
Copyright

by

Noppadon Kamolvilassatian

2002

Property-Based Feature Engineering and Selection

by

Noppadon Kamolvilassatian, B. Eng.

THESIS

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN

December, 2002

Property-Based Feature Engineering and Selection

APPROVED BY

SUPERVISING COMMITTEE:

supervisor

Raymond J. Mooney

Joydeep Ghosh

To my mother.

v

Acknowledgments

First, I would like to thank my advisor, Prof. Raymond Mooney, whose advice and

suggestions are indispensable for the completion of this work. His philosophy on doing

scientific research provided me with invaluable lessons that will benefit many aspects of my

life. I am also grateful to Prof. Joydeep Ghosh, who kindly read and gave comments that

helped improve the thesis.

I am grateful to Un Yong Nam, who tagged additional documents used in the evaluation of

this work, and Ruifang Ge who worked on the evaluation of RAPIER with new data.

Discussions with Prof. Claire Cardie and Prof. Andrew McCallum helped clarify several

issues during the formation of ideas for this thesis. I also appreciate the help of and

enlightening discussions with Prem, Joseph, and Aniket, and members of the UTCS machine

learning group.

The Fulbright program and Thai-US Educational Foundation provided full support over

course of my study in the Masters program.

I have been lucky enough to have many good friends, especially Johnson H. Lee, Tim

Mccullough, Prem Melville, Amol Nayate, and Puay Sasipongpairoege, who provided

priceless friendships and encouragement over the period that I worked on this thesis and

beyond.

My gratitude to my mother, Saowaluk Kamolvilassatian, can never be fully expressed in

words. Her love and upbringing form an essential part of my life.

NOPPADON KAMOLVILASSATIAN

The University of Texas at Austin

August 2002

vi

Abstract

Property-Based Feature Engineering and Selection

By

Noppadon Kamolvilassatian, M. A.

The University of Texas at Austin, 2002

SUPERVISOR: Raymond J. Mooney

Example representation is a fundamental problem in machine learning. In particular, the

decision on what features are extracted and selected to be included in the learning process

significantly affects learning performance.

This work proposes a novel framework for feature representation based on feature properties

and applies it to the domain of textual information extraction. Our framework enables

knowledge on feature engineering and selection to be explicitly learned and applied. The

application of this knowledge can improve learning performance within the domain from

which it is learned and in other domains with similar representational bias.

We conducted several experiments comparing the performance of feature engineering and

selection methods based on our framework with other approaches in the Information

Extraction task. Results suggested that our approach performs either competitively or better

than the best heuristic-based feature selection approach used. Moreover, our general

framework can potentially be combined with other feature selection approaches to yield even

better results.

vii

Table of Contents

Acknowledgments...v

Abstract .. vi

Table of Contents ... vii

List of Figures... ix

1. Introduction.. 1

1.1 Representational Issues in Machine Learning.. 1

1.2 Inspiration: Cognitive Science .. 1

1.3 Needed: A New Approach to Feature Engineering and Selection................................. 2

1.4 Our Proposal: A Framework for Property-Based Feature Engineering 3

1.5 Organization of the Thesis .. 6

2. Background and Related Works.. 7

2.1 Role of Bias in Machine Learning... 7

2.2 Feature Selection and Weighting... 8

2.3 Learning to Learn and Transfer of Learning ...11

2.4 Meta-Learning...12

2.5 Information Extraction...13

3. Naïve Bayesian Learning for Information Extraction ..16

3.1 Problem Definition ..16

3.2 Algorithms ..18

3.3 Discussions..21

4. Property-Based Feature Engineering..23

4.1 The Framework: Features and Feature Properties ...23

4.2 A Case Study: Textual Information Extraction ...24

4.3 Discussions..27

5. Learning and Transferring Feature Engineering Knowledge..29

5.1 Learning Decision Lists ...29

5.2 Applying the Learned Decision List...31

5.3 Transferring Knowledge ..32

viii

6. Experimental Evaluation ...33

6.1 Domain and Task Descriptions ...33

6.2 Data Pre-Processing...33

6.3 Feature Selection Approaches Compared ...34

6.4 Relevant Parameters ..35

6.5 Experimental Methodology..36

6.6 Comparing Feature Selection Heuristics...37

6.7 Rule-Based Feature Selection ..41

6.8 Comparing Different Feature Selection Approaches ...43

6.9 Comparing the Use of Different Feature Types and Window Size51

6.10 Comparing Our System with RAPIER ...60

6.11 Discussion ...64

7. Future Work..66

7.1 Extensions of Property-Based Feature Engineering ..66

7.1.1 Addressing Feature-Category Interaction...66

7.1.2 Automated Search for Effective Feature Combinations..67

7.1.3 Feature Weighting...67

7.2 Combining Feature Selection Approaches..67

7.3 Applications in Pattern Recognition...68

8. Conclusions...69

Appendix ..70

References ..71

Vita...75

ix

List of Figures

Figure 1.1 The Process of Property-Based Feature Engineering ... 4

Figure 6.1 a) Comparing extraction accuracy when using different heuristics in the Jobs

domain. ...38

Figure 6.1 b) Comparing extraction accuracy when using different heuristics in the Resumes

domain. ...39

Figure 6.2 a) Extraction accuracy when using Odds Ratio with different prediction thresholds

in the Jobs domain. ..40

Figure 6.2 b) Extraction accuracy when using Odds Ratio with different prediction thresholds

in the Resumes domain. ...41

Figure 6.3 a) Resulting F-1 values when applying different feature selection approaches to

the Jobs domain...44

Figure 6.3 b) Resulting F-1 values when applying different feature selection approaches to

the Resumes domain..45

Figure 6.4 a) Resulting precision values when applying different feature selection approaches

to the Jobs domain. ..45

Figure 6.4 b) Resulting precision values when applying different feature selection

approaches to the Resumes domain..46

Figure 6.5 a) Resulting recall values when applying different feature selection approaches to

the Jobs domain...46

Figure 6.6 a) Training time used when applying different feature selection approaches to the

Jobs domain...49

Figure 6.6 b) Training time used when applying different feature selection approaches to the

Resumes domain..50

Figure 6.7 a) Testing time used when applying different feature selection approaches to the

Jobs domain...50

Figure 6.7 b) Testing time used when applying different feature selection approaches to the

Resumes domain..51

x

Figure 6.8 a) Comparing extraction accuracy when using different window sizes for feature

extraction in the Jobs domain...52

Figure 6.8 b) Comparing extraction accuracy when using different window sizes for feature

extraction in the Resumes domain..53

Figure 6.9 a) Comparing training and testing time when using different window sizes for

feature extraction in the Jobs domain. ..53

Figure 6.9 b) Comparing training and testing time when using different window sizes for

feature extraction in the Resumes domain. ...54

Figure 6.10 a) Comparing extraction accuracy for different feature selection approaches

when using the window size of 32 in feature extraction for the Jobs domain.................55

Figure 6.10 b) Comparing extraction performance for different feature selection approaches

when using the window size of 32 in feature extraction for the Resumes domain..........56

Figure 6.11 a) Comparing extraction performance when using different feature types in the

Jobs domain...58

Figure 6.11 b) Comparing extraction performance when using different feature types in the

Resumes domain..59

Figure 6.12 a) Comparing training and testing time when using different feature types in the

Jobs domain...59

Figure 6.12 b) Comparing training and testing time when using different feature types in the

Resumes domain..60

Figure 6.17 Comparing extraction accuracy between RAPIER and variants of our system in

the Jobs domain...62

Figure 6.18 Comparing training and testing time between RAPIER and variants of our

system in the Jobs domain ...63

1

1. Introduction

1.1 Representational Issues in Machine Learning

"How should we represent real-world problems inside computer programs?" is a fundamental

question that has enormous implications for the performance of computer applications. This

question is particularly important for computer programs that learn. It is known that using

different representations result in significantly different performances in learning systems

(e.g., (Mccallum and Nigam, 1998) (Asker and Maclin, 1997)).

From a theoretical perspective, each representation choice creates a different hypothesis

space for learning. We know that performance of learning algorithms depend on the size of

the hypothesis space and whether the target concept is contained in it (Mitchell, 1997). In

particular, a smaller hypothesis space that still contain the target concept would result in

better learning performance with the same amount of data (Mitchell, 1997). In contrast, if the

hypothesis space does not contain a good approximation to the target concept, no matter how

many examples are available, the learning performance will be low.

1.2 Inspiration: Cognitive Science

Human representational constraints most likely affect the way we solve problems. An

influential paper in cognitive science shows that we have limited short-term memory (seven

plus or minus two memory 'chunks') (Miller, G. A., 1956). We can apply this knowledge into

the design of machine learning systems that deal with linguistic information, for example, by

limiting the scope of contextual information used. The features that are too far from the point

of focus might not be relevant and can be filtered out. This will reduce the hypothesis space

and we can still be reasonably sure that it contains the target concept.

This leads us to believe that in many, if not most, learning domains, there are different kinds

of features with varying effectiveness when used in learning. This thesis is an attempt to

create a framework that embodies this concept. By exploring the notion of feature types, we

2

can gain new insights into the way we should extract features from real-world data and select

them for learning.

Cardie (2000) incorporated human information processing limits found in cognitive science

literature as prior in feature weighting for case-based learners. Empirical results on several

linguistics tasks suggest that the cognitive-bias approach performs better than an information-

gain-based feature selection method known to perform well on several natural language

learning problems. The feature selection approach used there, however, did not employ a

general framework that can be easily extended beyond linguistic tasks.

1.3 Needed: A New Approach to Feature Engineering and Selection

So far, the process of feature engineering for machine learning is conducted in a more or less

ad hoc basis. The researcher or practitioner uses their intuition to determine the kinds of

features to be extracted from raw data. In many cases, their intuition is right and good

learning performance ensues. In many other cases, the features selected are not optimal for

the learning problem at hand. The lack of a well-defined framework for determining the types

of features that are more useful might have hindered performance of many learning systems.

In the information extraction domain, for example, it is demonstrated in (Freitag, 1998) and

(Califf and Mooney, 1999) that the performance of a naïve Bayesian learner is very low. But

as we will see in chapter 6, the low performance was the result of feature engineering more so

than the algorithm, since we have received much better performance using the same naïve

Bayesian algorithm with more careful feature engineering.

Feature selection based on statistical heuristics (for example, in (Mladenic and Grobelnik,

1999)) and wrappers (Kohavi and John, 1998) are useful and do improve learning

performance in many cases, but they do not usually help researchers and practitioners gain

insights about the kinds of features that should be used for a problem.

If we have knowledge about the kinds of features useful for each problem, we can apply that

knowledge to speed up the process of feature extraction. Moreover, we can transfer this

3

knowledge to other datasets in the same or similar domain that might share representational

bias.

In this thesis, we propose a new framework for feature representation based on properties of

features. We apply the framework to the task of information extraction and demonstrate how

knowledge on feature engineering and extraction can be learned and applied. Our

experiments suggest that this approach may yield better results than formula-based feature

selection. In addition, we demonstrate that the transfer of this knowledge from one domain to

another can improve learning performance.

The contributions of this work can be summarized as follows:

1. It proposes a new framework for feature representation based on the properties of

features. The framework helps machine learning practitioners gain insights into the kinds

of features that are or are not useful for each learning domain.

2. It presents a method for learning and transferring knowledge on feature engineering and

selection.

3. It demonstrates that applying knowledge on feature engineering and selection based on

the proposed framework improves learning performance in the information extraction

domain over not using feature selection, and in some cases, over using the best feature

selection heuristic we experimented with. Moreover, it shows that feature engineering

knowledge can be beneficially transferred across domains.

1.4 Our Proposal: A Framework for Property-Based Feature

Engineering

This section describes the overall framework of Property-Based Feature Engineering that we

propose, which is also depicted in Figure 1.1.

4

Figure 1.1 The Process of Property-Based Feature Engineering

The following is a simplified description of the process we use in experiments. More details

of the process will be discussed in subsequent chapters.

1. From raw data, identify features that are potentially relevant to the task.

2. Study the features and define the parameters that characterize each feature type. We call

these parameters feature properties.

3. When extracting features, collect and store feature properties with them.

4. Learn knowledge about feature effectiveness

I. Meta-Learning Method

A. Experiment with different feature selection heuristics. Evaluate the results. The

best heuristic will be used to measure feature effectiveness in Step 4.I.B.

Identifying Relevant Features

Defining Feature Properties

Extracting Features with Properties

Learning Knowledge about Feature Effectiveness

Meta-Learning Manual

Applying Learned Knowledge

Extraction Selection

5

B. Generate the Features meta-dataset, in which each instance represents a feature.

Each instance in the Features meta-dataset consists of properties of the feature and

a measure of its effectiveness based on the best heuristic from Step 4.I.A.

