
Appears in Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora (EMNLP/VLC-2000), pp.133-141, Hong Kong, October, 2000

Automated Construction of Database Interfaces: Integrating
Statistical and Relational Learning for Semantic Parsing

Lappoon R. Tang and Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712-1188
frupert,mooneyg@cs.utexas.edu

Abstract

The development of natural language inter-
faces (NLI's) for databases has been a chal-
lenging problem in natural language process-
ing (NLP) since the 1970's. The need for
NLI's has become more pronounced due to the
widespread access to complex databases now
available through the Internet. A challenging
problem for empirical NLP is the automated
acquisition of NLI's from training examples.
We present a method for integrating statisti-
cal and relational learning techniques for this
task which exploits the strength of both ap-
proaches. Experimental results from three dif-
ferent domains suggest that such an approach
is more robust than a previous purely logic-
based approach.

1 Introduction

We use the term semantic parsing to refer
to the process of mapping a natural language
sentence to a structured meaning representa-
tion. One interesting application of semantic
parsing is building natural language interfaces
for online databases. The need for such appli-
cations is growing since when information is
delivered through the Internet, most users do
not know the underlying database access lan-
guage. An example of such an interface that
we have developed is shown in Figure 1.
Traditional (rationalist) approaches to con-

structing database interfaces require an ex-
pert to hand-craft an appropriate semantic
parser (Woods, 1970; Hendrix et al., 1978).
However, such hand-crafted parsers are time
consuming to develop and su�er from prob-
lems with robustness and incompleteness even
for domain speci�c applications. Neverthe-
less, very little research in empirical NLP has
explored the task of automatically acquiring
such interfaces from annotated training ex-
amples. The only exceptions of which we
are aware are a statistical approach to map-

ping airline-information queries into SQL pre-
sented in (Miller et al., 1996), a probabilistic
decision-tree method for the same task de-
scribed in (Kuhn and De Mori, 1995), and
an approach using relational learning (a.k.a.
inductive logic programming, ILP) to learn a
logic-based semantic parser described in (Zelle
and Mooney, 1996).
The existing empirical systems for this task

employ either a purely logical or purely sta-
tistical approach. The former uses a deter-
ministic parser, which can su�er from some
of the same robustness problems as rational-
ist methods. The latter constructs a prob-
abilistic grammar, which requires supplying
a sytactic parse tree as well as a semantic
representation for each training sentence, and
requires hand-crafting a small set of contex-
tual features on which to condition the pa-
rameters of the model. Combining relational
and statistical approaches can overcome the
need to supply parse-trees and hand-crafted
features while retaining the robustness of sta-
tistical parsing. The current work is based
on the Chill logic-based parser-acquisition
framework (Zelle and Mooney, 1996), retain-
ing access to the complete parse state for mak-
ing decisions, but building a probabilistic re-
lational model that allows for statistical pars-
ing.

2 Overview of the Approach

This section reviews our overall approach
using an interface developed for a U.S.
Geography database (Geoquery) as a
sample application (Zelle and Mooney,
1996) which is available on the Web (see
http://www.cs.utexas.edu/users/ml/geo.html).

2.1 Semantic Representation

First-order logic is used as a semantic repre-
sentation language. Chill has also been ap-
plied to a restaurant database in which the
logical form resembles SQL, and is translated

Figure 1: Screenshots of a Learned Web-based NL Database Interface

automatically into SQL (see Figure 1). We
explain the features of the Geoquery repre-
sentation language through a sample query:

Input: \What is the largest city in Texas?"
Query: answer(C,largest(C,(city(C),loc(C,S),

const(S,stateid(texas))))).

