example of the target concept if and only if, given its features as facts, C can be

derived using normal Prolog-style deduction (SLD resolution). A closed-world assumption is

also made (Clark, 1978), so that if C cannot be derived, an example is classi�ed as negative

(:C).

For propositional Horn-clause theories, a simple set of primitive syntactic modi�cations is

the addition and deletion of individual literals. The syntactic distance between two proposi-

tional Horn-clause theories is then de�ned as the minimum number of single-literal revisions

needed to transform one theory into the other. Literal deletion and addition can have a

variety of semantic e�ects. The deletion of individual antecedents is a straightforward gen-
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eralizing operator. With respect to determining whether an example is a member of the goal

concept using Horn-clause deduction, deleting a consequent has the same e�ect as deleting

the rule. However, when viewed in clause form, there is a di�erence. Deleting the consequent

of a rule c a1 ^ � � � ^ ak leaves the clause :a1 _:a2 _ � � � _ :ak. To truly delete a rule, one

must individually delete all of its literals. Adding a literal to the antecedent of a clause is a

meaningful specializing operator with a clear semantic e�ect. We assume that a new clause

must be generated by �rst adding a literal for its consequent. Subsequent modi�cations can

then add antecedents to this initially \empty" rule.

In order to determine the number of theories within a syntactic distance d of the initial

theory, we �rst need to determine the number of possible primitive modi�cations that can be

made to a theory at any given point, i.e. the e�ective branching factor. Assume the current

theory contains a total of s literals. Therefore, the number of possible literal deletions is also

s. The maximum number of new clauses that can be begun by adding a consequent literal is

s+1 since one can start a new rule for one of the existing literals in the theory or begin a rule

for a new literal. The maximum number of ways of adding a new antecedent to an existing

rule is the number of possible antecedents that can be added times the number of rules to

which they can be added. Clearly, there are at most s rules in a theory with s literals. The

added literal can either be an existing literal in the theory (at most s possibilities) or one

of the literals used to describe examples. Consequently, there are at most s+ n literals that

can be added, where n is the number of observable (operational) features. We assume that

in order to add a brand new literal as an antecedent, we must have previously introduced

it as a consequent of a rule. This information is summarized in Table 2. Consequently, the

maximum number of single-literal revisions to a theory of size s is:

s2 + (n+ 2)s+ 1 (2)

Since each revision adds at most one literal to the theory, the size of the theory after i

revisions (si) is at most s0 + i, where s0 is the size of the original theory. Since the size of

the theory changes after each revision, the branching factor also changes. Taking this into

account, a bound on the number of possible revised theories after a total of d single-literal
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Table 2: Number of Possible Revisions

Revision Type Maximum Number of Revisions

Delete Literal s

Add Rule s+ 1

Add Antecedent s(s+ n)

Total s2 + (n+ 2)s + 1

revisions (Rd) is:

Rd �
d�1Y

i=0

(s0 + i)2 + (n + 2)(s0 + i) + 1 � [(s0 + d � 1)2 + (n+ 2)(s0 + d� 1) + 1]d: (3)

Let Hd represent the hypothesis space of all theories that can be constructed with d or fewer

single-literal revisions. Summing the number of revised theories generated by d or fewer

revisions we get:

jHdj �
dX

i=1

Ri � dRd � d[(s0 + d� 1)2 + (n+ 2)(s0 + d � 1) + 1]d: (4)

Substituting this result into equation 1 we obtain the following upper bound on the sample

complexity of any learning algorithm L that uses Hd consistently:

SL

Hd
(�; �) �

1

�
[ln

1

�
+ ln d+ d ln((s0 + d � 1)2 + (n+ 2)(s0 + d� 1) + 1)]: (5)

Simplifying this result using order notation we get:

SL

Hd
(�; �) = O(

1

�
[ln

1

�
+ d ln(s0 + d+ n)]): (6)

Assuming the correct theory is within a distance d of the initial theory, a propositional Horn-

clause theory revision algorithm that always �nds the closest theory to the initial theory that

is consistent with the training data uses Hd consistently. This is because there is guaranteed

to be at least one theory within a distance d of the initial theory that is consistent with

the training data, namely, the correct theory. Consequently, the sample complexity of such

an algorithm is given by Equation 6 which is O(d log(d)) in the distance between the initial
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theory and the correct theory, and logarithmic in the size of the initial theory and the number

of features.