C. Employ a rule learner to detect salient patterns of feature effectiveness based on

feature properties.

II. Manual Method

A. Experiment with different sets of features by using the features with certain

properties. Record results.

B. Repeat Step 4.II.A several times until the learning results are satisfying. (We can

use hill-climbing or beam search strategies to revise the values of feature

properties used to avoid combinatorial explosion.)

5. Apply learned knowledge about feature effectiveness.

I. On Feature Extraction. This knowledge can be used to selectively extract only features

that are likely to be highly effective. We can also call this method Feature Pre-

Selection.

II. On Feature Selection. This method deals with the case when all features have been

extracted. We just use this knowledge (in the form of rules) to filter out features. This

method is the same as the way standard feature selection works.

III. Across Domains. Many learning domains share learning bias. A domain with limited

data would benefit if knowledge about feature engineering is transferred from another

domain, where data is less scarce.

As we will see in the following chapters, the property-based feature engineering approach

helps machine learning practitioners to form new insights about the kinds of features useful

for each domain, enables transfer of knowledge on feature engineering across domains, and

can improve learning performance over other feature selection methods.

6

1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 presents background knowledge on

the role of bias in machine learning, feature engineering and selection, transfer of learning,

meta-learning, and information extraction. Chapter 3 discusses the use of naïve Bayesian

algorithm for information extraction, which is used as the case study for our feature

engineering framework. Chapter 4 explains and gives an example of the property-based

feature engineering framework that we propose. Chapter 5 describes how knowledge on

feature engineering and selection can be learned and transferred. Chapter 6 discusses

experimental evaluation on different feature selection approaches for information extraction

and analyzes the results. Potential extensions and applications of the work are presented in

chapter 7. Finally, chapter 8 gives conclusions from the work.

7

2. Background and Related Works

Our work touches on many aspects of machine learning. This chapter reviews the related

works that helped form the foundations for us to build on.

2.1 Role of Bias1 in Machine Learning

An introduction to bias selection by desJardins and Gordon (1995) provides a search-based

framework to the problem. The normal machine learning is performed at the base level,

which is affected by a set of biases. We can learn to select the appropriate set of biases at this

level. The learning for bias selection can still be characterized by a set of biases--this time at

a higher-level, and continue ad infinitum. Two types of biases are defined: representation

bias, which defines the hypothesis space, and procedural bias, which determines the traversal

order within this hypothesis space. In general, representational bias is restrictive--no concepts

can be found that lie beyond the representational language used, while procedural bias is

preferential--it affects the speed of learning and the accuracy of concepts learned for a

particular set of training examples, but does not limit the performance of learning algorithm

in all possible cases.

In their "Inductive Policy", Provost and Buchanan (1995) extend the model of inductive bias

to include rule and example spaces, the methods for searching the spaces, the relations

between the examples and the methods for searching the rule space, and the relations between

the rules and the methods for searching the example space. They analyzes the existing bias

selection systems according to this model. They then propose a framework for bias selection

that deals with all six bias categories in the model. Given an inductive policy, or a bias

selection strategy, as an input, tradeoffs between accuracy and the cost of errors can be made

within the framework.

1 The term ‘bias’ used in this thesis refers to representational and procedural biases in

machine learning. It is different from the concept of bias in statistics.

8

Brodley (1995) describes a rule-based method to select bias recursively from feedback of the

learning process. The heuristic rules are developed by manual trial-and-error and encoded to

the system's knowledge base. Three base representation biases are used--univariate decision

tree, linear discriminant function, and k-NN classifier. The system either selects one of the

three base representation or forms a hybrid of them. The results obtained show that

classification accuracy of the representation bias selected is at least as good as the best of the

primitive learning components, and sometimes significantly better.

For other related works, Cohen (1990) provides a framework for analysis of changes in the

representation of training examples in concept learning. Bias selection in the inductive logic

programming context is explored by Stahl (1995) and Ade et al (1995).

2.2 Feature Selection and Weighting

Feature selection is an important problem in machine learning. In many real-world learning

domains with a large number of features, feature selection can help improve accuracy, speed

up training, and reduce the complexity of the concepts learned (e.g., Wettschereck et al, 1997;

Koller and Sahami, 1996).

Most feature selection methods in the literature fit into either the filter or the wrapper

approach. The filter methods analyze the data and select seemingly relevant features

independent of the learning algorithm used. In contrast, the wrapper approach takes feedback

from learning on a holdout validation set and picks a feature subset that performs well on this

set. There is substantial evidence that the wrapper approach generally yields better prediction

accuracy than the filter methods since it also takes the inductive bias of the particular learning

algorithm used into account (Aha and Bankert, 1995; Wettschereck et al, 1997; Kohavi and

John, 1998). However, a cost is paid in terms of much higher computational time. The

wrapper approach can be orders of magnitude slower than the filter methods.

We can think of feature selection as a specialization of feature weighting where feature

weights are limited to zero or one. Feature weighting can sometimes perform better than

9

simple feature selection especially when features may not be equally important (Wettschereck

et al, 1997). Kohavi et al, (1997) report interesting evidence that under the wrapper

framework for nearest-neighbor algorithms, the number of possible weights allowed should

not be too large or the classification error may increase due to overfitting and the presence of

higher variance.

Feature selection and weighting is most frequently studied under the context of case-based

learning since it is well-known that the presence of irrelevant features or inappropriate

feature weights can have significant adverse impact on prediction accuracy for this class of

learning algorithms.

Koller and Sahami (1996) proposes a filter method for feature selection based on information

theory. The method uses cross-entropy to keep the conditional probability of the class given

the features close to the original distribution. Since the algorithm does not take the learning

algorithm's inductive bias into consideration, however, improvements in accuracy are

sometimes modest.

John et al (1994) argue for a need to distinguish further among relevant features. In particular,

they categorize features as strongly relevant or weakly relevant.. In short, strongly relevant

features cannot be excluded in any learned hypotheses without suffering accuracy loss and

weakly relevant features are those that sometimes can contribute to prediction performance

but dispensable in other cases. In addition, the paper proposes a wrapper approach to feature

selection which takes feedback from induction performance over hold-out validation set to

either select a feature into the subset (forward selection) or eliminate one from it (backward

elimination). Their empirical results using wrapper with C4.5 (Quinlan 1992) and ID3 do not

show significant improvement in accuracy except in few cases (where the performance

without feature selection is relatively low). The most tangible benefit is in getting simpler

decision trees as a result of having fewer features.

Kohavi and John (1998) builds on the previous work of John et al (1994) by employing best-

first search to explore the feature subset space more throughly and compound operators to

speed up search. Empirical evaluation comparing this improved wrapper and the feature

10

filtering algorithm Relieved-F on 8 real-world datasets and 6 artificial datasets using C4.5

and Naive Bayesian algorithms indicates that the wrapper approach yields significantly better

accuracy in most cases. Moreover, the wrapper algorithm usually selects a smaller feature

subset, which results in more comprehensible learned concepts. The main drawback of the

wrapper approach is that it is significantly more computational intensive than filtering.

Work by Andrew Ng (1998) using the wrapper model has led to an algorithm that performs

better than the standard wrapper in the case that the number of relevant features are small

compared to the number of all available features. In fact, the paper theoretically proves that if

the search for the relevant feature subset can be performed optimally, the upper bound for

sample complexity is only logarithmic in the number of features. In other words, under the

assumption that there are relatively few relevant features, the new algorithm can tolerate

having a number of irrelevant features exponential in the number of training examples.

Empirical results shown in the paper, though promising, are limited to artificial datasets

specifically generated to test the algorithm.

Aha and Bankert (1995) evaluates variants of forward and backward sequential feature

selection methods for a cloud pattern classification task. The dataset used has relatively few

examples and contain numerous features. The comparison using a nearest-neighbor algorithm

as the classifier suggests that 1) feature selection improves accuracy on this task, 2) the

wrapper approach performs better than using the Calinski-Harabasz separability index as

feature filter, and 3) beam search for feature selection gives better accuracy than hill-

climbing.

Wettschereck et al (1997) reviews different feature weighting methods in the context of

standard lazy learning algorithms. The paper proposes a framework that distinguishes feature

weighting methods based on the dimensions of bias (performance-based or preset), weight

space (continuous or binary), representation (given or transformed), generality (global or

local), and knowledge (poor or intensive). Their empirical evaluations suggest that

performance-based methods (i.e., wrapper approach) generally require less pre-processing,

handle feature interaction better, and has faster learning rate. Also, the experiments indicate

11

that continuous weighting methods tend to perform better than feature selection (i.e., binary

weighting) for tasks where some features are useful but less important than others.

Cardie (2000) takes a distinctive approach to this problem by employing human information

processing limits found in cognitive science literature as prior in feature weighting for case-

based learners. A combinatioin of different cognitive biases are selected either greedily or

exhaustively using wrapper-based approach. Empirical results on several linguistics tasks

suggest that the cognitive bias approach performs better than an information gain-based

feature selection method known to perform well on several natural language learning

problems. Her result also suggests that exhaustive search for the best combination of

cognitive biases does not give significantly better prediction accuracy than greedy search.

2.3 Learning to Learn and Transfer of Learning

An algorithm that possesses the ability of learning to learn can transfer knowledge or

experience that it learns in some tasks to improve learning on other tasks (Thrun and Pratt,

1998). The algorithm may be able to improve its generalization accuracy or require fewer

examples to reach a certain accuracy when the transfer of learning occurs. Several approaches

to learning to learn have been investigated by researchers, including learning representations,

distance functions, invariances, parameters, learning rate. The representations that are widely

used include neural networks and memory-based. Some of these works are described in the

following paragraphs.

In "Multitask Learning", Caruana (1998) shows that back-propagation neural networks can

transfer information learned from one task to help others. They can also discover the

relationships between tasks without explicit signals on task relatedness. The work shows that

multitask learning also applies to K-nearest neighbor and kernel regression.

Thrun (1998) discusses that learning to learn can be viewed as learning bias. The work

demonstrates learning to learn using memory-based and neural networks representations.

Distance function is modified through learning in the memory-based approach and

12

representation is adapted through learning in both approaches. The algorithms were tested in

an object recognition task, where learning to learn exploits the information from support sets

(support sets comprise of images from other objects--not the one they try to recognize).

Learning to learn mostly outperforms the normal approach, especially when there are few

training examples.

On the theoretical side, Baxter (1998) analyzes and proves the theorems on learning many

tasks from the same environment--or bias learning--using two models, empirical process

discovery and hierarchical Bayes model.

Silver and Mercer (1998) introduces a measure of task relatedness which allows neural

networks to select related tasks for the tranfer of knowledge. Another approach explored by

Thrun and O'Sullivan (1998) is clustering of tasks into relatedness hierarchy. In the case that

tasks are not appropriatedly related, selective transfer from the most related tasks cluster

reduces the amount of training data needed substantially.

Transfer of learning is also discussed from the cognitive science perspective in Robins

(1998). Results emerged from research in cognitive psychology include the importance of

surface similarity and the ability of subjects to map from surface content to its structure.

2.4 Meta-Learning

Meta-learning has been used to automatically predicts the algorithm that best matches the

learning problem at hand. For this purpose, learning tasks are usually characterized by a set of

(meta-)attributes. Different algorithms are tested with the learning tasks to create training

examples for meta-learning. A meta-learning algorithm can then be applied to the new task

(defined in terms of meta-attributes) to predict the algorithm that will perform best on the

task. (King et al, 1995)

A more sophisticated strategy investigated by Pfahringer et al (2000) uses results of simple

learners to determine the location of the learning task in the possible space of learning

problems--in other words, to 'landmark' the learning task. Efficient learners, or landmarkers,

13

from different learning paradigms--a naive bayes learner, the C5.0 tree learner, and a linear

discriminant learner--are chosen to predict relative performance of more sophisticated

learners--the discriminant tree learner LTREE (Gama, 1999), boosted C5.0 trees, the rule

learner RIPPER (Cohen, 1995), and a nearest neighbor learner. The authors found that

landmarking (on its own) outperforms meta-attributes-based approach. They also tried

combining both approaches by taking landmarking result as an attribute and apply the same

meta-learning procedure described in the above paragraph.

Another thread of work using meta-learning deals with learning from multiple subsets of

data. For some real-world data mining applications, the whole dataset may not be able to fit

into computer's memory at once. An alternative is to divide the data into subsets, learn from

each subset separately, and combine the results from each individual classifier to yield the

final prediction. (Chan and Stolfo, 1993) A simple-minded approach, however, may reduce

the learner's accuracy. (Chan and Stolfo, 1995) takes predictions from individual learners for

an example together with other information as a meta-learning instance, and learn the

relationship between these predictions and the correct prediction. The individual predictions

are then combined using a variety of strategies taken into account this learned relationship.