Objects are represented as logical terms and
are typed with a semantic category using
logical functions applied to possibly ambigu-
ous English constants (e.g. stateid(Mississippi),

riverid(Mississippi)). Relationships between ob-
jects are expressed using predicates; for in-
stance, loc(X,Y) states that X is located in Y.
We also need to handle quanti�ers such

as `largest'. We represent these using meta-

predicates for which at least one argument is a
conjunction of literals. For example, largest(X,
Goal) states that the object X satis�es Goal
and is the largest object that does so, using
the appropriate measure of size for objects of
its type (e.g. area for states, population for
cities). Finally, an unspeci�ed object required
as an argument to a predicate can appear else-
where in the sentence, requiring the use of the
predicate const(X,C) to bind the variable X to
the constant C. Some other database queries
(or training examples) for the U.S. Geography
domain are shown below:

What is the capital of Texas?
answer(C,(capital(C,S),const(S,stateid(texas)))).

What state has the most rivers running through it?
answer(S,most(S,R,(state(S),river(R),traverse(R,S)))).

2.2 Parsing Actions

Our semantic parser employs a shift-reduce
architecture that maintains a stack of pre-
viously built semantic constituents and a
bu�er of remaining words in the input. The
parsing actions are automatically generated
from templates given the training data. The
templates are INTRODUCE, COREF VARS,
DROP CONJ, LIFT CONJ, and SHIFT. IN-
TRODUCE pushes a predicate onto the stack
based on a word appearing in the input and
information about its possible meanings in
the lexicon. COREF VARS binds two argu-
ments of two di�erent predicates on the stack.
DROP CONJ (or LIFT CONJ) takes a pred-
icate on the stack and puts it into one of the
arguments of a meta-predicate on the stack.
SHIFT simply pushes a word from the input
bu�er onto the stack. The parsing actions are
tried in exactly this order. The parser also
requires a lexicon to map phrases in the in-
put into speci�c predicates, this lexicon can
also be learned automatically from the train-
ing data (Thompson and Mooney, 1999).
Let's go through a simple trace of parsing

the request \What is the capital of Texas?"
A lexicon that maps `capital' to `capital(,)'
and `Texas' to `const(,stateid(texas))' suÆces

here. Interrogatives like \what" may be
mapped to predicates in the lexicon if neces-
sary. The parser begins with an initial stack
and a bu�er holding the input sentence. Each
predicate on the parse stack has an attached
bu�er to hold the context in which it was
introduced; words from the input sentence
are shifted onto this bu�er during parsing.
The initial parse state is shown below:

Parse Stack: [answer(,):[]]
Input Bu�er: [what,is,the,capital,of,texas,?]

Since the �rst three words in the input
bu�er do not map to any predicates, three
SHIFT actions are performed. The next is an
INTRODUCE as `capital' is at the head of
the input bu�er:

Parse Stack: [capital(,):[], answer(,):[the,is,what]]
Input Bu�er: [capital,of,texas,?]

The next action is a COREF VARS that
binds the �rst argument of capital(,) with
the �rst argument of answer(,).

Parse Stack: [capital(C,):[], answer(C,):[the,is,what]]
Input Bu�er: [capital,of,texas,?]

The next sequence of steps are two SHIFT's,
an INTRODUCE, and then a COREF VARS:

Parse Stack: [const(S,stateid(texas)):[],
capital(C,S):[of,capital],
answer(C,):[the,is,what]]

Input Bu�er: [texas,?]

The last four steps are two DROP CONJ's
followed by two SHIFT's:

Parse Stack: [answer(C, (capital(C,S),
const(S,stateid(texas)))):
[?,texas,of,capital,the,is,what]]

Input Bu�er: []

This is the �nal state and the logical query is
extracted from the stack.

