Ph.D. Proposal, Department of Computer Sciences,
University of Texas at Austin, May 2000

Integrating Statistical and Relational Learning for Semantic
Parsing: Applications to Learning Natural Language
Interfaces for Databases

Lappoon R. Tang
Department of Computer Sciences
University of Texas
2.124 Taylor Hall
Austin, TX 78712
rupert@cs.utexas.edu

Supervising Professor: Dr. Raymond J. Mooney

May 3, 2000

Abstract

The development of natural language interfaces (NLIs) for databases has been an
interesting problem in natural language processing since the 70’s. The need for NLIs
has become more pronounced given the widespread access to complex databases now
available through the Internet. However, such systems are difficult to build and must be
tailored to each application. A current research topic involves using machine learning
methods to automate the development of NLI’s. This proposal presents a method for
learning semantic parsers (systems for mapping natural language to logical form) that
integrates logic-based and probabilistic methods in order to exploit the complementary
strengths of these competing approaches. More precisely, an inductive logic program-
ming (ILP) method, TABULATE, is developed for learning multiple models that are
integrated via linear weighted combination to produce probabilistic models for statisti-
cal semantic parsing. Initial experimental results from three different domains suggest
that an integration of statistical and logical approaches to semantic parsing can out-
perform a purely logical approach. Future research will further develop this integrated
approach and demonstrate its ability to improve the automated development of NLI’s.

1 Introduction

Semantic parsing refers to the process of mapping a natural language input (a sentence) to
some structured meaning representation which is suitable for manipulation by a machine
(Allen, 1995). For example, in building a natural language interface (NLI) for a commercial
database, one may want to map a user data request expressed in a natural language to the
underlying database access language like SQL. The target query which is expressed in SQL,
in this case, would serve as the meaning representation for the user request. The choice
of a semantic representation language is entirely domain dependent since as of now there
has not been developed a “univeral” semantic representation language which is expressive
enough to handle the world of possible meaning structures. Semantic parsing is a difficult
problem in natural language processing (NLP) since anyone who attempts to approach it
would necessarily have to tackle the very difficult task of natural language understanding.

Let’s begin the discussion in this proposal with two important questions: 1) Why do
we care about semantic parsing? and 2) Why do we care about empirical or statistical
approaches for this problem?

First, semantic parsing has been an interesting problem in NLP as it would very likely be
part of any interesting NLP applications, particularly those that would require translation
of a natural language input to a specific command. Research in semantic parsing with a
focus on developing natural language interfaces for database querying started in the 70’s
(Woods, 1970; Waltz, 1978) and carries on to the 90’s (Miller, Stallard, Bobrow, & Schwartz,
1996; Zelle, 1995; Kuhn & De Mori, 1995). With the advent of the “information age”, the
availabilty of such applications would definitely widen the “information delivery bottleneck”.
Online database access in natural languages makes information available to users who do not
necessarily possess the knowledge of the underlying database access language and therefore
makes information a lot more accessible. One great potential impact would be on the utility
of the World Wide Web where information could be delivered through NLIs implemented as
Web pages. The success of semantic parsing techiques would definitely be the cornerstone
of a prospering development of such interesting applications.!

Second, there has been a resurgence of statistical or empirical approaches to natural
language processing since the late 1980’s. The success of such approaches in areas like
speech recognition (Rabiner, 1989; Bahl, Jelinek, & Mercer, 1983), part-of-speech tagging
(Charniak, Hendrickson, Jacobson, & Perkowitz, 1993), syntactic parsing (Ratnaparkhi,
1999; Manning & Carpenter, 1997; Charniak, 1996; Collins, 1997; Pereira & Shabes, 1992),
and text or discourse segmentation (Litman, 1996) is evidential. In fact, it has been coined
a “revolution” within the NLP community (Hirschberg, 1998). There are reasons why such
approaches have experienced a resurgence: 1) the success in information and networking
technology has made large volumes of real world corpora of text available (which could serve
the role of “raw data” in any empirical approach) and 2) empirical approaches have proven
successful to develop systems that satisfy some of the desirable properties of an NLP appli-
cation, namely a) acquisition, automatically acquiring knowledge (domain specific or not)
that would be necessary for the task, b) coverage, handling the potentially wide range of pos-
sibilities that could arise in the application, c) robustness, accommodating real data which

'Even though building NLIs to databases is being emphasized here, we by no means imply that it would
be the only important application of semantic parsing.

may not be “perfect” (like having noise) and still being able to perform reasonably well,
d) portability, easily applicable to a different task in a new domain (Armstrong-Warwick,
1993).