Empirical results show that this produces better final accuracy than other simpler methods

such as weighted majority voting or Bayesian combination.

2.5 Information Extraction

"Information extraction is the problem of filling out pre-defined structured summaries from

text documents." (Freitag, 1998) In recent years, there are a number of machine learning

algorithms developed for the task of information extraction.

Muslea (1999) surveys extraction patterns produced by machine learning systems and

discusses their differences.

The CRYSTAL system described by Soderland (1995) automatically creates "concept

nodes", or slot-filler patterns that represent groups of related information (concepts), from

14

training examples. First, each concept node definition is created from a single training

instance. The system then generalizes by unifying several concept nodes together.

Soderland (1997) extends CRYSTAL to deal with textual information from the Web by

introducing Webfoot, a preprocessing step that uses text-layout tags to group text into related

fragments. The generic HTML segmenter implemented in Webfoot is based on HTML tags

and can partition texts into four levels of granularity.

SRV developed by Freitag (1998) learns relational extraction rules top-down from examples.

The representations of possible rules are more expressive than most other systems and can

take into account field length, absolute and relative position, existensial predicates, link

grammar, and Wordnet information. However, additional linguistics information does not

seem to help much in many fields tested in the seminar announcement domain. SRV

compares favorably with rote learning and naïve bayesian algorithms.

The RAPIER system developed by Califf and Mooney (1999) uses inductive logic

programming (ILP)-inspired algorithm to induce extraction patterns bottom-up from

examples. The algorithm has high learning rate and high precision. The system can use

syntactic, semantic, and field length information, in addition to words. Plain words, however,

seem to account for much of RAPIER's performance. RAPIER competes well with other

similar systems (SRV and WHISK) and outperforms them in several fields from the seminar

announcement domain.

WHISK (1999) induces a special type of regular expressions with two components: one for

context description, another for exact delimiters of the phrase to be extracted. WHISK's rules

extract multiple slots at once, while SRV and RAPIER extracts a single slot with each

pattern.

Freitag (1998a) offers strategies to combine predictions from many information extraction

methods (rote learning, naïve bayes, and SRV are used). The combination technique is based

on regression. The multistrategy technique used improves the final result over using SRV in

isolation, but the improvement is not large. The result from the combined extractor seem to

15

rely mostly upon SRV, the best of the three techniques tested. This could result from the fact

that SRV is substantially better than other two techniques. It would be interesting to see if the

result will improve much further from pure SRV if the multistrategy system include other

advanced systems, such as RAPIER and WHISK, into its components.

Riloff and Jones (1999) uses a mutual bootstrapping technique to learn both semantic lexicon

and extraction patterns simultaneously. A second level of bootstrapping is added to maintain

only the most reliable lexicon patterns found.

McCallum et al (2000) employs maximum entropy Markov models, which is a probabilistic

tool adapted from Hidden Markov models, to perform text segmentation. The model allows

the use of overlapping features (such as word, capitalization, formatting, part-of-speech) to be

represented in Markovian observation sequence. The model might be useful for information

extraction tasks as well.

RoboTag described by Bennett et al (1997) learns to extract information using decision trees.

For each field, RoboTag builds two decision trees; one to predict begin tags, another to

predict end tags. The results of these classifiers are combined using a tag matching algorithm

to produce complete fields.

Freitag and Kushmerick (2000) uses a boosting algorithm to induce extraction patterns. Each

extraction pattern is simple and has low-coverage, but boosting creates new patterns to

compensate the weaknesses of existing patterns. The approach is shown to work well in

several domains and is competitive with many other leading algorithms (e.g. SRV, RAPIER,

HMM).

16

3. Naïve Bayesian Learning for

Information Extraction

In this chapter, we explains the use of naïve Bayesian learning for information extraction.

The problem is used as the testbed for the feature engineering framework that we propose,

which is described in the next chapter. The reason of choosing this task is that it is complex

enough that the most straightforward feature representation might not yield good performance

(Freitag, 1998b), while simple enough to be the first case study of a new framework. For an

introduction to the domains and datasets we applied this learning system to, see Section 6.1

Domain and Task Descriptions.

3.1 Problem Definition

We formulate information extraction as the tasks of tagging beginning and ending positions

of fields in a document. The task is reduced to the classification of whether to insert a tag at

each potential insertion point in the document, and if that is so, what tag should be inserted.

As an example, the text:

PHP/ASP Web developer seeking job in London

contains potential insertion points as indicated by the mark • as follows:

•PHP•ASP•Web•developer•seeking•job•in•London•

(Note that slashes are considered part of an insertion point.) The problem is to extract useful

features from the surrounding context and determine whether and what tag to be put at each

point.

17

The problem does contain a good deal of ambiguity, since several tagging schemes might be

equally acceptable. In a document in the dataset that we use, this is manually tagged as:

<title>PHP/ASP Web developer</title> seeking job in London

However, it is also reasonable to tag the line as:

<language>PHP</language>/<language>ASP</language> <title>Web developer

</title> seeking job in London

Therefore, even among humans, perfect match is hard to achieve (except when all taggers

follow the same strict rules.) This makes the problem more interesting and also harder for

machine learning to deal with.

To measure the performance of machine learning systems in this task, however, we usually

take the field boundaries tagged by humans as the gold standard, and compare the result from

automatic tagging against them. This usually understates the performance of machine

learning systems in the eyes of the third-party observer, since both manual and automatic

tagging can be equally acceptable in practice as discussed above. In this work, we follow the

convention used in research community and measure our system against manually tagged

datasets. The standard measurements for information extraction are precision and recall

defined as follows:

precision = # of correct fillers extracted / # of fillers extracted

recall = # of correct fillers extracted / # of all manually tagged fillers

The term 'filler' denotes the text between open and end tags. To be considered correct, exact

matches with manual tagging at both begin and end boundaries are needed. Precision

measures the proportion of predictions by the learner that turn out to match manual tags in the

test set. Recall measures the proportion of manual tags that can be detected by the learner. In

addition, another measure was defined in MUC conferences (DARPA, 1992) to summarize

18

the performance of information extraction systems with a single number. It is defined as

follows:

F = (ß2 + 1) PR / (ß2P + R)

where P is precision, R is recall, and ß is used to weight the measure to prefer better precision

or better recall. When we want to weight precision and recall equally, we set ß to 1 and call it

the F-1 measure. F-measure is usually a better tool to summarize precision and recall than a

simple average . With a simple average, a system with 1% precision and 99% recall would be

considered equally desirable to another system with 50% precision and 50% recall, which is

generally considered to be a much more useful achievement. On the F-1 measure, however,

the first system will however get 1.98%, while the second gets 50%, which better reflect their

usefulness.

3.2 Algorithms

When we define the information extraction problem as the decision to insert tags in the

document, we can basically divide it into two subproblems:

a) How to classify whether and what tag to be inserted at each point.

b) How to determine most likely field boundaries using information from the classifiers.

Note that solving sub-problem b) would be easy if the classification result from sub-problem

is perfect. Since we cannot solve sub-problem a) perfectly, the issue of determining most

likely field boundaries is not trivial. We will now describe the algorithm we use to solve each

problem in turn.

To classify whether and what tags should be inserted at each point, we employ an algorithm

based on the Bayes equation (Mitchell, 1997):

int)(

)|()(
int)|(

InsertPoP

TagFeatPTagP
InsertPoTagP i i∏=

which allows us to compute the probability that a tag is present at an insertion point given the

features that appear in its context. The equation contains an important assumption that all

19

features are independent from one another, which is obviously not true in the text domain, as

some words tend to occur together and we can better predict the existence of a word based on

knowledge of whether the other word is present. Despite the problem with this 'naive'

assumption, the simple Bayesian algorithm has been shown to work well in many real-world

domains (Domingos, P. and Pazzani, M., 1996).

In our domain, it is possible that several tags are present at an insertion point, therefore we

decided to employ several binary Bayesian classifiers, one for each tag type, for tag

predictions. Each classifier computes the statistics:

int)|(~

int)|(

InsertPoTagP

InsertPoTagP

which is the ratio of probability that the tag is there given the insertion point (or more

precisely, the contextual information surrounding the insertion point). We call this specific

odds ratio the confidence ratio. Each insertion point is characterized by several features

extracted from its context. All features used in our system are binary. The features we extract

from the context include words, word distance, token length, and capitalization. The features

will be described in detail in Chapter 4.

From the two equations above, we have:

∏
∏=

i i

i i

TagFeatPTagP

TagFeatPTagP

InsertPoTagP

InsertPoTagP

)|~()(~

)|()(

int)|(~

int)|(

We compute the confidence ratio above using the features that are present at each insertion

point only; features that are absent are ignored. This is a very close approximation to the full

model which uses the probability of all possible features. This makes the computation much

more efficient. It works because in our case both)|(~ TagFeatP and)|~(~ TagFeatP

are very close to 1.0. The ratio of these two numbers are therefore very close to 1.0.

)(TagP is computed as follows:

int#

#
)(

InsertPo

Tag
TagP =

20

where #Tag is the number of the given tags found in the training set and #InsertPoint is the

number of insertion points in the training set.

Each P(Feati|Tag) is computed using m-estimate (Mitchell, 1997) to avoid the value zero

which will dominate the equation. Therefore, the conditional probability for feature given tag

is defined by:

SizeequiSampleTag

SizeequiSamplepriorEstTagFeat
TagFeatP i

i +
+∧

=
#

*)(#
)|(

where)(TagFeatP i ∧ is the number of the feature that appears together with the tag in the

training set, priorEst is the prior estimate used and equiSampleSize is equivalent sample size.

The same method is used to compute)|~(TagFeatP . We use the equivalent sample size of

1.0 and prior estimates of 0.00002 for computing)|(TagFeatP and 0.00008 for

)|~(TagFeatP . These estimates are based on the statistics we observed from a dataset.

However, varying these priors by an order of magnitude does not make a difference in the

classification results in our experiments (since the value of equivalent sample size is also

low).

After the confidence ratio
int)|(~

int)|(

InsertPoTagP

InsertPoTagP
 for every tag is computed, only the tags

that have this ratio equal to or higher than the prediction threshold would be selected. This

prediction threshold is a parameter in the system and can be easily adjusted in command-line

parameters. The natural threshold is 1.0, since it predicts that the tag is more likely to appear

than not. Only the top three tags that have confidence ratios higher than the prediction

threshold are ultimately selected. These top picks will be used by the tag matching algorithm

described below. For many insertion points, no tag will be predicted since the ratios for all

tags are lower than the threshold. Another advantage for having prediction threshold is that

we can conveniently trade-off between precision and recall by raising or lowering the

prediction threshold. In particular, lowering the threshold will usually result in higher recall

and lower precision. Raising the threshold usually has an opposite result.

21

After we have predicted tags using the classifiers, we filter out non-matching tags (i.e. with

only open tag or end tag) by looking for a matching tag within a window. The size of this

window depends on the length of fillers found in the dataset (In our experiments, this is set to

3).

We may still have several filler candidates for each insertion point, we now try to rank the

field candidates based on a scoring method which takes into account the frequency that the

filler text appear in the training set and the length of filler. The scoring formula is:

filler score = frequency score + length score

frequency score = 1000 * (#fillers in training set + #virtual examples) /

tags in training set

length score = (max length difference − length difference)

The number of virtual examples used is 0.5. The maximum length difference allowed is 5.0.

The filler selected must have the top score among all candidates present and also the score

must be 0.5 or higher. Basically, these formulas employ statistics of filler frequency and

length in the training set to choose between top filler candidates from classifiers. This scoring

method is inspired by the method used in RoboTag (Bennett et al, 1997). Note that we are

making a simplifying assumption that there is only one starting tag for each insertion point,

which is not always true in the domains we explore. However, this assumption is mostly

applicable and does not adversely affect our main purpose, which is comparing feature

selection methods, we therefore decided to use it.

3.3 Discussions

When we consider the equation for computing confidence ratio based on naïve Bayesian

formula, we see that the statistics for every single feature may influence the final decision in

the level unproportionate to its real relevance. In the case where many features are present or

there is limited training data, it is likely that there will be some flunctuations in the statistics P

(Feati|Tag) which may easily cause incorrect classifications. In such cases, it is very

important that we select only relevant features to be included in the classification decision.

22

This contrasts with the systems based on relational rule learning (e.g. (Freitag, 1998) (Califf

and Mooney, 1999)), for example, which handle features separately, or systems based on

decision trees (e.g. (Bennett et al, 1997)) which has feature selection built into the learning

algorithm.

A prior information extraction system based on naïve Bayesian learning described in (Freitag,

1998) and (Califf and Mooney, 1999) performs badly in moderately complex tasks. We

believe that this is mostly due to the lack of appropriate feature engineering and selection.