2.3 Learning Control Rules

The initially constructed parser has no con-
straints on when to apply actions, and is
therefore overly general and generates numer-
ous spurious parses. Positive and negative ex-
amples are collected for each action by parsing
each training example and recording the parse
states encountered. Parse states to which an
action should be applied (i.e. the action leads
to building the correct semantic representa-
tion) are labeled positive examples for that
action. Otherwise, a parse state is labeled a

negative example for an action if it is a posi-
tive example for another action below the cur-
rent one in the ordered list of actions. Control
conditions which decide the correct action for
a given parse state are learned for each action
from these positive and negative examples.
The initial Chill system used ILP (Lavrac

and Dzeroski, 1994) to learn Prolog control
rules and employed deterministic parsing, us-
ing the learned rules to decide the appropriate
parse action for each state. The current ap-
proach learns a model for estimating the prob-
ability that each action should be applied to
a given state, and employs statistical parsing
(Manning and Sch�utze, 1999) to try to �nd
the overall most probable parse, using beam
search to control the complexity. The advan-
tage of ILP is that it can perform induction
over the logical description of the complete
parse state without the need to pre-engineer a
�xed set of features (which vary greatly from
one domain to another) that are relevant to
making decisions. We maintain this advan-
tage by using ILP to learn a committee of
hypotheses, and basing probability estimates
on a weighted vote of them (Ali and Pazzani,
1996). We believe that using such a proba-

bilistic relational model (Getoor and Jensen,
2000) combines the advantages of frameworks
based on �rst-order logic and those based on
standard statistical techniques.

3 The Tabulate ILP Method

This section discusses the ILP method used to
build a committee of logical control hypothe-
ses for each action.

3.1 The Basic Tabulate Algorithm

Most ILP methods use a set-covering method
to learn one clause (rule) at a time and con-
struct clauses using either a strictly top-down
(general to speci�c) or bottom-up (speci�c to
general) search through the space of possi-
ble rules (Lavrac and Dzeroski, 1994). Tab-

ulate,1 on the other hand, employs both
bottom-up and top-down methods to con-
struct potential clauses and searches through
the hypothesis space of complete logic pro-
grams (i.e. sets of clauses called theories). It
uses beam search to �nd a set of alternative
hypotheses guided by a theory evaluation met-
ric discussed below. The search starts with

1
Tabulate stands for Top-down And Bottom-Up

cLAuse construction with Theory Evaluation.

Procedure Tabulate
Input:
t(X1; : : : ; Xn): the target concept to learn
�+: the � examples
��: the 	 examples
Output:
Q: a queue of learned theories

Theory0 := fE j E 2 �+g /* the initial theory */
T (N0) := Theory0 /* theory of node N0 */
C(N0) := empty /* the clause being built */
Q := [N0] /* the search queue */
Repeat

CQ := ;
For each search node Ni 2 Q Do

If C(Ni) = empty or C(Ni) = fail Then
Pairs := sampling of S pairs of clauses from T (Ni)
Find LGG G in Pairs with the greatest cover in �+

Ri := Re�ne Clause(t(X1; : : : ; Xn)) [
Re�ne Clause(G)

Else

Ri := Re�ne Clause(C(Ni))
End If

If Ri = ; Then
CQi := fhT (Ni); failig

Else

CQi := fhComplete(T (Ni); Gj ; �
+); nextji j

for each Gj 2 Ri, nextj = empty if Gj

satis�es the noise criteria; otherwise, Gjg
End If

CQ := CQ [CQi

End For

Q := the B best nodes from Q [CQ
ranked by metric M

Until termination-criteria-satis�ed
Return Q
End Procedure

Figure 2: The Tabulate algorithm

the most speci�c hypothesis (the set of posi-
tive examples each represented as a separate
clause). Each iteration of the loop attempts
to re�ne each of the hypotheses in the current
search queue. There are two cases in each it-
eration: 1) an existing clause in a theory is
re�ned or 2) a new clause is begun. Clauses
are learned using both top-down specializa-
tion using a method similar to Foil (Quin-
lan, 1990) and bottom-up generalization using
Least General Generalizations (LGG's). Ad-
vantages of combining both ILP approaches
were explored in Chillin (Zelle and Mooney,
1994), an ILP method which motivated the
design of Tabulate. An outline of the Tab-
ulate algorithm is given in Figure 2.
A noise-handling criterion is used to de-