While statistical approaches to parsing bear the mentioned advantages, most existing
methods (especially in syntactic parsing) use a hand-crafted set of contextual features on
which probabilistic parsing models are built. The CHILL system (Zelle, 1995) represents
an approach to learning relevant contextual information (represented as relational knowl-
edge) for the task of disambiguation given complete contexts (i.e. the entire parse state)
instead of relying on handcrafting features for parsing. However, the original system builds
a deterministic parser organized as a decision list; the first parsing action applicable to the
current parse state is selected and applied. One problem of using such a parser is that one
misapplied parsing action corrupts the entire parse and no meaningful parse can possibly
be constructed. A parsing action could be wrongly chosen due to an over generalization of
the control rule learned for the misapplied action (which happens to appear before the right
parsing action) or an over specialization for the control rule of the right parsing action (or
both). To overcome these robustness problems and yet retain advantages of a (relational)
learning approach to parsing, we propose to build a probabilistic framework for the task
and integrate inductive logic programming (ILP) (the learning method in CHILL) with sta-
tistical learning techniques for learning probabilistic semantic parsers. The remainder of
the proposal is organized as follows. Section 2 provides a brief overview of research work
on semantic and statistical parsing, an overview of CHILL and the working of the parser
employed, some background on inductive logic programming, and a brief overview of in-
tegrating statistical and relational methods for learning. Section 3 explains the new ILP
learning algorithm used for CHILL and how it can be used to learn multiple models. Sec-
tion 4 describes the probabilistic parsing framework and how multiple learned models found
by the ILP algorithm can be integrated with statistical techniques to produce probabilistic
models for learning the semantic parser. Section 5 presents preliminary experimental re-
sults on the new approach followed by a discussion of them. Section 6 discusses some of the
possible future work that could be explored on the current framework. Section 7 provides
a brief discussion of related work. Finally, we will summarize and present our conclusions
in Section 8.

2 Background

2.1 Semantic Parsing

The early work on semantic parsing can be dated back to the 70’s (Reeker, 1976; Siklossy,
1972) with emphasis on discovering learning mechanism for language acquisition and cog-
nitive modelling of human language learning. While some focused on cognitive modelling
of language acquisition, others focused on building realistic NLP applications.

Traditional NLP approaches to tackling tasks like building NLIs for databases include
augmented transition networks (Woods, 1970) which operationalize context-free grammars
for producing semantic representations, semantic grammars (Hendrix, Sacerdoti, Sagalow-
icz, & Slocum, 1978; Brown & Burton, 1975) which are context-free grammars in which
non-terminals are used to represent domain specific concepts (instead of syntactic cate-

gories), and logic grammars (Abramson & Dahl, 1989; Warren & Pereira, 1982) which
encode linguistic dependencies and structure building operations using logical unification.

Traditional (rationalist) approaches to constructing semantic parsers very often involve
hand-crafting of expert knowledge represented as rules (maybe with limited automation).
However, hand-crafted parsers suffer from problems with robustness and incompleteness,
even for domain specific applications. As the task scales up in size, hand-crafting becomes
more and more difficult which is the so-called problem of knowledge engineering bottleneck
that exists in many interesting AI domains. This results in applications that are time-
consuming to build and yet perform poorly — incomplete, inefficient, and brittle.