This result is also useful for comparing theory revision to inducing a theory from scratch.

Since revising an empty theory (s0 = 0) is the same as complete induction, equation 6 also

applies in this case. If sc is the size of the correct theory, then an algorithm L that uses

Hd consistently (e.g. an algorithm that always �nds the simplest theory consistent with the

training data) has a sample complexity of:

SL

Hd
(�; �) = O(

1

�
[ln

1

�
+ sc ln(sc + n)]) (7)

since the theory can obviously be constructed with sc literal additions, and is therefore a

distance sc from the empty theory. Therefore, if the distance from the initial theory to the

correct theory is less than the size of the correct theory, the upper-bound on the number of

examples needed to learn a PAC concept is lower for theory re�nement than that for pure

induction. Of course, a guarantee that the sample complexity of theory re�nement is lower

would require a lower bound on the sample complexity of pure induction of theories with at

most sc literals. An analysis of the VC-dimension of this hypothesis space, would provide

such a lower bound (Ehrenfeucht et al., 1989).

The above results are closely related to previous results on the sample complexity of

learning concepts representable with a limited number of bits (Blumer et al., 1987). With

respect to pure induction, the term sc ln(sc+n) in Equation 7 is proportional to the number

of bits needed to represent a theory with sc literals. Since there are at most sc + n possible

literals to pick from (n observables plus at most sc non-observables), O(ln(sc + n)) bits are

needed to represent each literal. With respect to theory revision, the term d ln(s0 + d + n)

is proportional to the number of bits needed to encode a theory as a list of changes to the

initial theory. Therefore another way of stating the basic result is: If it is simpler to encode

a theory as a list of changes to the initial theory than to directly encode its content, then the

upper-bound on the number of examples needed to learn a PAC concept is lower for theory

re�nement than that for pure induction.
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5 Computational Complexity of Theory Revision

Unfortunately, the above analysis of sample complexity cannot be directly applied to current

theory-revision systems since it does not address the problem of computational complexity.

Because of computational issues, existing systems are not guaranteed to produce the closest

theory to the initial theory that is consistent with the training data. The problem of �nding

a minimally-revised theory is a di�cult optimization problem for which there is no known

polynomial-time algorithm. As previously mentioned, by using an empty initial theory, the

problem of �nding a minimum propositional Horn-clause theory for a set of data is easily

reduced to propositional theory revision. Consequently, implemented theory revision systems

use various heuristic methods to minimize change but do not guarantee optimal results.

Of course, if we assume that the initial theory is always within a �xed distance of the

correct theory, i.e. d is a constant, then exhaustive search of the space Hd can produce the

minimally revised theory in time polynomial in the size of the initial theory (s0) and the

number of features (n) (see equation 4). However, this is only practical for very small values

of d.

In addition, it is well known result that one does not need to �nd the absolute minimum

hypothesis in order to guarantee polynomial sample complexity. If an algorithm is guaranteed

to �nd a consistent hypothesis that is within a polynomial factor of the simplest one, its

sample complexity is still polynomial (Blumer et al., 1987). In particular, a greedy algorithm

for simple conjunctive concepts is known to �nd a hypothesis that is within a logarithmic

factor of optimal (Haussler, 1988). Consequently, its sample and computational complexity

are both O(s log(n)) where s is the size of the concept to be learned. The sample complexity

of such approximation algorithms is determined by the size of their e�ective hypothesis space.