cide when an individual clause in a hypoth-
esis is suÆciently accurate to be permanently

retained. There are three possible outcomes
in a re�nement: 1) the current clause satis�es
the noise-handling criterion and is simply re-
turned (nextj is set to empty), 2) the current
clause does not satisfy the noise-handling cri-
teria and all possible re�nements are returned
(nextj is set to the re�ned clause), and 3)
the current clause does not satisfy the noise-
handling criterion but there are no further re-
�nements (nextj is set to fail). If the re�ne-
ment is a new clause, clauses in the current
theory subsumed by it are removed. Oth-
erwise, it is a specialization of an existing
clause. Positive examples that are not cov-
ered by the resulting theory, due to special-
izing the clause, are added back into theory
as individual clauses. Hence, the theory is al-
ways maintained complete (i.e. covering all
positive examples). These �nal steps are per-
formed in the Complete procedure.

The termination criterion checks for two
conditions. The �rst is satis�ed if the next
search queue does not improve the sum of
the metric score over all hypotheses in the
queue. Second, there is no clause currently
being built for each theory in the search queue
and the last �nished clause of each theory sat-
is�es the noise-handling criterion. Finally, a
committee of hypotheses found by the algo-
rithm is returned.

3.2 Compression and Accuracy

The goal of the search is to �nd accurate
and yet simple hypotheses. We measure accu-
racy using the m-estimate (Cestnik, 1990), a
smoothed measure of accuracy on the training
data which in the case of a two-class problem
is de�ned as:

accuracy(H) =
s+m � p+

n+m
(1)

where s is the number of positive examples
covered by the hypothesis H, n is the total
number of examples covered, p+ is the prior
probability of the class �, and m is a smooth-
ing parameter.

We measure theory complexity using a met-
ric similar to that introduced in (Muggleton
and Buntine, 1988). The size of a Clause hav-
ing a Head and a Body is de�ned as follows
(ts=\term size" and ar=\arity"):

size(Clause) = 1+ ts(Head)+ ts(Body) (2)

ts(T) =

8><
>:

1 T is a variable

2 T is a constant

2 +
Par(T)

i=1 ts(argi(T)) otherwise.

(3)
The size of a clause is roughly the number of
variables, constants, or predicate symbols it
contains. The size of a theory is the sum of
the sizes of its clauses. The metricM(H) used
as the search heuristic is de�ned as:

M(H) =
accuracy(H) + C

log2 size(H)
(4)

where C is a constant used to control the rel-
ative weight of accuracy vs. complexity. We
assume that the most general hypothesis is as
good as the most speci�c hypothesis; thus, C
is determined to be:

C =
EbSt �EtSb

Sb � St
(5)

where Et; Eb are the accuracy estimates of the
most general and most speci�c hypotheses re-
spectively, and St; Sb are their sizes.

3.3 Noise Handling

A clause needs no further re�nement when it
meets the following criterion (as in Ripper

(Cohen, 1995)):

p� n

p+ n
> � (6)

where p is the number of positive examples
covered by the clause, n is the number of neg-
ative examples covered and �1 � � � 1 is a
parameter. The value of � is decreased when-
ever the sum of the metric over the hypotheses
in the queue does not improve although some
of them still have un�nished or failed clauses.