More recent approaches, therefore, have shifted from this knowledge-engineering per-
spective to a more empirical based paradigm where parsers are constructed through learning
algorithms which use a large corpus of training data. For instance, Miller (1995) presents
a statistical approach to the task of mapping flight information requests (in English) to
SQL which could be used to access the relevant flight information. The frame (or semantic)
representation for a given parse tree of the user request which can be further transformed
into an SQL is choosen based on statistics collected from training data. A method based
on semantic classification trees for parser construction is described in (Kuhn & De Mori,
1995). The classification trees which are used for semantic interpretation are learned from
a corpus of training data. Zelle (1995) employs inductive logic programming techniques to
learn control rules to “specialize” the parser acquired by the CHILL system. We will provide
a more thorough discussion of CHILL in Section 2.3 and the two other mentioned systems
in Section 7.

2.2 Statistical Parsing

The emergence of statistical approaches to parsing natural languages was largely influenced
by the success of using statistical techniques based on hidden Markov models (HMMs) in
the area of speech processing (Rabiner, 1989; Bahl et al., 1983). The use of corpus-based
learning where a statistical model is learned from a large corpus of annotated text has
proven to be very successful (as far as performance is concerned) in part-of-speech (POS)
tagging, a task that involves assigning appropriate lexical categories (like noun, verb or
article) to the words of a sentence. The level of accuracy was close to even that of human
beings (Merialdo, 1994; Charniak et al., 1993; Church, 1988). The influence of corpus-based
statistical approach is not only apparent in POS tagging. In syntactic parsing, probabilis-
tic context-free grammars (PCFGs) (Charniak, 1996), probabilistic left-corner grammars
(PLCGs) (Manning & Carpenter, 1997), dependency grammars (Collins, 1996), and more
recently mazimum entropy models (Ratnaparkhi, 1999) have been developed for the task
of building syntactic trees for sentences. We are going to briefly describe some of the key
ideas behind statistical parsing here.

In probabilistic parsing, one is to build a probabilistic language model for the language
which could be used to rank the different possible parse trees for a given sentence. Intu-
itively, the idea of building a language model is that given a generative grammar G which
is assumed to be capable of generating all the sentences s in the language £, one can build
a probabilistic model P(¢, s|G) for all the parse trees where ¢ is a parse tree resulting from
parsing a sentence s € L using the grammar G. Since the grammar is assumed to be

Database Category Database Objects
City cityid(austin,tx)
State stateid(mississippi)
River riverid(mississippi)
Place placeid(’death valley’)

Table 1: Sample of objects and categories in the Geography database

generative, one can estimate the probability for each derivational rule in the grammar and
calculate the probability of a parse tree using these estimates. Normally, one could have a
large amount of different parse trees for the same sentence and a heuristic beam search is
used to find the most probable parse tree ¢ such that

t = argmax; P(t,s | G). (1)

The estimation of the probability of each grammar rule usually relies on some hand-
crafted contextual features (except, of course, for a probabilistic context free grammar). For
instance, in a probabilistic left-corner grammar, the left-corner (syntactic) category and the
goal category of the parse tree are used to decide whether a particular grammar rule should
be applied or not.

2.3 Overview of CHILL

Since we will discuss the statistical model we are going to develop for the parser used by
CHILL, we will provide a detailed discussion of the system here to explain the working
of the parser and how contextual information can be learned and utilized for the parsing
operators. The natural language interface developed for a U.S. Geography database is used
as an example application here.? Further details on the system can be found in (Zelle,
1995).

The (syntactic) structure of a sentence is not enough to express its meaning. For in-
stance, the NP the catch can have different meanings depending on whether one is talking
about a baseball game or a fishing expedition. To talk about different possible readings
of the phrase the catch, one therefore has to define each specific sense of the phrase. The
representation of the context-independent meaning of a sentence is called its logical form
(Allen, 1995).

Database items can be ambiguous when the same item is listed under more than one
attribute (i.e. a column in a relational database). For example, the term “Mississippi” is
ambiguous between being a river name or a state name, in other words, two different logical
forms, in our U.S. Geography database. The two different senses have to be represented
distinctly for an interpretation of a user query. Databases are usually accessed by some well
defined structured languages, for instance, SQL. These languages bear certain characteristics
similar to that of logic in that they require the expression of quantification of variables (the

*Tt is available via http://www.cs.utexas.edu/users/ml/geo.html.