The experiments that demonstrate this point are discussed in Chapter 6.

Another point that has been raised against naïve Bayesian algorithm for information

extraction is that the independence assumption is obviously wrong. This is true, but it does

not necessarily hurt performance. It is shown that for a wide range of applications, naïve

Bayesian classifier works well despite the violation of this assumption (Domingos, P. and

Pazzani, M., 1996).

A major advantage of naïve Bayesian learning is its classification speed. Our system is fast

and scales linearly with the size of document and dataset because of its use of naïve Bayesian

learning.

23

4. Property-Based Feature Engineering

en·gi·neer·ing n. 1 a. The application of scientific and mathematical principles to practical

ends such as the design, manufacture, and operation of efficient and economical structures,

machines, processes, and systems.

The American Heritage® Dictionary of the English Language, Fourth Edition

We define feature engineering as the process of designing features to be extracted from raw

data, and the construction2, selection, and weighting of features for effective use in machine

learning. It is recognized in (Asker and Maclin, 1997), for example, that in real-world

domains, feature engineering often turns out to be more important than the algorithm used for

learning.

In this chapter, we outline a new approach to feature design which explicitly defines feature

properties. A feature property characterizes an aspect of the feature. We then show how this

framework can be applied to the domain of textual information extraction. This framework

directly addresses two important aspects of feature engineering, namely, feature extraction

and selection. It can also be easily extended to handle feature weighting.

4.1 The Framework: Features and Feature Properties

The proposal here is to recognize explicitly that features we extract and use in learning

contain some distinctive aspects. We define feature properties to characterize aspects of each

feature. A feature property may apply to some features and not to some others.

2 Feature construction involves the creation of new features from existing ones. For example,

if raw data contain heights and weights of hospital patients, it might be desirable to construct

a new feature, the ratio of height per weight, which can readily capture some disease patterns

better than either height or weight.

24

The hypothesis we have in mind is that

If patterns in a domain can be captured by some kinds of features but not others, learning

performance would improve when we employ only the kinds of feature useful for the domain.

The word ‘employ’ above implies four different meanings: 1) feature extraction (from raw

data), 2) feature construction, 3) feature selection, and 4) feature weighting. In this thesis, we

only address feature extraction and feature selection.

This hypothesis is shown to be true for the domain of textual information extraction in

Chapter 6.

4.2 A Case Study: Textual Information Extraction

As with the study of genomics, we use a Textual Information Extraction task as the

drosophila domain before conducting further studies with more complex organisms like those

of mammals and humans.

We start out by identifying different feature types that are potentially useful for the task. This

might include the frequency of a given token within a certain window, the distance of a given

token from the potential insertion point, the capitalization of nearby tokens, for example.

Some less obvious but potentially relevant features are also included, such as the length of the

previous line (if zero, it may signify that the current line is a new section heading), the

distance of the insertion point from the line start (a certain tag might often be placed one

token after the line start, for example).

We characterize every feature based on two principal properties: Class and ObjectType. The

Class property defines the ‘feature class’ which indicates the major aspect of features that

also influence other properties. Class indicates whether a feature describes length, distance,

frequency, or capitalization of context. ObjectType indicates the kinds of objects that the

feature describe. It can be a character, a token, a line, or a special type (which means that it is

not any of the former). Other properties may be present or not depending on the Class of the

25

feature. To distinguish other properties from Class and ObjectType, we call them

‘parameters’. The set of Class, ObjectType, and parameters together uniquely define a

feature.

Every feature used in the system is binary (i.e. the value of the feature can only be true or

false). This design decision allows us to treat all features uniformly in the information

extraction task. Uniform treatment of features should minimize the possibility that

experimental results are affects by factors other than feature engineering and selection, and

therefore lead to a better scientific study.

Below is the definition of feature Class, ObjectType, other properties, with examples.

1. Frequency

Definition: Whether a specific character/token appears in the symmetric window of a given

size surrounding the insertion point a given number of times.

Parameters: Content, Window Size, Number of Times

Example:

[Class=frequency, ObjectType=token, Content=Developer, Window Size=6, Number

of Times=1]

The token ‘developer’ appears once in the window of size 6 surrounding the insertion point.

Note: The system uses the variable max window size is defined to limit the scope of feature

extraction and reduce computation. It can be adjusted in the system’s parameter.

2. Length

Definition: Whether a token/line at a given distance from the insertion point has a certain

length.

Parameters: Distance, Length (with natural units, i.e. characters for a token, and tokens for a

line)

Example:

[Class=length, ObjectType=line, Distance=-1, Length=4]

The previous line is four tokens long.

26

Note: Negative values for Distance mean distance to the left of the insertion point; positive

ones indicate distance to the right.

3. Distance

Definition: Whether a specific character/token is at a certain distance from the insertion

point

Parameters: Content, Distance (in the unit of chars for a char object, unit of tokens for a

token object)

Example:

[Class=distance, ObjectType=token, Content=Subject, Distance=-5]

The token ‘Subject’ is five tokens to the left of the insertion point.

Notes:

• Unit of distance varies according to the object. Distance to a char is the number of

characters. Distance of a token is the number of tokens.

• The variable max distance is defined to limit the scope of feature extraction and reduce

computation. It can be adjusted in the system’s parameter.

4. Distance from Line Start

Definition: Whether the insertion point has a certain distance to the right of the line start

Parameters: Unit (characters or words), Distance from Line Start

Example:

[Class=distance from line start, ObjectType=special, Unit=characters,

Distance from Line Start=4]

The insertion point is four characters to the right of the line start.

Notes:

• We define the new feature property ‘distance from line start’ instead of using the feature

property ‘distance’ in feature Class 3, since they have different meanings. The property

‘distance’ denotes the distance of a given object to the insertion point, while ‘distance

from line start’ indicates the distance of the insertion point itself to the line start.

• The ObjectType value for this feature Class is always equal to Special.

27

5. Capitalization

Definition: Whether the token at a given distance from the insertion point has a certain

capitalization form.

Parameters: Distance, Capitalization Form (possible values: first upper, all upper, all lower,

mixed, others)

Example:

[Class=capitalization, ObjectType=token, Distance=2, Capitalization Form=all

lower]

The second token to the right of the insertion point is composed of all lowercase characters.

Notes:

• ‘others’ applies whenever there are any non-letter symbols in the token.

• ‘first upper’ applies when the first character of the token is a capital, while all following

characters are lowercase.

• ‘all upper’ and ‘all lower’ are self-explanatory.

• ‘mixed’ applies when the token does not meet any of the above cases (i.e. contain only

letters but with mixed lowercase and uppercase ones).

We can see that other feature classes, including those that use syntactic and semantic

knowledge of the language could be defined as well. They can be important for the domains

that depend heavily on linguistic knowledge. Our experiments in Chapter 6 use only the

feature classes defined above.

4.3 Discussions

Our effort in the previous section is to include features of several kinds and granularity from

raw text data. We still use some bias based on knowledge of the English language in

designing these features, as clearly shown in the feature class ‘Capitalization’, for example.

The bias is also present at the tokenization process itself. For example, some other languages

(such as Thai) may not use space as the word boundary, and tokenization based on space

would be misleading.

28

It is possible in theory to ignore much of these biases and construct features using only very

primitive knowledge (such as knowledge that English words are composed of characters and

the way characters are written), just like what an alien from another planet (computers can be

considered alien beings) might do to learn a human language from text without teachers or

other learning materials. In practice, however, computational time and sample size needed in

learning would be overwhelming. Therefore, some bias at the basic level would still be

necessary.

Even when some bias is used, it is still possible to construct many different kinds of features.

It is important that we do not overlook all potentially useful possibilities. Real-world domains

are complex and in many cases it is counterproductive to determine what kinds of features

would be useful beforehand. The procedures we propose in the next chapter should help us

determine this more effectively based on real-world data.

29

5. Learning and Transferring

Feature Engineering Knowledge

In this chapter, we describe how feature engineering and selection knowledge can be learned

based on the property-based feature engineering framework. The learned knowledge is in the

form of decision list, the decision list can then be applied to select features from the test data

in the same dataset, or another dataset that shares representational bias.

5.1 Learning Decision Lists

A decision list is an ordered list of conjunctive rules. Our goal is to predict the patterns of

feature properties that associate with effective features. Decision list is selected because it is

easy for humans to comprehend, therefore helping humans to gain insights into the kinds of

features that are useful.

To learn the feature engineering decision list, we first need to generate datasets about features

and feature effectiveness. All potentially relevant features are extracted from training

documents in the dataset and a measure of feature effectiveness is applied to each of them.

Each feature is represented as one instance in the Features dataset.

The Features dataset can be considered a meta dataset, since it does not present the real

learning task, but represents a task that indirectly affects the real learning task. The feature

effectiveness measure identifies the features that are more relevant in classification. We chose

Odds Ratio for this purpose, as it is one of the best feature selection heuristics when naïve

Bayesian classifier is applied and the domain has highly unbalanced class distribution

(Mladenic and Grobelnik, 1999). The class distribution in our domain is highly skewed

toward negative for binary classifiers, since most tags do not appear in most insertion points.

Also, our own experiments comparing the performance of several feature selection heuristics

in the domains we explore confirmed that Odds Ratio is the best heuristic for our purpose.

30

A few instances from the feature and feature effectiveness dataset (from now on will be

called the Features dataset for brevity) is shown below.

</area>,3,2,230,?,?,3,?,?,?,?,-2.4257

</area>,1,2,858,10,1,?,?,?,?,?,-1.1621

</area>,1,2,4428,6,1,?,?,?,?,?,1.2585

Each line in the Feature dataset represents the properties of one feature. Notice that there are

several missing values for each instance. This is because only some feature properties are

applicable for each feature Class. The properties of each instance (which represents one

feature) are delimited by commas and are list in the following order: Tag String, Feature

Class, Object Type, Content ID (each number uniquely represents a content string), Window

Size, Freq, Distance, Distance from Line Start, Length, Capitalization, Unit Type, and Odds

Ratio.

We generate the Feature dataset in the format that can readily be used by the learning system

WEKA (Witten and Frank, 2000). The learning algorithm we choose is PART (Frank and

Witten, 1998), which is a recent decision list learner implemented in WEKA. Other types of

rule or decision tree learners can potentially serve the same purpose.

We cannot feed the dataset above to PART directly. There are two issues here. First, PART

can handle only nominal attributes and therefore all numeric attributes need to be discretized.

Second, the number of instances in the Feature dataset is very large and cannot be handled

with PART as implemented in WEKA with the computational resource that we have.

To solve the first issue, we exploy the discretization algorithm implemented in WEKA that

optimizes the number and value range of bins with a restriction that the maximum number of

bins is four (this number is determined experimentally). The optimization process uses a

cross-validation procedure that maximizes the estimated likelihood of the data. The

discretization of Odds Ratio results in four bins or nominal values as follows:

(-inf--2.044225], (-2.044225-2.65175], (2.65175-7.347725], (7.347725-inf)

31

The following are some examples from the Features dataset after discretization.

</area>,3,2,230,?,?,(-0.5-4.75],?,?,?,?,(-inf--2.044225]

</area>,1,2,858,(6-inf),(-inf-3],?,?,?,?,?,(-2.044225-2.65175]

</area>,1,2,4428,(4-6],(-inf-3],?,?,?,?,?,(-2.044225-2.65175]

The number of instances in the Feature dataset is very large, because it is equal to the number

features in the training set multiplied by the number of tags. For the Job600 dataset (see

Chapter 6), for example, the number of instances in this dataset is over 8 million. For PART

to be able to handle it, we perform stratified random sampling3 to select 2000 instances from

the dataset—500 instances from each bin of Odds Ratio values. The stratification is required

so that the resulting decision list is not weighted heavily toward any single bin. The size of

the data is mainly constrained by the memory consumption using the implementation of

PART in WEKA (We used about 500 MB of memory).

5.2 Applying the Learned Decision List

The decision list learned by PART from the Features-Resumes dataset is shown here:

Rule 1: ObjectType = Token && Class = Distance è HIGH_EFFECTIVENESS

Rule 2: Default è LOW_EFFECTIVENESS

Each rule starts with a set of conditions in the antecedent and ends with the consequence

which predicts whether the feature that meets the conditions would have high or low

effectiveness.

The decision list is to be interpreted in order. The first rule is tried out first, if the feature in

consideration does not match the conditions set by it, the second rule is tried, and so on. The

first rule means that the features based on tokens and distance from insertion point are highly

effective. The second rule above is a default rule since it has no condition, and says that

whenever the conditions of the first rule is not met, the feature has low effectiveness. The

3 Stratified random sampling is a kind of random sampling which we select an equal number

of instances from each category of data.