4 Statistical Semantic Parsing

4.1 The Parsing Model

A parser is a relation Parser � Sentences �
Queries where Sentences and Queries are
the sets of natural language sentences and
database queries respectively. Given a sen-
tence l 2 Sentences, the set Q(l) = fq 2
Queries j hl; qi 2 Parserg is the set of queries
that are correct interpretations of l.
A parse state consists of a stack of lexical-

ized predicates and a list of words from the
input sentence. S is the set of states reach-
able by the parser. Suppose our learned parser
has n di�erent parsing actions, the ith ac-
tion ai is a function ai(s) : ISi ! OSi where

ISi � S is the set of states to which the ac-
tion is applicable and OSi � S is the set of
states constructed by the action. The function
a0(l) : Sentences! IniS maps each sentence l
to a corresponding unique initial parse state in
IniS � S. A state is called a �nal state if there
exists no parsing action applicable to it. The
partial function an+1(s) : FS ! Queries is
de�ned as the action that retrieves the query
from the �nal state s 2 FS � S if one exists.
Some �nal states may not \contain" a query
(e.g. when the parse stack contains predicates
with unbound variables) and therefore it is a
partial function. When the parser meets such
a �nal state, it reports a failure.
A path is a �nite sequence of parsing ac-

tions. Given a sentence l, a good state s is
one such that there exists a path from it to a
query q 2 Q(l). Otherwise, it is a bad state.
The set of parse states can be uniquely divided
into the set of good states and the set of bad
states given l and Parser. S+ and S� are the
sets of good and bad states respectively.
Given a sentence l, the goal is to construct

the query q̂ such that

q̂ = argmax
q

P (q 2 Q(l) j l) q) (7)

where l) q means a path exists from l to q.
Now, we need to estimate P (q 2 Q(l) j l)

q). First, we notice that:

P (q 2 Q(l) j l) q) = (8)

P (s 2 FS+ j l) s and an+1(s) = q)

where FS+ = FS \ S+. For notational con-
venience we drop the conditions and denote
the above probabilities as P (q 2 Q(l)) and
P (s 2 FS+) respectively, assuming these con-
ditions in the following discussion. The equa-
tion states that the probability that a given
query is a correct meaning for l is the same as
the probability that the �nal state (reached
by parsing l) is a good state. We need to de-
termine in general the probability of having a
good resulting parse state. Given any parse
state sj at the jth step of parsing and an ac-
tion ai such that sj+1 = ai(sj), we have:

P (sj+1 2 OS+i) = (9)

P (sj+1 2 OS+
i j sj 2 IS+

i)P (sj 2 IS+
i) +

P (sj+1 2 OS+
i j sj 62 IS+

i)P (sj 62 IS+
i)

where IS+i = ISi \ S+ and OS+i = OSi \ S+.
Since no parsing action can produce a good

parse state from a bad one, the second term
is zero. Now, we are ready to derive P (q 2
Q(l)). Suppose q = an+1(sm), we have:

P (q 2 Q(l)) (10)

= P (sm 2 FS+)

� � �

= P (sm 2 FS+ j sm�1 2 IS+am�1) : : :

P (sj 2 OS+aj�1 j sj�1 2 IS+aj�1) : : :

P (s2 2 OS+a1 j s1 2 IS+a1)P (s1 2 IS+a1)

where ak denotes the index of which action
is applied at the kth step. We assume that

 = P (s1 2 IS+a1) 6= 0 (which may not be true
in general). Now, we have

P (q 2 Q(l)) =

m�1Y
j=1

P (sj+1 2 OS+aj j sj 2 IS+aj):

(11)
Next we describe how we estimate the proba-
bility of the goodness of each action in a given
state (P (ai(s) 2 OS+i j s 2 IS+i)). We need
not estimate
 since its value does not a�ect
the outcome of equation (7).

4.2 Estimating Probabilities for
Parsing Actions

The committee of hypotheses learned by Tab-
ulate is used to estimate the probability that
a particular action is a good one to apply to a
given parse state. Some hypotheses are more
\important" than others in the sense that they
carry more weight in the decision. A weight-
ing parameter is also included to lower the
probability estimate of actions that appear
further down the decision list. For actions ai
where 1 � i � n� 1:

P (ai(s) 2 OS+i j s 2 IS+i) = (12)