Predicates Description
city(C) C is a city
capital(S,C) C is the capital of state S
density(S,D) | D is the population density of state S
loc(X,Y) X is located in Y
len(R,L) L is the length of river R
next_to(S51,52) | state S1 borders S2
traverse(R,S) | river R traverses state S

Table 2: Sample of predicates of interest for a database access

attributes in a database) and the notion of logical operations® on them. The different pieces
of information in a database may also be related to each other and this relational knowledge
could be useful for constructing the parser. First order logic, therefore, becomes our choice
of knowledge representation framework for these logical forms of all the database objects,
relations and any other information related to representing the meaning of a user query.
However, it is not the case that the parser used in CHILL can only work with a strictly
logical representation. The choice of a representational scheme is flexible. For instance,
CHILL is also applied to a database containing facts about Northern California restaurants
and the semantic representation scheme resembles SQL. Some examples of the semantic
representation of database items of the U.S. Geography database are shown in Table 1.

We will briefly describe the language used for representing the meaning of a natural
language query, the parsing framework employed, and the approach that is taken in CHILL
for parser acquisition.

2.3.1 Semantic Representation and the Query Language

The most basic constructs of the representation language are the terms used to describe
objects in the database and the basic relations between them. Some examples of objects of
interest in the domain are states, cities, rivers and places. We have given semantic categories
to these objects. For instance, stateid(texas) represents the database item texas as an object
of the database category state. Of course, a database item can be a member of multiple
categories.

Database objects do bear relationships to each other or can be related to other objects of
interest to a user who is requesting information from it. In fact, a very large part of accessing
database information is to sort through tuples that satisfy the constraints imposed by these
relationships of database objects in a user query. For instance, in a user query like “What
is the capital of Texas?”, the data of interest is a city that bears a certain relationship to
a state called Texas, or more precisely its capital. The capital/2 relation (or predicate) is
,therefore, defined to handle questions that require them. More of these relations of possible
interest to the domain are shown in Table 2.

We also need to handle object modifiers in a user query such as “What is the largest
city in California?”. The object of interest X which belongs to the database category city

3For instance, in SQL, we have AND and OR to express the logical relationships between constraints on
the attributes over the query.

Meta-predicates Description
answer(A,Goal) | A is the answer to retrieve in Goal
largest(X, Goal) | X is the largest object satisfying Goal
smallest(X, Goal) | similar to largest

highest(X,Goal) | X is the highest place satisfying Goal
lowest(X,Goal) similar to highest

longest(X,Goal) | X is the longest river satisfying Goal
shortest(X,Goal) | similar to longest

count(X,Goal,N) | N is the total number of X satisfying Goal
most(X,C,Goal) | X satisfies Goal and maximizes C
fewest(X,C,Goal) | similar to most

Table 3: Sample of meta-predicates used in database queries

has to be the largest one in California and it would be represented as largest(X, (city(X),
loc(X,stateid(california)))). The meaning of an object modifier depends on the type of its
argument. In this case, it means the city X in California that has the largest population
(in the number of citizens). To allow predicates to describe other predicates would be a
natural extension to the first order framework in handling these kind of cases. These “meta-
predicates” have the property that at least one of their arguments take a conjunction of
predicates. Finally, an object which is an argument of a certain predicate can appear at
a later point in a sentence and this requires the use of a predicate like const(X,Y) (which
means the object X equals the object Y) for the parser to work. The use of const/2 will
be further explained in the following section where the working of the parser is discussed.
A list of meta-predicates is shown in Table 3. Some sample database queries for the U.S.
Geography domain are shown in Table 4.

U.S. Geography
What is the capital of the state with the largest population?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What state has the most rivers running through it?
answer(S, most(S, R, (state(S), river(R), traverse(R,S)))).

How many people live in Iowa?
answer(P, (population(S,P), const(S,stateid(iowa))).