32

decision list learn from the Jobs dataset is comprised of 24 rules and is included in the

Appendix.

Since we will use only feature selection and not feature weighting, only two possible values

in the consequence are needed. In our experiments, only the highest bin out of four is

assigned to be highly effective. If feature weighting is performed, a

MEDIUM_EFFECTIVENESS consequence can be added.

With the decision list ready, we can now apply it to perform feature selection. Each feature

and tag in consideration are passed to the matching function. The function looks up the

feature properties and match them against the condition in rule antecedent. If the tag

condition is present in the rule, it will also be considered. Only the features predicted to be

highly effective are selected for classification.

5.3 Transferring Knowledge

The decision list learned can be used to select features in the same domain, or alternatively, to

the test set in a different domain that share common representational bias. The rules learned

are not specific to a particular dataset. When the decision list is used in a different dataset or

domain, this process can be considered a form of 'learning to learn' where learning

performance improves with the number of datasets that are used (S. Thrun and L. Pratt,

1998). Our method is the transfer of representational bias through the reduction of the

hypothesis space that needs to be considered by the learning algorithm.

Knowledge transfer has been shown to be useful in several domains. Our experiments show

that it is useful in textual information extraction as well. In paricular, we show that using the

decision list learned in one domain to select features in another improve performance. The

approach is especially important when data is plentiful in the original domain, but scarce in

the destination domain. As a practical matter, this is often the case when data is cheap to

acquire in the original domain and expensive in the destination domain (S. Thrun and L.

Pratt, 1998).

33

6. Experimental Evaluation

6.1 Domain and Task Descriptions

We test our system in two information extraction domains. The first domain is Jobs, which

consists of a set of 600 computer-related job postings from the newsgroup austin.jobs.

Half the documents in this dataset are those used in the experimental evaluation of RAPIER

and tagged by Mary E. Califf (Califf, 1998); the other half was tagged by Un Yong Nam. The

task is to identify and tag key pieces of information in each job posting, such as the job title,

the salary, the company, the languages and platforms involved, and the required years of

experience and degrees. There are in total 17 different kinds of tags in this domain.

Another domain is Resumes, of which we use a dataset consisting of 300 computer-related

resumes from various newsgroups. This dataset was tagged by Un Yong Nam. There are 13

different kinds of tags in this domain, including those that cover the name, the desired

position, the areas of expertise, the number of years of experience, the salary requirements,

and the educational degrees of the applicant.

These two domains share several commonalties, especially those involving technical terms

and job titles in computer fields. A major difference is that the company's name and location

tags that are present in the Jobs domain, but not in Resumes. The similarities between these

two domains make them prime targets for transferring representational bias, which we will

show to be effective in our experiments.

6.2 Data Pre-Processing

We extract tokens from the document with a very simple tokenization technique. A decision

is made here not to return any white-space characters (space, tab, carriage return, form feed)

as tokens, while punctuation, such as colons, parentheses, ampersands, used as token

separators are also returned as single character tokens.

34

Another pre-processing step is to identify potential tag insertion points. Spaces and most

punctuation, with the noticeable exception of underscores, are part of a potential insertion

point. Underscores are excluded because it usually connects two separate words together to

form a proper noun (e.g. in john_doe@yahoo.com).

Although these pre-processing steps seem trivial, the decision made at this point in fact

significantly affects extraction performance. For example, when a dot (.) is considered part of

an insertion point, recall will generally increase while precision will decrease from when it is

not part of an insertion point. (Our experiments below do not consider a dot as part of an

insertion point.)

Notice that we do not perform any sophisticated tokenization that employs knowledge of

common words and abbreviations in English (while RAPIER does). The extraction

performance of our system will likely increase if better pre-processing is used. The point of

our experiments is to show the differences between feature-selection methods, however, and

leaving the pre-processing step simple does not hurt our comparisons.

6.3 Feature Selection Approaches Compared

There are three major feature selection approaches used in our experiments: heuristics-based,

rule-based, and manual. Simple heuristics based on document and class statistics have been

used for feature selection for a long time. The rule-based and manual approaches both rely on

the property-based feature extraction framework we outlined in Chapter 4 and are our novel

contributions.

Note that we perform feature selection for each instance (or insertion point) and, with some

approaches, the features selected also depend on the category (or tag) of concern. An

implication is that feature selection is computed at the testing phase.

Heuristics-Based Approach

Statistics based on the probability that a feature or a class appears, or a feature appears given

a class, a class appears given a feature, have been used for feature selection. These include

35

information gain, mutual information, feature frequency, and odds ratio. We experimented

with most of the feature selection heuristics presented in (Mladenic and Grobelnik, 1999),

which studied them for the case of unbalanced class distribution and naive Bayer learner. Our

experiments show that odds ratio is the best among these heuristics for our information

extraction setup. The results are congruent to those reported in (Mladenic and Grobelnik,

1999), where Odds Ratio is one of the best performing heuristics. In subsequent experiments,

we use Odds Ratio as the representative for the heuristics-based feature selection approach.

Manual Feature Extraction Approach

This approach performs pre-selection of feature by limiting the extraction of features in the

first place. The kinds of features that are generally not very useful are simply not extracted.

The major advantage for this approach is its low training and testing time and low memory

consumption. Several experiments will be needed, however, to find out what combinations of

feature types are most useful. When there are many kinds of feature properties, exhaustive

search is not possible because of the combinatorial complexity, but manual hill-climbing or

beam search usually finds good solutions. This higher-level search process for good

combinations of feature types can potentially be automated as well, although we did not

implement it.

Rule-Based Approach

This approach uses rules that are learned from examples in the same domain or a similar one

to select features, as described in Chapter 5. It uses data of feature effectiveness (based on,

for example, Odds Ratio) to learn higher-level rules. This effectively automates the search

through the space of useful features. A limitation for this approach is that it cannot detect the

results from feature interactions, while manual selection can, since it receives feedback from

experiments that use all features together.

6.4 Relevant Parameters

Given a set of the pre-processing steps, the feature types extracted, the feature selection

method, and the learning algorithm used, there are still two parameters that affect extraction

performance. They are explained here:

36

a) Feature types extracted and window size for extraction. The types of features we

choose to extract (from all the features defined in Chapter 4) significantly affect performance.

Since we generally do not know a priori which kinds of features are most useful, we use all

feature types by default. The obvious exceptions are when manual selection of feature types

is used. Another important factor is the maximum size of window the system considers when

extracting features. By default, we use the window size of 10. Therefore, the parameter

Maximum Window Size in Section 4.2 is 10 and the parameter Distance has a range of -5 to

+5.

b) The number of selected features. For each binary classification whether a tag should be

put into a given insertion point, we select only the features that are deemed most relevant by

our feature selection heuristic (when it is used). Since feature selection heuristics return their

feature evaluation results in varying, incompatible numerical scores, we select a fixed number

of top features evaluated. The number of selected features may affect the classification

performance. The default value of this parameter is 7, which is experimentally determined.

c) Prediction threshold. As described in Chapter 3, the naive Bayesian classifiers we use

determine whether a tag should be predicted for a given insertion point based on the

probabilities that the tag is present versus that it is not. The natural decision threshold for this

ratio is 1.0 (when the probability that the tag is present is equal to the probability that it is

not), which is the default value we use in most experiments. However, we find that shifting

this threshold in either high or low directions sometimes increase extraction performance. We

usually discuss about the threshold using the logarithm of its value, since its range is very

wide.

6.5 Experimental Methodology

For all experiments, we use ten-fold cross-validation, in which one-tenth of each dataset is

reserved as an independent test set. The size of the training set is varied in some experiments

to produce learning curves. Except when noted otherwise, the X-axis on learning curves

indicates the number of training documents. By default, however, the training set consists of

37

540 documents in the Jobs domain and 270 documents in the Resumes domain. The test set

always consists of 60 documents in the Jobs domain and 30 documents in the Resumes

domain. The same training and test set splits are always used for every experiment; therefore

direct comparisons can be done across experiments. We use two-tail paired t-test to measure

statistical significance, where it is conducted.

Precision, recall, and F-1 measures, as described in Chapter 3, are reported in percentage.

Training and testing time are reported in seconds. The terms training time and testing time

denote the average time used for each split in ten-fold cross-validation. We also report the

total cross-validation time, which denotes the combined training and testing time for all ten

folds.

All experiments are run on computers with the following specification: 1.0 GHz Pentium III

CPU, 256 KB Cache, and 512 MB of RAM. The system is developed in Java and compiled

using Sun Microsystems’ JDK 1.3.1.

6.6 Comparing Feature Selection Heuristics

In this section, we show the results of experiments comparing different feature selection

heuristics used in (Mladenic and Grobelnik, 1999). The heuristics used here are odds ratio,

weighted odds ratio, cross entropy, feature frequency, information gain, log probability, and

mutual information. We use the maximum number of training examples in each domain for

these experiments (540 for Jobs and 270 for Resumes). The number of top features selected

for classification is set at 7 by default.

Since the extraction performance using these heuristics is particularly sensitive to the

prediction threshold (described in section 6.4), we conducted experiments for each heuristic

and no heuristic with different thresholds. Logarithms of the threshold we use vary from -16,

-8, -4, -2, 0, 2, 4, 8, to 16. We report the result for each heuristic here using the prediction

threshold that maximizes the F-1 measure of extraction performance. In Figure 6.1, the

number that follows each heuristic name is the logarithm of the prediction threshold reported

here.

38

0

10

20

30

40

50

60

od
ds

 ra
tio

 (+
16

)

cro
ss

 e
nt

ro
py

 (-
8)

fe
at

ur
e

fre
qu

en
cy

 (-
8)

inf
or

m
at

ion
 g

ain
 (-

8)

log
 p

ro
ba

bil
ity

 (+
16

)

m
ut

ua
l in

fo
rm

at
ion

 (-
8)

weig
ht

ed
 o

dd
s r

at
io

(+
2)

no
 h

eu
ris

tic
 (-

4)

Precision

Recall

F-1

Figure 6.1 a) Comparing extraction accuracy when using different heuristics in the Jobs

domain.

Note that “No Heuristic” indicates that no heuristic is employed, but we still use only seven

features for each binary classification, in order to make the results comparable with using

heuristics.

We can see that in both domains, many feature selection heuristics actually perform worse

than not using feature selection heuristic at all. In both domains, the best performing

heuristics are Odds Ratio and Log Probability Ratio, respectively. Both heuristics favors the

features that appears in positive instances (the cases which the tag is present) over those that

appear in negative ones (which the tag is not present). Both these heuristics and Weighted

Odds Ratio are among the best performers in (Mladenic and Grobelnik, 1999). A surprising

difference between our results and theirs is that Weighted Odds Ratio performs

39

unsatisfactorily here. We believe that the factor (the weight) P(F) that is multiplied to simple

Odds Ratio is the culprit here. P(F) is not a good indicator for feature effectiveness, as we can

see that the Feature Frequency heuristic performs badly. It also varies greatly in our system

and greatly sway the final value away from the well-performing Odds Ratio.

For further discussions about the use of above feature selection heuristics for unbalanced

class distribution with naïve Bayes, the reader is referred to (Mladenic and Grobelnik, 1999).

0

5

10

15

20

25

30

35

od
ds

 ra
tio

 (+
8)

cr
os

s e
nt

ro
py

 (-
8)

fe
at

ur
e

fre
qu

en
cy

 (-
8)

inf
or

m
at

ion
 g

ain
 (-

8)

log
 p

ro
ba

bil
ity

 (+
8)

m
ut

ua
l in

fo
rm

at
ion

 (-
8)

weig
ht

ed
 o

dd
s r

at
io

(0
)

no
 h

eu
ris

tic
 (-

8)

Precision

Recall

F-1

Figure 6.1 b) Comparing extraction accuracy when using different heuristics in the Resumes

domain.

40

The testing time for all feature selection heuristics are comparable (the training time are about

equal by nature since the heuristics are computed at the testing phrase). The testing time for

these heuristics, except Feature Frequency, range from 200 to 340 seconds per split in the

Jobs domain and 220 to 360 seconds in the Resumes domain. Feature Frequency is simpler to

compute since it is collected in a data structure when we extract features in the first place.

Thus, when it is used, the testing time is lower, ranging from 80 to 90 seconds in the Jobs

domains and 95 to 140 seconds in the Resumes domain.

Figure 6.2 shows the effects of different prediction thresholds on extraction performance

when we use Odds Ratio for feature selection. A clear trend is that when the threshold is

lower, the precision decreases. At the same time, lower threshold tends to increase recall, but

lowering the threshold beyond a certain point does not seem to help increase recall further.

Figure 6.2 a) Extraction accuracy when using Odds Ratio with different prediction thresholds

in the Jobs domain.

41

Figure 6.2 b) Extraction accuracy when using Odds Ratio with different prediction thresholds

in the Resumes domain.