�pos(i)�1
X

hk2Hi

�kP (ai(s) 2 OS+i j hk)

where s is a given parse state, pos(i) is the
position of the action ai in the list of ac-
tions applicable to state s, �k and 0 < � �
1 are weighting parameters,2 Hi is the set
of hypotheses learned for the action ai, andP

k �k = 1.
To estimate the probability for the last ac-

tion an, we devise a simple test that checks
if the maximum of the set A(s) of proba-
bility estimates for the subset of the actions

2� is set to 0.95 for all the experiments performed.

fa1; : : : ; an�1g applicable to s is less than or
equal to a threshold �. If A(s) is empty, we
assume the maximum is zero. More precisely,

P (an(s) 2 OS+n j s 2 IS+n) = (13)8<
:

c(an(s)2OS
+

n)

c(s2IS
+

n)
if max(A(s)) � �

0 otherwise

where � is the threshold,3 c(an(s) 2 OS+n) is
the count of the number of good states pro-
duced by the last action, and c(s 2 IS+n) is the
count of the number of good states to which
the last action is applicable.
Now, let's discuss how P (ai(s) 2 OS+i j hk)

and �k are estimated. If hk j= s (i.e. hk covers
s), we have

P (ai(s) 2 OS+i j hk) =
pc + � � nc
pc + nc

(14)

where pc and nc are the number of positive
and negative examples covered by hk respec-
tively. Otherwise, if hk 6j= s (i.e. hk does not
cover s), we have

P (ai(s) 2 OS+i j hk) =
pu + � � nu
pu + nu

(15)

where pu and nu are the number of positive
and negative examples rejected by hk respec-
tively. � is the probability that a negative
example is mislabelled and its value can be
estimated given � (in equation (6)) and the
total number of positive and negative exam-
ples.
One could use a variety of linear combina-

tion methods to estimate the weights �k (e.g.
Bayesian combination (Buntine, 1990)). How-
ever, we have taken a simple approach and
weighted hypotheses based on their relative
simplicity:

�k =
size(hk)

�1

PjHij
j=1 size(hj)

�1
: (16)

4.3 Searching for a Parse

To �nd the most probably correct parse, the
parser employs a beam search. At each step,
the parser �nds all of the parsing actions ap-
plicable to each parse state on the queue and
calculates the probability of goodness of each
of them using equations (12) and (13). It then

3The threshold is set to 0.5 for all the experiments
performed.

computes the probability that the resulting
state of each possible action is a good state
using equation (11), sorts the queue of possi-
ble next states accordingly, and keeps the best
B options. The parser stops when a complete
parse is found on the top of the parse queue
or a failure is reported.

5 Experimental Results

5.1 The Domains

Three di�erent domains are used to demon-
strate the performance of the new approach.
The �rst is the U.S. Geography domain.
The database contains about 800 facts about
U.S. states like population, area, capital city,
neighboring states, major rivers, major cities,
and so on. A hand-crafted parser, Geobase
was previously constructed for this domain as
a demo product for Turbo Prolog. The second
application is the restaurant query system il-
lustrated in Figure 1. The database contains
information about thousands of restaurants
in Northern California, including the name of
the restaurant, its location, its specialty, and a
guide-book rating. The third domain consists
of a set of 300 computer-related jobs automat-
ically extracted from postings to the USENET
newsgroup austin.jobs. The database con-
tains the following information: the job title,
the company, the recruiter, the location, the
salary, the languages and platforms used, and
required or desired years of experience and de-
grees.