Table 4: Sample of Geography questions in different domains

2.3.2 Actions of the Parser

The parser presented here that builds a logical query given a sentence is based on a standard
shift-reduce parsing framework. (A more thorough discussion on shift-reduce parsing can
be found in (Allen, 1995; Tomita, 1986).) There is no explicit semantic grammar but the
parsing actions are derived from the examples (which is a pair of sentence and its logical

query) and they are guaranteed complete with respect to them (i.e. there exists a sequence
of parsing actions (a derivation) that leads to the right logical query for each sentence).
The parser actions are generated from templates given a logical query; an action template
will be instantiated to form a specific parsing action. The templates are INTRODUCE,
COREF_VARS, DROP_CONJ, LIFT_CONJ, and SHIFT. INTRODUCE pushes a logical
form onto the parse stack based on information in the lexicon. COREF_VARS binds two ar-
guments of two different logical forms to the same variable. DROP_CONJ (or LIFT_CONJ)
takes a logical form on the parse stack and puts it into one of the arguments of a meta-
predicate. DROP_CONJ assumes the logical form precedes the meta-predicate on the parse
stack while LIFT_CONJ assumes it is the other way around. SHIFT pushes a word from
the input buffer onto the parse stack. Their actions are summarized in Table 5. The parsing
actions are tried in exactly that order; the set of parsing actions resemble a decision list in
which the first applicable choice is taken.

The parser also requires a lexicon to interpret meaning of phrases into specific logical
forms. The lexicon can be learned from a given set of sample sentence and query pairs
(Thompson & Mooney, 1999). We will briefly illustrate what action each template does
here by showing a trace of parsing a simple example:

Sentence: What is the capital of Texas?
Logical Query: answer(C, (capital(C,S), const(S, stateid(texas)))).

The first thing we need is a lexicon. A very simple lexicon that maps ‘capital’ to
‘capital(_,_)’ and ‘Texas’ to ‘const(_,stateid(texas))’ would suffice here. The parser begins
with an initial stack and a buffer holding the input sentence which is the initial parse state.
Each predicate on the parse stack has an attached buffer to hold the context in which it
was introduced; words from the input sentence are shifted onto the (stack) buffer during
parsing. The contextual information may be useful for the learning of contextual knowledge
for disambiguation. The initial parse state is shown below:

Parse Stack: [answer(_,_):[]]
Input Buffer: [what,is,the,capital,of,texas,?]

Since the first three words in the input buffer do not map to any logical forms, the next
sequence of steps are three SHIFT actions which result in the following parse state:

Parse Stack: [answer(_,_):[the,is,what]]
Input Buffer: [capital,of texas,?]

Now, ‘capital’ is at the head of the input buffer and is mapped to ‘capital(_,_)’ in our
lexicon. The next action to apply is, therefore, INTRODUCE which is actually instantiated
to introduce(capital(_,_), [capital], SO, S1). Notice that a particular phrase in general can
be mapped to different logical forms due to lexical ambiguities. The contextual knowledge
required for the proper interpretation of a phrase is learned by the induction algorithm.
The resulting parse state is shown below:

Parse Stack: [capital(_,-):[], answer(_,_):[the,is,what]]
Input Buffer: [capital,of texas,?]

Actions Description

Put TERM on the parse stack of SO if PHRASE occurs at
INTRODUCE(TERM, PHRASE, SO, S1) the beginning of the input buffer of SO (SO is the input parse
state and S1 is the output parse state)

Unify the N1-th argument of the term T1 with the N2-th
COREF_VARS(T1, AR1, N1, T2, AR2, N2, S0, S1) argument of the term T2 if T1 and T2 are on the parse stack
of SO having arity AR1 and AR2 respectively

Place the term T1 in the N2-th argument of the term T2 to
DROP_CONJ(T1, AR1, T2, AR2, N2, S0, S1) form a new conjunct if T1 comes before T2 on the parse stack
of SO having arity AR1 and AR2 respectively

Similar to DROP_CONJ except that the term T2 comes be-

LIFT-CONJ(T1, ARL, T2, AR2, N2, S0, §1) fore the term T1 on the parse stack of SO