6.7 Rule-Based Feature Selection

To learn rules about feature effectiveness, we create a dataset comprising of feature

properties and a measure of its effectiveness, as described in Chapter 5. The effectiveness

measure we use is Odds Ratio, which depends on the feature and the tag involved. We call

this the Features meta-dataset since it contains meta-information about the problem domain.

For brevity, sometimes we simply call it the Features dataset.

The Features datasets produced from the Jobs and the Resumes datasets are very large. Their

sizes are equal to the number of features in the dataset multiplied by the number of tags. For

example, in the Jobs dataset we use, there are 30 tags and over 400,000 features; the resulting

Features dataset thus has over 12 million instances. We performed discretization and

stratified sampling as described in Chapter 5 and use a subset of 2,000 instances from the

Jobs-Features dataset and 1,600 instances from Resumes-Features dataset to learn decision

lists of feature engineering knowledge.

42

The PART decision list learner creates 24 rules from the Jobs-Features dataset and only 2

rules from the Resumes-Features dataset. Despite the differences in numbers of rules, both

decision lists share the key rule, which is:

ObjectType = Token && Class = Distance è HIGH_EFFECTIVENESS

which states that features that are based on tokens and in the class Distance usually are highly

effective. As we will see, it turns out that manual trial-and-error searches for the kinds of

features that are effective result in the same knowledge.

It should be mentioned that most of the rules in the decision list learned from the Jobs-

Features dataset deals with features about highly specific content. There are however two

more rules in the list that are quite general; they are:

ObjectType = Special è LOW_EFFECTIVENESS

ObjectType = Line è LOW_EFFECTIVENESS

Note that ObjectType can be Special only when the feature class is Distance from Line Start

(see Chapter 4) and that the ObjectType of Line is only used in the feature class Length.

These two rules also match the results from manual experiments with different feature types

in Section 6.9. However, they do not affect the performance of rule-based feature selection,

since the default rule (when none of the other rules in the decision list applies) also has

LOW_EFFECTIVENESS as its consequence.

The decision list learned from Resumes-Features dataset is simple and can be stated in full

here:

ObjectType = Token && Class = Distance è HIGH_EFFECTIVENESS

Default è LOW_EFFECTIVENESS

The decision list states that when the feature is based on the distance to a given token, it is

highly effective, otherwise (by default) it has low effectiveness. The reader may also check

the full decision list learned from the Jobs-Features dataset in the Appendix.

43

6.8 Comparing Different Feature Selection Approaches

This section discusses the differences in extraction performance between major feature

selection approaches. The following approaches are compared:

a) No Feature Selection

b) Rule-Based Selection Features are selected by using the decision lists learned from the

datasets in two domains: Jobs and Resumes. Transfer of learning occurs when the

decision list learned from one domain is used to select features in another domain. We

label these jobrule and resumerule in the charts below. With this approach, we do not

limit the number of selected features.

c) Manual Selection In this approach, only features of certain types are extracted and used

in classification. Two major parameters are feature types and the size of window

considered. We experimented with many combinations of parameters. One of the best is

when feature Class is Distance and Object Type is Token (see Section 4.2 for definitions)

and window size is 8. The following result for manualboth uses this parameter

combination. (‘Both’ refers to the fact that we manually set both feature types and

window size.)

d) Heuristic-Based Selection We choose Odds Ratio as the representative of heuristic-

based Feature Selection, since it is the best performing heuristic as shown in the Section

6.5. The results reported as oddsratio below uses prediction threshold of 10 to the power

of 16.

We also tested another way of using Odds Ratio. Instead of selecting the top features

evaluated regardless of its Odds Ratio value, we now set a minimum value of Odds Ratio

that all features selected must surpass. The number of selected features parameter is not

used in this case, since all features with Odds Ratio higher than this minimum value are

selected. This minimum value is set to the lowest value of the high bin when we

discretize the Odds Ratio value in the Features datasets as described in Chapter 5. We call

this method filtered odds ratio.

Except as noted, the number of selected features is set at 7, and prediction threshold at 1.0 for

all the following experiments.

44

Figure 6.3 to 6.5 respectively show the F-1, Precision, and Recall results for different

approaches outlined above. Note that the values of jobrule and resumerule are identical in

every case (therefore the two lines overlap in the graphs). This is because most of the rules

learned from the Jobs dataset predict low feature effectiveness for features with specific

content. These rules do not overlap with the only significant rule in the list, which predicts

high effectiveness for features with token as object type in the feature class Distance. This

important rule is the same one the system learned from the Resumes dataset. For our purpose,

therefore, both decision lists have the same effect.

0

10

20

30

40

50

60

0 100 200 300 400 500 600

Number of Examples

F-
1

no selection (-4)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.3 a) Resulting F-1 values when applying different feature selection approaches to

the Jobs domain.

45

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

Number of Examples

F-
1

no selection (-8)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.3 b) Resulting F-1 values when applying different feature selection approaches to

the Resumes domain.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Number of Examples

P
re

ci
si

on

no selection (-4)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.4 a) Resulting precision values when applying different feature selection approaches

to the Jobs domain.

46

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Number of Examples

P
re

ci
si

on

no selection (-8)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.4 b) Resulting precision values when applying different feature selection

approaches to the Resumes domain.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600

Number of Examples

R
ec

al
l

no selection (-4)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.5 a) Resulting recall values when applying different feature selection approaches to

the Jobs domain.

47

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

Number of Examples

R
ec

al
l

no selection (-8)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.5 b) Resulting recall values when applying different feature selection approaches to

the Resumes domain.

Basically, rule-based feature selection and manualboth perform similarly in all cases. This is

because the important rule requires the selection of the types of features also used by the

manual selection. This shows that the meta-learning process does capture a pattern for feature

effectiveness that is discovered by manual trial-and-errors. Performance differences between

these two approaches stem from the different uses of the parameter number of selected

features. (Rule-based selection does not use it; manualboth does).

The results summarized by F-1 show that all feature selection approaches, except filtered

odds ratio, outperforms using no feature selection. When we inspect the detailed data, only a

few features have Odds Ratio value higher than the minimum required by filtered oddsratio.

For many insertion points, no features are selected at all. This helps explain its low

performance. This suggests that although we can discover useful patterns for feature

effectiveness through discretization in meta-learning, the exact value used in the

discretization should not be used to filter out features at the classification time.

48

The extent that Odds Ratio, rule-based, and manual feature selection outperforms using no

feature selection is larger in the Resumes domain than in the Jobs domain. We believe that

more complex patterns and a larger number of irrelevant features in the Resumes domain

require more judicious selection of features used in classification.

The F-1 measure of Rule-Based and Manual approaches is higher than that of oddsratio in the

Jobs domains and competitive with it in the Resumes domain. The precision of oddsratio is

low in both domains, even compared to using no feature selection. This is also due to the

prediction threshold that we set to maximize F-1. As a result, recall for Odds Ratio is slightly

higher than those of Rule-Based and Manual approaches in the Jobs domain and much higher

than the recall of those two approaches in the Resumes domain.

Note that we did not select a prediction threshold to maximize the F-1 values of every

approach, except oddsratio and no selection, the results above may understate the

performance of the feature selection approaches we propose.

We therefore perform additional experiments with manualboth and rule-based approaches by

varying prediction thresholds as well (using the same threshold points as in Section 6.6). The

best F-1 value for rule-based selection in the Job domain is 49.78% (precision = 64.73% and

recall = 40.46%) when the log of prediction threshold is set to –2.0. For rule-based selection

in the Resumes domain, the best F-1 is achieved when the log of prediction threshold is set to

–8.0. The best F-1 in this case is 26.14% (precision = 25.09% and recall = 27.30%) which is

quite a bit higher than the ones shown in Figure 6.3 b) and is clearly better than oddsratio.

The best F-1 for manualboth in the Jobs domain is 49.51% (precision = 66.19% and recall =

39.56%), achieved when the log of prediction threshold = -2.0. For manualboth in the

Resumes domains, the best F-1 is 26.19% (precision = 36.56% recall = 20.43%), again

clearly better than the result from oddsratio. This F-1 is achieved when the log of prediction

threshold is equal to –4.0.

49

The training time is basically the same for all approaches, except with manual feature

extraction. This is because all feature selection is performed at the testing time. Manual

extraction reduces the time it takes to extract features from documents in the first place.

0

20

40

60

80

100

120

0 100 200 300 400 500 600

Number of Examples

T
ra

in
in

g
T

im
e

no selection (-4)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth
`

Figure 6.6 a) Training time used when applying different feature selection approaches to the

Jobs domain.

50

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

Number of Examples

T
ra

in
in

g
T

im
e

no selection (-8)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.6 b) Training time used when applying different feature selection approaches to the

Resumes domain.

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600

Number of Examples

T
es

ti
ng

 T
im

e

no selection (-4)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.7 a) Testing time used when applying different feature selection approaches to the

Jobs domain.

51

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

Number of Examples

T
es

ti
ng

 T
im

e

no selection (-8)

oddsratio (+16)

filtered oddsratio

jobrule

resumerule

manualboth

Figure 6.7 b) Testing time used when applying different feature selection approaches to the

Resumes domain.

During testing, the manual approach again has the advantage, since it deals with a smaller

number of features. All methods, except jobrule, spend from less than one second to five

seconds per test document (recall that there 60 test documents used in each split). jobrule

takes about 15 seconds to process each test document. The large difference in testing time

between resumerule and jobrule is caused by the different numbers of rules in the decision

lists (2 versus 24, respectively).

6.9 Comparing the Use of Different Feature Types and Window Size

In this section, we describe the performance of different feature types used in information

extraction. We vary two main variables: one is the window size considered in extracting

features; another is the class and object types of features extracted.

In the first set of experiments, we varied the window size from 2 to 32, with the exact

window sizes used as follows: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32. Note that in all

these experiments, all feature types are extracted and no further feature selection is used.

52

The trend from the results are clear. Both precision and recall continually decreases as the

window gets larger than a certain size. For the Jobs domain, the F-1 value peaks at the

window of size 4. In the Resumes domain, using the window sizes of 4 and 6 achieve the

highest level of F-1. Using the smallest window size of 2 achieves the highest precision, but

its recall is lower than using the window of size 4, resulting in lower F-1 for the window size

of 2.

The training and testing time also increase linearly as the window expands, except with the

expansion from 28 to 32 where the increase seems to be super-linear. We believe that this is

the result from the need to swap data from the main memory to hard drive, which is much

slower, as the memory consumption grows beyond the machine’s main memory’s capacity.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Window Size

P
er

ce
nt Precision

Recall

F-1

Figure 6.8 a) Comparing extraction accuracy when using different window sizes for feature

extraction in the Jobs domain.

53

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

Window Size

P
er

ce
nt

Precision

Recall

F-1

Figure 6.8 b) Comparing extraction accuracy when using different window sizes for feature

extraction in the Resumes domain.

Figure 6.9 a) Comparing training and testing time when using different window sizes for

feature extraction in the Jobs domain.

54

Figure 6.9 b) Comparing training and testing time when using different window sizes for

feature extraction in the Resumes domain.

In the second set of experiments, we compare different feature selection approach under the

very large window size of 32. The purpose is to discern how much improvement we will

achieve from using feature selection when a large number of irrelevant features are present.

In Figure 6.10, we compare using no feature selection, feature selection with Odds Ratio

(with prediction threshold = 0), and using manual selection for feature types (only features in

the class Distance that are based on tokens are extracted). Manual selection outperforms no

feature selection and Odds Ratio by about a factor of three in F-1 measure for the Jobs

domain. Odds Ratio and Manual selection however achieve similar F-1 performance in the

Resumes domain and the F-1 measure for both roughly doubles the case when no feature

selection is used. These large improvements are similar to those observed when the smaller

window size of 10 is used (as reported in Figure 6.3).

55

0

10

20

30

40

50

60

70

80

nosel oddsratio (+0) manualtype

Feature Selection Approach
(Window Size = 32)

P
er

ce
nt Precision

Recall

F-1

Figure 6.10 a) Comparing extraction accuracy for different feature selection approaches

when using the window size of 32 in feature extraction for the Jobs domain.

56

0

5

10

15

20

25

30

35

40

nosel oddsratio (+0) manualtype

Feature Selection Approach
(Window Size = 32)

P
er

ce
nt Precision

Recall

F-1

Figure 6.10 b) Comparing extraction performance for different feature selection approaches

when using the window size of 32 in feature extraction for the Resumes

domain.