5.2 Experimental Design

The geography corpus contains 560 questions.
Approximately 100 of these were collected
from a log of questions submitted to the web
site and the rest were collected in studies in-
volving students in undergraduate classes at
our university. We also included results for the
subset of 250 sentences originally used in the
experiments reported in (Zelle and Mooney,
1996). The remaining questions were specif-
ically collected to be more complex than the
original 250, and generally require one or more
meta-predicates. The restaurant corpus con-
tains 250 questions automatically generated
from a hand-built grammar constructed to re-

ect typical queries in this domain. The job
corpus contains 400 questions automatically
generated in a similar fashion. The beam
width for Tabulate was set to �ve for all the
domains. The deterministic parser used only
the best hypothesis found. The experiments

were conducted using 10-fold cross validation.
For each domain, the average recall (a.k.a.

accuracy) and precision of the parser on dis-
joint test data are reported where:

Recall =
of correct queries produced

of test sentences

Precision =
of correct queries produced

of complete parses produced
:

A complete parse is one which contains an ex-
ecutable query (which could be incorrect). A
query is considered correct if it produces the
same answer set as the gold-standard query
supplied with the corpus.

5.3 Results

The results are presented in Table 1 and Fig-
ure 3. By switching from deterministic to
probabilistic parsing, the system increased the
number of correct queries it produced. Re-
call increases almost monotonically with pars-
ing beam width in most of the domains. Im-
provement is most apparent in the Jobs do-
main where probabilistic parsing signi�cantly
outperformed the deterministic system (80%
vs 68%). However, using a beam width of
one (and thus the probabilistic parser picks
only the best action) results in worse perfor-
mance than using the original purely logic-
based deterministic parser. This suggests that
the probability esitmates could be improved
since overall they are not indicating the sin-
gle best action as well as a non-probabilistic
approach. Precision of the system decreased
with beam width, but not signi�cantly except
for the larger Geography corpus. Since the
system conducts a more extensive search for
a complete parse, it risks increasing the num-
ber of incorrect as well as correct parses. The
importance of recall vs. precision depends on
the relative cost of providing an incorrect an-
swer versus no answer at all. Individual ap-
plications may require emphasizing one or the
other.
All of the experiments were run on a

167MHz UltraSparc work station under Sic-
stus Prolog. Although results on the parsing
time of the di�erent systems are not formally
reported here, it was noted that the di�erence
between using a beam width of three and the
original system was less than two seconds in
all domains but increased to around twenty
seconds when using a beam width of twelve.
However, the current Prolog implementation
is not highly optimized.

Parsers n Corpora Geo250 Geo560 Jobs400 Rest250
R P R P R P R P

Prob-Parser(12) 80.40 88.16 71.61 78.94 80.50 86.56 99.20 99.60
Prob-Parser(8) 79.60 86.90 71.07 79.76 78.75 86.54 99.20 99.60
Prob-Parser(5) 78.40 87.11 70.00 79.51 74.25 86.59 99.20 99.60
Prob-Parser(3) 77.60 87.39 69.11 79.30 70.50 87.31 99.20 99.60
Prob-Parser(1) 67.60 90.37 62.86 82.05 34.25 85.63 99.20 99.60

Tabulate 75.60 92.65 69.29 89.81 68.50 87.54 99.20 99.60
Original Chill 68.50 97.65 || || ||

Hand-Built Parser 56.00 96.40 || || ||

Table 1: Results For All Domains: R = % Recall and P = % Precision. Prob-Parser(B) is
the probabilistic parser using a beam width of B. Tabulate is Chill using the Tabulate
induction algorithm with deterministic parsing.

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

%
 R

ec
al

l

Beam Size

Geo250
Geo560
Jobs400
Rest250

75

80

85

90

95

100

0 2 4 6 8 10 12

%
 P

re
ci

si
on

Beam Size

Geo250
Geo560
Jobs400
Rest250

Figure 3: The recall and precision of the parser using various beam widths in the di�erent
domains

While there was an overall improvement in
recall using the new approach, its performance
varied signi�cantly from domain to domain.
As a result, the recall did not always improve
dramatically by using a larger beam width.
Domain factors possibly a�ecting the perfor-
mance are the quality of the lexicon, the rel-
ative amount of data available for calculat-
ing probability estimates, and the problem of
\parser incompleteness" with respect to the
test data (i.e. there is not a path from a sen-
tence to a correct query which happens when

 = 0). The performance of all systems were
basically equivalent in the restaurant domain,
where they were near perfect in both recall
and precision. This is because this corpus is
relatively easier given the restricted range of
possible questions due to the limited informa-
tion available about each restaurant. The sys-
tems achieved > 90% in recall and precision
given only roughly 30% of the training data
in this domain. Finally, Geobase performed

the worst on the original geography queries,
since it is diÆcult to hand-craft a parser that
handles a suÆcient variety of questions.