A word at the beginning of the input buffer of SO will be
SHIFT(SO0, S1) shifted into the buffer of the top predicate on the parse stack
of SO if the input buffer is not empty

Table 5: A summary of the parse actions

The next action is a COREF_VARS. We have two possible choices here: coref_vars(capital,
2, 1, answer, 2, 1, S0, S1) or coref_vars(capital, 2, 2, answer, 2, 1, S0, S1).# Since the question
is asking about the capital, the first one is the proper choice and we will pick it here. In
general, the knowledge required for properly selecting a COREF _VARS action is learned.
The resulting parse state is shown below:

Parse Stack: [capital(C,.):[], answer(C,_):[the,is,what]]
Input Buffer: [capital,of texas,?]

The next sequence of steps are two SHIFT’s followed by an INTRODUCE which is in-
stantiated to introduce(const(_,stateid(texas)), [texas], SO, S1). The resulting parse state is:

Parse Stack: [const(_stateid(texas)):[], capital(C,_):[of,capital], answer(C,_):[the,is,what]]
Input Buffer: [texas,?]

Notice that instead of looking ahead into the input buffer for ‘Texas’ and introducing
‘capital(_,stateid(texas))’, we introduced ‘capital(_,_)’ and its second argument is left to be
instantiated by a COREF_VARS when the parser comes to the term ‘Texas’. This helps
avoid the problem of having to combine different disambiguation decisions at the same point.
For instance, if the question was “What is capital of the state that borders Texas?”, we
would have to make a decision between introducing ‘capital(C,stateid(texas))’ or ‘capital(C,_)’
precisely at the point where ’capital’ was at the beginning of the input buffer. It would be
easier for the parser to make such decisions when the relevant context become available on
the parse stack at a later point.

The next sequence of actions are COREF_VARS which is instantiated to coref_vars(const,
2, 1, capital, 2, 2, SO, S1) and two more SHIFT. Again, we have two possible COREF_VARS
instantiations here, the proper one was chosen. The resulted parse state is shown below:

Parse Stack: [const(S,stateid(texas)):[?,texas], capital(C,S):[of,capital], answer(C,_):[the,is,what]]
Input Buffer: |[]

*A choice like coref_vars(capital, 2, 1, answer, 2, 2, S0, S1) is eliminated by inspecting if one of the
predicates is a meta-predicate and which argument positions hold variables.

Now, the next steps would be two DROP_CONJ. (Remember that a DROP_CONJ can
be applied only if all the variables of the predicate being dropped are instantiated by pre-
vious actions from COREF_VARS.) They are drop_conj(const, 2, answer, 2, 2, SO, S1) and
drop_conj(capital, 2, answer, 2, 2, S0, S1). The resulted parse state is:

Parse Stack: [answer(C, (capital(C,S), const(S,stateid(texas)))):[?,texas,of capital,the,is,what]]
Input Buffer: |[]

We have reached the final parse state at this point since none of the parser actions can
be applied. The logical query constructed is then read off from the parse stack.

2.3.3 The CHILL approach

The CHILL (Constructive Heuristic Induction for Language Learning) framework is based on
an empirical approach to parser construction integrated in a symbolic knowledge acquisition
framework for both the learning and the representation of semantic knowledge. Since the
parser is to construct logical queries from natural language input, it would be natural to
implement the parser as a logic program where the parsing operators are actually Horn
clauses.

Given a corpus of sentence and query pairs, the task is to induce a parser that can
translate these sentences to the appropriate queries (which can be further mapped to a
target database access language). If we consider inducing a parser directly from these pairs,
the space of possible parsers would be too large and unfortunately we still have not developed
enough in machine learning to handle a task of this complexity. However, if we begin with
an initial parser generated by instantiating the action templates given the examples (which
can also be viewed as an overly general initial domain theory), the problem of inducing
a parser could be reduced to learning control rules for it. Induction Logic Programming
(ILP) techniques for learning search control knowledge will be used since a (first-order)
logical knowledge representation framework is employed. ILP is a growing paradigm in
machine learning and it will be further discussed in the next section. The idea of learning
control rules for a parser can also be traced back to earlier work in acquiring syntactic
knowledge for parsing (Berwick, 1985). Figure 1 shows the architecture for CHILL.