The third set of experiments involves the selective extraction of different feature types from

the raw data. In facilitate further discussion, we introduce some abbreviations to represent the

types of features as follows:

Abbreviations for Object Types:

tok = Token, char = Character

Abbreviations for Feature Classes:

freq = Frequency, dist = Distance, length = Length, cap = Capitalization,

diststart = Distance from Line Start

57

We concatenate these abbreviations together to indicate the mixture of feature types used. For

example, tokfreq means the features in the class Frequency that are based on tokens. The

same convention is used in the cases when we use more than one types. For example,

tokfreqdist means that we use the features based on tokens in both the Frequency and the

Distance classes. Because of the feature mixtures that we tested on, this simple convention

suffices without causing confusion.

The first observation is that diststart results in zero precision and recall in both domains. This

implies that the distance from the line start alone generally carries too little information for

the classification algorithm to work correctly.

Notice that tokcap achieved near perfect precision in the Jobs domain, but only 10 percent

precision in the Resumes domain, we investigated this by inspecting the tags it predicts in the

Jobs domain. We found that tokcap predicts only <id> and </id> tags. Apparently, these two

tags can be predicted very precisely by the capitalization category of its nearby tokens. This

suggests that using different feature types tailored to each tag the system is dealing with can

be useful.

The top performer in the Jobs domain is tokdist, following by tokfreqdist. In the Resumes

domain, the reverse is true, tokfreq outperforms tokfreqdist. The performance of tokfreqdist

seems to be in between those of tokfreq and tokdist in both domains.

The fact that tokfreq outperforms tokdist in the Resumes domain does not appear in the

learned decision list about feature effectiveness from the domain. This might be because the

decision list is learned from the values of individual feature effectiveness and does not take

feature interaction into account. However, the difference in F-1 between tokdist and tokfreq in

the Resumes domain is also not large (12.2 versus 15.4) and tokdist does have twice as high

precision as tokfreq (48.3 versus 23.0), although the lower recall (7.0 versus 11.7) weights its

F-1 measure down.

58

Generally, using features based on tokens alone achieve better results than using both token-

based and character-based features. The difference in performance is small in the Jobs

domain, but quite large the Resumes domain. This suggests that the character-level features

cannot handle more complex patterns in the Resumes dataset very well. Again, these results

occur in the context that no further feature selection (e.g. based on Odds Ratio) is employed.

Although the training and testing time vary somewhat depending on the feature types used,

they are not significant in practical applications since it takes less than 2 minutes in every

case we experimented with to train using 540 documents in the Jobs dataset and 270

documents in the Resumes dataset, and takes less than 1 second to process one test document

in both domains. Also, the system scales linearly with the size and the number of documents,

as already shown in Figure 6.6.

Figure 6.11 a) Comparing extraction performance when using different feature types in the

Jobs domain.

59

Figure 6.11 b) Comparing extraction performance when using different feature types in the

Resumes domain.

Figure 6.12 a) Comparing training and testing time when using different feature types in the

Jobs domain.

60

Figure 6.12 b) Comparing training and testing time when using different feature types in the

Resumes domain.

6.10 Comparing Our System with RAPIER

In this section, we compare the results from RAPIER (Califf, 1998; Califf and Mooney,

1999) with our system when using different feature selection approaches. The results of these

approaches have been reported in previous sections, but we select one of the best variants for

each approach and summarize them here. For Odds Ratio, we report the result that uses 100

selected features for each classification and prediction threshold equals to 1.0 here. The

representative of Manual selection here uses token-based features in the class Distance within

the window of size 8 and uses 9 features for each classification.

The results from RAPIER are run on 540 examples for the Jobs domain. RAPIER cannot

finish its run on the Resumes after over two days. Ruifang Ge generously helped with the

experiments with RAPIER—the results of which we present here. RAPIER’s F-1

performance on the Jobs domain is 90.2 percent, with 53.7 percent precision and 67.3 percent

61

recall. The recall and consequently F-1 reported for RAPIER here is lower than those in

(Califf, 1998) because we strictly match both the locations and the texts of RAPIER’s filler

prediction with the manual tags here, while in (Califf, 1998) only filler texts regardless of

their locations are used to make the matches. Note that the results from our system always

require strict location as well as textual matches.

Comparing with the representative of the Manual approach, which is the best among our

results here, RAPIER’s precision is 17.1 percent higher, its recall is 13.4 percent higher, and

consequently its F-1 is 15.4 percent higher. This indicates that RAPIER’s relational

representation still has an advantage over our fine-tuned propositional representation. But it

might also reflects RAPIER’s more sophisticated data pre-processing step (which recognizes

common abbreviations and consequently correctly break text into sentences).

Another relational learning system WHISK (Soderland, 1998), whose results are reported in

(Califf, 1998) based on a single trial with 200 training documents, achieved 76% precision

and 40% recall. These results from WHISK are very close to the results from our Manual

approach here. This suggests that the performance of relational learners in information

extraction tasks could very well overlap with that of propositional ones, although it should be

noted that WHISK used only 200 documents for training while our system used 540

documents to achieve the quoted results.

62

0

10

20

30

40

50

60

70

80

90

100

RAP
IE

R

No
Se

lec
tio

n

Odd
s R

at
io

Jo
b

Rule
s

Res
um

e R
ule

s

M
an

ua
l

Method

P
er

ce
nt Precision

Recall
F1

Figure 6.17 Comparing extraction accuracy between RAPIER and variants of our system in

the Jobs domain

63

1

10

100

1000

10000

100000

RAP
IE

R

No
Se

lec
tio

n

Odd
s R

at
io

Jo
b

Rule
s

Res
um

e R
ule

s

M
an

ua
l

Method

S
ec

on
d
s

Training Time
Testing Time

Figure 6.18 Comparing training and testing time between RAPIER and variants of our

system in the Jobs domain

RAPIER’s training time using 540 documents as reported here is approximate only and is the

lowest training time on any split we trained on. The test time for RAPIER is quoted from

Section 4.9 of (Califf, 1998), where it was run on a different, supposedly slower, machine.

In terms of training time, however, our system is much faster than RAPIER. Note the

logarithmic scale of the Y-axis in Figure 6.18. We can see that RAPIER takes over two

orders of magnitude more time to train than all variants of our system. Moreover, our system

scales up linearly with the size and number of training documents, while RAPIER apparently

64

does not (As reported in Section 4.9 of (Califf, 1998), RAPIER’s training time increased

between 52 and 111 folds when the number of training documents increased from 10 to 270

or 27 folds).

As for testing time, RAPIER is competitive with our system. The variants Odds Ratio and Job

Rules of the our system are significantly, but less than one order of magnitude, slower than

RAPIER and other variants.

6.11 Discussion

In the information extraction domains we explored, our experiments with manual extraction

of features and in learning feature selection rules from the Features dataset suggest the same

thing: “It is important to use the right feature types”. Selecting for feature types provide better

performance improvements than using heuristics such as Odds Ratio, and limiting the

window size used in feature extraction.

Although this result may sound obvious to some, it is not a foregone conclusion before these

experiments shown it to be so. More important, even when we know that feature types are

important, we often do not know a priori what combination of feature types would work best.

A clear example in this case is that the Naïve Bayesian information extraction system

developed by Dayne Freitag (1998a; 1998b; Califf, 1998) performs much worse than the

version of our system that uses feature selection based on feature types. The features used in

his naïve Bayes system are based on the frequency of words within a window. Our

experiments have shown that this feature type does not work as well as the features based on

token distance for this domain. In this case, using inappropriate representation hurts

performance significantly. This case study clearly demonstrates the importance of careful

feature extraction and selection.

Our own experiments summarized in Section 6.11 also clearly show that the F-1 measure for

the cases which we select for feature types approximately doubles compared to no feature

selection. Section 6.9 also demonstrates the two domains we explored have slightly different

preference for feature representation. Features based on token distance works much better

65

than those based on token frequency in the Jobs domain; while token-distance features are

slightly less effective than token-frequency features in the Resumes domain.

Learning decision lists for deciding the types of useful features was able to detect prominent

patterns about feature effectiveness. Despite the fact that the decision list are learned from the

Features meta-datasets produced using Odds Ratio as a measure for feature effectiveness, the

decision lists turn out to be more effective for feature selection than Odds Ratio itself. This is

a surprising result that requires explanation. We believe that this happens because the

statistics used to compute Odds Ratio for each individual feature and the given tag are too

sparse in most cases (this is particularly true in text learning and pattern recognition

applications because there are a large number of features), resulting in unreliable Odds Ratio

for individual instances. Machine learning from the Features meta-dataset has the advantage

of using a global view based on many features and tags, therefore allowing us to compensate

for the sparse-data problem. Further work to explain this phenomenon in a more concrete,

theoretical term, might aid future research into the problem of feature selection.

Despite its overall effectiveness, a disappointment we have with the decision lists learned

from the Features dataset is that it could not detect some other, less prominent, patterns in

feature effectiveness that manual experiments with different feature extraction parameters can

identify. For example, the decision lists learned do not include rules that indicate the features

more distant from the insertion point are less effective than the features close to it. Another

inherent weakness of the rule-based approach is that the learning process cannot in general

capture the effects of feature interaction, which may affect performance when a particular

combination of features are used together.

The property-based feature engineering framework allows the machine learning practitioner

to complement her intuition with careful experiments performed manually or using machine

learning from the Feature meta-dataset to gain insight into the types of features most useful

with a learning algorithm in the given problem domain. Our experiments show that more

effective feature engineering can significantly improve learning results. The improvement

tends to be greater in a more complex domain (e.g. Resumes versus Jobs in Section 6.8).

66

7. Future Work

In this chapter, we identify important future research topics that can make property-based

feature engineering more effective and useful.

7.1 Extensions of Property-Based Feature Engineering

7.1.1 Addressing Feature-Category Interaction

In our experiments, the system did not isolate the performance measure for each category (or

tag); it measured only global performance based on all categories. It is likely that each

category or tag requires a different representation bias, as we have seen from Section 6.9 and

Figure 6.11 that the tags <id> and </id> in the Jobs domain can be predicted with near 100

percent precision from the feature of type Capitalization Form alone.

Tailoring representation to each tag type might improve extraction accuracy and will also

increase the speed in training and testing processes.

When using the rule-learning method, we can generate a meta-dataset for each category and

learn rules that are specific to that category. Although the meta-datasets we used in the

reported experiments do contain tag type as a property of each instance, the limited number

of examples we fed to PART due to memory constraints might have prevented it from

learning rules for specific categories. Learning from several meta-datasets, one for each

category, will also increase the number of examples the rule learner can use without requiring

special parallel implementation or more computational resources.

With the manual approach, we can simply isolate the performance measures for each

category and select the best-performing representation for each of them. If we would like to

vary the parameters in manual trials to achieve best performance for individual categories,

automatic trials-and-errors will be very helpful as the number and range of experiments we

need to perform increase with the number of tags. This leads us to the next promising

research topic in the following section.

67

7.1.2 Automated Search for Effective Feature Combinations

Our experiments show that manual experiments can potentially detect subtler patterns about

feature effectiveness better than meta learning, since its global perspective can capture feature

interaction. However, straightforward manual experiments can be time-consuming and slow.

Standard AI techniques such as beam search and genetic algorithms (Russell and Norvig,

1998) can be used to automate the process of trials and revisions of feature combinations and

system parameters. This high-level search can revise system settings, perform experiments,

record results, keep the best sets of parameters, and continue until a stopping condition has

been reached (such as when the extraction accuracy does not improve further after a number

of trials).

7.1.3 Feature Weighting

With feature selection, a feature is either filtered out or selected in. When a feature is used, it

has an equal weight to every other feature. In many cases, a more general approach of feature

weighting might be more desirable, since it allows the system to put different weights on

different features. Extending our framework to handle feature weighting is very

straightforward. We can add a MEDIUM_EFFECTIVENESS category for the consequence

of the rules and assign another bin of discretized Odds Ratio values to this label, for example.

More thoughts are required for using feature weighting with different learning algorithms.

Feature weighting is natural for some algorithms and less so for others.

7.2 Combining Feature Selection Approaches

We used either property-based or heuristic-based feature selection in each experiment, in

order to study and compare their performance. In fact, the two approaches are not mutually

exclusive. We can employ both of them together. For example, the learned rules can be used

to selectively extract features and then Odds Ratio can be used to filter out some of those

extracted. The final performance may be better than using either approach alone.

Another kind of experiments worth performing is using wrappers (Kohavi and John, 1998) to

measure feature effectiveness in the meta-dataset. If wrappers are better at measuring feature

68

performance than Odds Ratio does, we might be able to learn more effective feature

engineering rules.

7.3 Applications in Pattern Recognition

We believe that the property-based feature engineering framework will be most effective in

the domains that deal with complex patterns. The framework incorporates human intuition

about feature types and properties into the definition of features, allowing for richer feature

representations and more insightful experiments to be performed. Fields dealing with a

multitude of different kinds of features, such as bioinfomatics, image processing, natural

language processing, computer vision, and robotics will likely benefit the most from this new

approach.