6 Conclusion

A probabilistic framework for semantic shift-
reduce parsing was presented. A new ILP
learning system was also introduced which
learns multiple hypotheses. These two tech-
niques were integrated to learn semantic
parsers for building NLI's to online databases.
Experimental results were presented that
demonstrate that such an approach outper-
forms a purely logical approach in terms of
the accuracy of the learned parser.

7 Acknowledgements

This research was supported by a grant from
the Daimler-Chrysler Research and Technol-
ogy Center and by the National Science Foun-
dation under grant IRI-9704943.

References

K. Ali and M. Pazzani. 1996. Error reduction
through learning multiple descriptions. Ma-
chine Learning Journal, 24:3:100{132.

W. Buntine. 1990. A theory of learning classi�ca-
tion rules. Ph.D. thesis, University of Technol-
ogy, Sydney, Australia.

B. Cestnik. 1990. Estimating probabilities: A cru-
cial task in machine learning. In Proceedings of
the Ninth European Conference on Arti�cial In-
telligence, pages 147{149, Stockholm, Sweden.

W. W. Cohen. 1995. Fast e�ective rule induc-
tion. In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, pages
115{123.

L. Getoor and D. Jensen, editors. 2000. Papers
from the AAAI Workshop on Learning Statis-
tical Models from Relational Data, Austin, TX.
AAAI Press.

G. G. Hendrix, E. Sacerdoti, D. Sagalowicz, and
J. Slocum. 1978. Developing a natural language
interface to complex data. ACM Transactions
on Database Systems, 3(2):105{147.

R. Kuhn and R. De Mori. 1995. The application of
semantic classi�cation trees to natural language
understanding. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(5):449{
460.

N. Lavrac and S. Dzeroski. 1994. Inductive Logic
Programming: Techniques and Applications.
Ellis Horwood.

C. D. Manning and H. Sch�utze. 1999. Founda-
tions of Statistical Natural Language Process-
ing. MIT Press, Cambridge, MA.

Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical ap-
proach to natural language interfaces. In Pro-
ceedings of the 34th Annual Meeting of the As-
sociation for Computational Linguistics, pages
55{61, Santa Cruz, CA.

S. Muggleton and W. Buntine. 1988. Machine
invention of �rst-order predicates by inverting
resolution. In Proceedings of the Fifth Interna-
tional Conference on Machine Learning, pages
339{352, Ann Arbor, MI, June.

J. R. Quinlan. 1990. Learning logical de�nitions
from relations. Machine Learning, 5(3):239{
266.

C. A. Thompson and R. J. Mooney. 1999. Au-
tomatic construction of semantic lexicons for
learning natural language interfaces. In Pro-
ceedings of the Sixteenth National Conference
on Arti�cial Intelligence, pages 487{493, Or-
lando, FL, July.

W. A. Woods. 1970. Transition network gram-
mars for natural language analysis. Communi-
cations of the Association for Computing Ma-
chinery, 13:591{606.

J. M. Zelle and R. J. Mooney. 1994. Combin-
ing top-down and bottom-up methods in induc-

tive logic programming. In Proceedings of the
Eleventh International Conference on Machine
Learning, pages 343{351, New Brunswick, NJ,
July.

J. M. Zelle and R. J. Mooney. 1996. Learning
to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth
National Conference on Arti�cial Intelligence,
pages 1050{1055, Portland, OR, August.