The working of CHILL is divided into four phases as indicated in the figure: 1) generating
the initial parser, 2) analysing the examples, 3) inducing the control rules, and 4) specializing
the initial parser. We will briefly describe each of them here.

Initial Parser Generation. Given the set of training examples and the lexicon, the ini-
tial parser is generated by instantiating each template X € { INTRODUCE, COREF_VARS,
DROP_CONJ, LIFT_CONJ, SHIFT } to a set of specific parsing actions. Given a template
X and an example, a specific parsing action can be obtained by inspecting the logical query
and the sentence. For instance, in the previous example “What is the capital of Texas?”,
a specific action can be obtained from INTRODUCTION by instantiating TERM to cap-
ital(-,-) and PHRASE to [capital] given the lexicon, which gives us introduce(capital(-,-),
[capital], SO, S1). Actions that are not used in parsing an example will also be generated
due to natural language ambiguities. For example, if ‘capital’ was mapped to ‘money(M,G)’
(e.g. the amount of money M the state government G has) in the lexicon as well, we would

10

Training Opge?ari]gr
Examples Generator

!

Control Control Rules
Rule »| _Progam
Induction Specialization

Final
Parser
Figure 1: The architecture for CHILL

have generated the additional (redundant) action introduce(money(_,-), [capital], SO, S1).
The set of actions generated for all the training examples become the initial overly general
parser. The initial parser is guaranteed complete with respect to the examples.

Example Analysis. The initial parser will produce many spurious parses for the train-
ing examples since it may contain redundant actions and there may be ambiguities among
which actions should be employed if more than one can be applied given a particular parse
state. The job of example analysis is to determine the right set of actions to be used and
exactly which action should be applied to which parse state to correctly parse an example
(i.e. construct the right logical query). The result of example analysis is a set of actions that
were used to parse the given training example paired with the corresponding parse states
to which they were applied. For instance, in the previous example, the parse state that
consists of the parse stack [answer(_,):[the,is,what]] and the input buffer [capital,of,texas,?]
would be paired with introduce(capital(_,-), [capital], SO, S1). The training exmaples are
analysed one by one and all of the results are collected together into a final set. These parse
states with the actions will be useful for inducing control rules for the parser.

Control Rule Induction. After example anaylsis is done, we will have a set of actions
in some order® where each action is coupled with the set of parse states to which it was
successfully applied. All these parse states will become the positive examples for the control
rule induction component and any parse states applicable to one action but paired with any
other actions below this action are considered negative examples. Parse states that appear
above the action can be ignored since the parser is implemented as a decision list and
therefore if an action applicable to some of these states is applied, the parser will not
backtrack (through Prolog’s backtracking mechanism) to any other actions further down
in the decision list. Since in general there could be more than one possible derivation for
a sentence (i.e. two or more different ways of getting the correct logical query from a

SActually, they will be grouped in the order of COREF_VARS, INTRODUCE, DROP_CONJ,
LIFT_CONJ, and SHIFT.

11

sentence), we can have “false” negative examples which are those to which more than one
parsing action can be applied and yet the different resulting states would lead to the same
final state. Checking for all these false negative examples is expensive computationally and
we simply treat them as noise in the training data and rely on the induction algorithm for
noise handling. We will discuss more about noise handling in Section 3.7. In principle,
any ILP algorithm can be used here to induce the control rules. The particular algorithm
employed by CHILL will be discussed in the next section.

Program Specialization. The control rule produced for each action can be viewed as
some kind of “guard” for that action. The rule would (hopefully) capture all the contextual
knowledge present in the parse states necessary for classifying which (future) parse states
the action should apply to. These control rules will be incorporated into the initial overly
general parser to specialize it.