69

8. Conclusions

Feature engineering and selection make major differences in learning performance in

information extraction domain. Much of the performance difference observed between

systems is not caused by the learning algorithm, but the representation, as our experiments

have shown. We suspect that this conclusion also applies to many other domains, especially

those characterized by complex patterns.

The framework of Property-based Feature Engineering allows machine learning practitioners

to gain insights into the types of features that are or are not useful for each problem domain.

This insight is often not obvious a priori to a practitioner. Careful experiments using the

framework developed here allow for effective features engineering, which might increase

learning performance significantly.

Learning rules for feature selection automates the process of learning insights on feature

engineering. It also allows for the transfer of knowledge about feature engineering from one

domain to another similar domain. This is particularly useful in the case when the data in the

destination domain are scarce while there are enough data in the original domain.

70

Appendix

The decision list learned from the Jobs-Features dataset. See discussions about the process of

learning this list in Chapter 5 and its characteristics in Section 6.7.

RULE 1: ObjectType = Character && Content = t ==> LOW_EFFECTIVENESS

RULE 2: ObjectType = Character && Content = @ ==> LOW_EFFECTIVENESS

RULE 3: ObjectType = Character && Content = o ==> LOW_EFFECTIVENESS

RULE 4: ObjectType = Character && Content = d ==> LOW_EFFECTIVENESS

RULE 5: ObjectType = Character && Content = Newsgroups ==> LOW_EFFECTIVENESS

RULE 6: ObjectType = Character && Content = m ==> LOW_EFFECTIVENESS

RULE 7: ObjectType = Special ==> LOW_EFFECTIVENESS

RULE 8: ObjectType = Character && Content =

 hub1.bbnplanet.com!news.bbnplanet.com!nntp1.crl.com!tfs.com!

news.wlk.com!news.onramp.net!news ==> LOW_EFFECTIVENESS

RULE 9: ObjectType = Character && Content = a ==> LOW_EFFECTIVENESS

RULE 10: ObjectType = Character && Content = . ==> LOW_EFFECTIVENESS

RULE 11: ObjectType = Character && Content =

 r e l a y . u s . d e l l . c o m ! j u m p . n e t ! u u n e t ! i n 5 . u u . n e t ! n e w s m . i b m . n e t !

newsm.ibm.net!ibm.net!infeed1.internetmci.com!newsfeed.internetmci.com!131.

103.1.102!news2.chicago.cic.net!iagnet.net!su ==> LOW_EFFECTIVENESS

RULE 12: ObjectType = Line ==> LOW_EFFECTIVENESS

RULE 13: ObjectType = Character && Content = news ==> LOW_EFFECTIVENESS

RULE 14: ObjectType = Character && Content = onramp.net ==> LOW_EFFECTIVENESS

RULE 15: ObjectType = Character && Content = g ==> LOW_EFFECTIVENESS

RULE 16: ObjectType = Character && Content = w ==> LOW_EFFECTIVENESS

RULE 17: ObjectType = Character && Content = 52 ==> LOW_EFFECTIVENESS

RULE 18: ObjectType = Character && Content = VISUAL ==> LOW_EFFECTIVENESS

RULE 19: ObjectType = Character && Content = from ==> LOW_EFFECTIVENESS

RULE 20: ObjectType = Character && Content = - ==> LOW_EFFECTIVENESS

RULE 21: ObjectType = Character && Content = j ==> LOW_EFFECTIVENESS

RULE 22: ObjectType = Character && Content = h && Distance = -99999.99--5.75 && Class

= Distance ==> LOW_EFFECTIVENESS

RULE 23: ObjectType = Token && Class = Distance ==> HIGH_EFFECTIVENESS

RULE 24: Default ==> LOW_EFFECTIVENESS

71

References

L. Asker and R. Maclin (1997) Feature engineering and classifier selection: A Case Study
in Venusian Volcano Detection. Proceedings of the 14th International Conference on
Machine Learning, pp. 3-11, Morgan Kaufmann.

H. Ade, L. de Raedt, and M. Bruynooghe (1995) Declarative Bias for Specific-to-General
ILP Systems. Machine Learning, 20, 63-94.

D. W. Aha and R. L. Bankert (1995) A comparative evaluation of sequential feature
selection algorithms. Proceedings of the Fifth International Workshop on Artificial
Intelligence and Statistics, pp. 1-7.

J. Baxter (1998) Theoretical Models of Learning to Learn. In Learning to Learn, S. Thrun,
and L. Pratt (eds.), pp. 71-94, Kluwer Academic Publishers.

C. E. Brodley (1995) Recursive Automatic Bias Selection for Classifier Construction.
Machine Learning, 20, 63-94.

S. W. Bennett, C. Aone, and C. Lovell (1997) Learning to Tag Multilingual Texts
Through Observation. Proceedings of the Second Conference on Empirical Methods in
Natural Language Processing, pp. 109-116.

M. E. Califf. (1998) Relational Learning Techniques for Natural Language Information
Extraction. Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin.

M. E. Califf and R. J. Mooney (1999) Relational learning of pattern-match rules for
information extraction. Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pp. 328-334.

C. Cardie (2000) A Cognitive Bias Approach to Feature Selection and Weighting for
Case-Based Learners. Machine Learning, 41, 85-116.

R. Caruana (1998) Multitask Learning. In Learning to Learn, S. Thrun, and L. Pratt (eds.),
pp. 95-133, Kluwer Academic Publishers.

P. K. Chan and S. J. Stolfo. (1993) Experiments on multistrategy learning by meta-
learning. In 2nd International Conference on Information and Knowledge Management.

P. K. Chan and S. J. Stolfo (1995) A Comparative Evaluation of Voting and Meta-
learning on Partitioned Data. Proceedings of the Twelfth International Conference on
Machine Learning, pp. 90-98, Morgan Kaufmann.

72

W. W. Cohen. (1990) An analysis of representation shift in concept learning. Proceedings
of the Seventh International Conference on Machine Learning, Austin, Morgan Kaufmann.

W. W. Cohen (1995) Fast effective rule induction. Proceedings of the Twelfth International
Machine Learning Conference, pp. 115-123.

DARPA (Ed.) (1992) Proceedings of the Fourther DARPA Message Understanding
Evaluation and Conference, San Mateo, CA. Morgan Kaufman.

P. Domingos and M. Pazzani (1996), Beyond independence: conditions for the optimality
of the simple Bayesian classifier. Proceedings of the Thirteenth International Conference on
Machine Learning, Morgan Kaufmann.

E. Frank and I. H. Witten (1998) Generating Accurate Rule Sets Without Global
Optimization. Proceedings of the Fifteenth International Conference on Machine Learning,
pp. 144-151, Morgan Kaufmann.

D. Freitag (1998a) Multistrategy learning for information extraction. In Proceedings of
the 15th International Conference on Machine Learning, pp. 161-169, Morgan Kaufmann.

D. Freitag (1998b) Toward general-purpose learning for information extraction. In
Proceedings of COLING/ACL-98.

J. Game (1999) Discriminant trees. Proceedings of the Sixteenth International Machine
Learning Conference, pp. 134-142.

D. F. Gordon and M. desJardins (1995) Evaluation and Selection of Biases in Machine
Learning. Machine Learning, 20, pp. 5-22.

R.D. King, C. Feng, and A. Shutherland. (1995) STATLOG: comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence, 9(3). May/June
1995, 259-287.

R. Kohavi and G. H. John (1998) The Wrapper Approach. In Feature Extraction,
Construction and Selection: A Data Mining Perspective, Huan Liu and Hiroshi Motoda (eds),
pp. 33-50.

R. Kohavi, P. Langley, & Y. Yun (1997) The utility of feature weighting in nearest-
neighbor algorithms. ECML-97.

D. Koller and M. Sahami (1996) Toward Optimal Feature Selection. Proceedings of the
Thirteenth International Conference on Machine Learning, pp. 284-292, Morgan Kaufmann.

G. John, R. Kohavi, and K. Pfeger (1994) Irrelevant features and subset selection
problem. Proceedngs of the Eleventh International Conference on Machine Learning.
Morgan Kaufmann.

73

A. McCallum, D. Freitag, and F. Pereira. (2000) Maximum entropy Markov models for
information extraction and segmentation. Proceedings of the Seventeenth International
Conference on Machine Learning, 2000.

A. McCallum and K. Nigam. (1998) A comparison of event models for Naive Bayes text
classification. AAAI-98 Workshop on Learning for Text Categorization, 1998.

G. A. Miller (1956) The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63, 81-97.

D. Mladenic, and M. Grobelnik (1999) Feature selection for unbalanced class distribution
and Naive Bayes. Proceedings of the sixteenth International Conference on Machine
Learning, pp. 258-267, Morgan Kaufmann.

I. Muslea. (1999) Extraction Patterns for Information Extraction Tasks: A Survey.
Workshop on Machine Learning for Information Extraction.

A. Y. Ng (1998) On Feature Selection: Learning with Exponentially many Irrelevant
Features as Training Examples. Proceedings of the Fifteenth International Conference on
Machine Learning.

B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. (2000) Meta-learning by landmarking
various learning algorithms. Proceedings of the Seventeenth International Conference on
Machine Learning, Morgan Kaufmann.

F. J. Provost and B. G. Buchanan (1995) Inductive policy: The pragmatics of bias
selection. Machine Learning, 20, 35-61.

E. Riloff and R. Jones (1999) Learning dictionaries for information extraction using
multi-level bootstrapping. Proceedings of the Sixteenth National Conference on Artificial
Intelligence, pp. 474-479.

A. Robins (1998) Transfer in Cognition. In Learning to Learn, S. Thrun, and L. Pratt (eds.),
pp. 45-67, Kluwer Academic Publishers.

D. L. Silver, and R. E. Mercer (1998) The Parallel Transfer of Task Knowledge Using
Dynamic Learning Rates Based on a Measure of Relatedness. In Learning to Learn, S.
Thrun, and L. Pratt (eds.), pp. 213-233, Kluwer Academic Publishers.

I. Stahl (1995) The Appropriateness of Predicate Invention as Bias Shift Operation in
ILP. Machine Learning, 20, 95-117.

S. Soderland. (1997) Learning to extract text-based information from the world wide
web. In Proceedings of Third International Conference on Knowledge Discovery and Data
Mining (KDD-97).

74

S. Soderland (1999) Learning information extraction rules for semi-structured and free
text. Machine Learning, 34, 233-272.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. (1995) Crystal: Inducing a conceptual
dictionary. Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pp. 1314-1319.

S. Thrun (1998) Lifelong Learning Algorithms. In Learning to Learn, S. Thrun, and L.
Pratt (eds.), pp. 181-209, Kluwer Academic Publishers.

S. Thrun and J. O'Sullivan (1998) Clustering Learning Tasks and the Selective Cross-
Task Transfer of Knowledge. In Learning to Learn, S. Thrun, and L. Pratt (eds.), pp. 235-
257, Kluwer Academic Publishers.

S. Thrun and L. Pratt (1998) Learning to learn: introduction and overview. In Learning to
Learn, S. Thrun, and L. Pratt (eds.), pp. 3-17, Kluwer Academic Publishers.

D. Wettschereck, D. W. Aha, and T. Mohri (1997) A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review, 11, 273-314. Also available as NCARAI Technical Report AIC-96-006

I. H. Witten and E. Frank (2000) Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann.

75

Vita

Noppadon Kamolvilassatian was born in Bangkok, Thailand, in 1978. He grew up in Hatyai,

a southern city of Thailand. He attended Sangthong-wittaya school for his elementary

education and later studied in Hatyai-wittayalai school for his secondary education. He

worked for his Bachelors of Computer Engineering degree at Prince of Songkla University.

All three institutions mentioned are in Hatyai, his hometown.

In addition to school English, he studied the language with native English speakers at an

extracurricular English center. Learning English there helped him break out of the pattern that

most university graduates in Thailand cannot communicate well in English. That language

learning experience has proved to be of tremendous value in his past, present, and future

endeavors.

After graduation with a Bachelor of Engineering degree in 1998, he taught at the department

he graduated from for two and a half years. During the time, he lectured on a number of

subjects to several hundred students, supervised the senior projects of 10 students, and helped

draft a new Bachelor’s curriculum. He also published a paper on computer-aided learning

based on his senior project and a book on electronic commerce.

In 2000, he came to the US to study for a Masters degree at the University of Texas at Austin.

The Fulbright scholarship generously supported him during this Masters study.

The most valuable knowledge he learned during this period are not specific details of the

subjects he studied, but knowledge of the US culture and people, research methodology, the

philosophy of science, and the value of friendships. Moreover, he discovered where his

personal interests and inclinations lie and understand better where he can contribute the most

to the world.