The e�ective hypothesis space for a learning algorithm L for a concept class C, denoted

HL

C
(m), is the set of all hypotheses produced by L from samples of size m of target concepts

in C (Haussler, 1988). The e�ective hypothesis space can be used in place ofH in Equation 1

to obtain a bound on the sample complexity of algorithms that use a preference bias instead

of a language bias.
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Consequently, if a theory revision algorithm was guaranteed to produced a consistent

theory that was within a distance dk of the initial theory, where k is some constant and d is

the distance to the closest consistent theory (i.e. the theory is within a polynomial factor of

optimal), then its e�ective hypothesis space would be bounded by:

jHL

C
(m)j � dk[(s0 + dk)2 + (n+ 2)(s0 + dk) + 1]d

k

; (8)

and it would therefore have a sample complexity of:

SL

H
(�; �) = O(

1

�
[ln

1

�
+ dk ln(s0 + d + n)]): (9)

Unfortunately, there is no known polynomial-time algorithm that guarantees a revised theory

within a polynomial factor of optimal. This is a common problem in machine learning

{ polynomial approximation algorithms for minimum decision trees and minimum three-

layer neural networks are also open problems (Shavlik and Dietterich, 1990). Until such

algorithms can be found, the primary support for the e�cacy of real systems will probably

remain empirical in nature.

6 Syntactic versus Semantic Criteria

This paper has assumed that the \goodness" of an initial theory or a proposed revision is

based purely on syntactic criteria. However, minimally modifying the syntax of a theory

to �t the training data is not always the best approach. For example, assume the training

set contains only positive examples of the target concept C. In this case, adding the empty

rule C  , stating that everything is positive, is normally the syntactically minimal revision;

however, it completely destroys the semantics of the theory and is therefore probably not

the best revision. Note that this situation violates one of the basic assumptions of PAC

analysis; namely, that the distribution of examples is the same during training and testing.

However, in many situations (e.g. language acquisition), learning must take place primarily

from positive data.
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On the other hand, minimallymodifying the semantics of a theory is also inadequate. If a

theory is revised to minimally alter its extension, it never generalizes and simply memorizes

exceptions. For example, if the theory does not cover a positive example whose complete

feature description is f1; : : : fn, then the minimal semantic change is to add the rule C  

f1 ^ � � � ^ fn, which changes the extension of C just enough to cover this speci�c example.

Further evidence that purely semantic criteria do not adequately measure the goodness of

a theory is the observation that many useful initial theories have very poor accuracy. For

example, the DNA promoter theory used in many recent experiments in theory revision

(Towell et al., 1990) has an accuracy no better than random chance. Despite this fact, it

is syntactically close to the correct theory and revising it produces a more accurate theory

than pure induction.

Consequently, it seems the characterization of the ideal revision must incorporate both

semantic and syntactic criteria. Current systems use various heuristics to resolve this trade-

o�, but a completely satisfactory formal characterization of the properties of an optimally

revised theory is still an elusive goal.

7 Conclusions

In this paper, we have presented a general approach to analyzing the sample complexity of

theory revision algorithms. In this approach, the notion that the initial theory is \close"

to the correct one is formalized in terms of syntactic distance, the number of primitive

modi�cations needed to transform one theory into another. It was shown that an optimal

propositional Horn-clause theory revision algorithm, i.e. one that produces the closest con-

sistent theory, has a sample complexity that is O(d log d) in the syntactic distance d between

the initial and correct theories. Unfortunately, optimal theory revision is computationally

intractable and polynomial approximation algorithms are needed.
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Footnotes

1. A hypothesis space is also frequently referred to as a concept class. Typical examples

are pure conjunctive, DNF, k-DNF, etc..

2. This is a direct consequence of a result in Blumer et al. (1987).
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Figure Captions

� Figure 1: Learning Curves for the DNA Promoter Problem.

� Figure 2: Restricted Hypothesis Space for Theory Revision.
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