2.4 Inductive Logic Programming

Inductive Logic Programming (ILP) is a growing subfield in AT at the intersection of ma-
chine learning and logic programming. The problem is defined as follows. Given a set of
examples £ = {1 U £ consisting of positive and negative examples of a target concept, and
background knowledge B, find an hypothesis H € £ (the language of hypotheses) such that
the following conditions hold® (Muggleton & Raedt, 1994).

Prior Satisfiability. BA¢™ ~ O
Posterior Satisfiability. BAH A{™ = O
Prior Necessity. B [~ ¢*

Posterior Sufficiency. BAH = ¢+

The sufficiency criterion is also called completeness with regard to positive examples and
the posterior satisfiability criterion is also known as consistency with the negative exam-
ples. Due to the use of a more expressive first-order formalism, ILP techniques are proven
to be more effective in tackling problems that require learning relational knowledge than
traditional propositional approaches (Quinlan, 1990).

There are two major approaches in the design of ILP learning algorithms: top-down
and bottom-up. Both approaches can be viewed more generally as a kind of set covering
algorithm. However, they differ in the way a clause is constructed. In a top-down approach,
one builds a clause in a general to specific order where the search usually starts with the
most general clause and successively specializes it with background predicates according
to some search heuristic. A representative example of this approach would be the FoIL
algorithm (Quinlan, 1990; Cameron-Jones & Quinlan, 1994). In a bottom-up approach, the
search begins at the other end of the space where it starts with the most specific hypothesis,
the set of examples, and constructs the clauses in a specific to general order by generalizing
the more specific clauses. A representative example of this approach would be the GOLEM
algorithm (Muggleton & Feng, 1992). These two ILP systems are briefly reviewed here.

8This problem setting is also called the normal semantics of ILP.

12

Procedure Foil

Input:

R(V1,Va,...,Vi): the target concept

£t the @ examples

£ the © examples

Output:

H: the set of learned clauses
H:=90

Positives- To-Cover = ¢+
While Positives-To-Cover is not empty Do
/*
Search for a clause that covers a preferably large subset of Positives-To-Cover
but covers no examples in £ . And add the clause to the building definition.
*
/
C = R(V1, Vay ooy Vk) —
T := Positives-To-Cover U £~
While T contains negative tuples Do
Find the literal L that maximizes Gain(L) to add to the clause C
Form a new set 7' by extending each tuple ¢ in T that satisfies L with its new variable bindings
Replace T by T"
End While
Add C to H
Remove examples covered by C' from Positives- To-Cover
End While
Return H
End Procedure

Figure 2: The FOIL algorithm

2.4.1 Foil

FoIL learns a function-free first-order Horn clause definition of a target concept given the
background predicates which are defined extensionally. FOIL contains an outer loop which
finds clauses that covers a portion of the positive examples and are consistent with the
negative examples. The loop stops when the set of clauses found covers all the positive
examples. The inner loop builds a single clause, starting with the most general hypothesis
and adding literals to it until it covers no negative examples. Literals are ranked using the
information gain metric and the literal that maximizes gain is chosen. More formally, let
T denote the number of positive tuples in the set 7', the information of T is defined as:

I(T) = —logo(Ty/ | T). (2)
And, the information gain of a literal L is defined as:
Gain(L) = s- (I(T) — I(T")) (3)

where s is the number of tuples in T that have extensions in 7" (i.e. the number of current
positive tuples covered by L) and 7" is the new training set created from 7" and L. Figure 2

13

Procedure Golem

Input:

£T: the set of positive examples

& : the set of negative examples

Pairs: random sampling of pairs from ¢+

RLggs: {C :(e,e') €Pairs and C = RLGG(e,€') and C consistent wrt £~ }

S: the pair {e,e'} whose RLGG has the greatest cover in RLggs
Output:

H: the set of learned clauses

H:=90

Do

Ezamples := a random sampling of examples from ¢
RLggs := {C: €' € Ezamples and C = RLGG(S U¢€')) and C consistent wrt ¢~ }
Find e’ which produces greatest cover in RLggs
S:=Su¢
Add RLGG(S) to H
Ezamples := Ezamples — cover(RLGG(S))
While increasing-cover
Return H
End Procedure

Figure 3: The GOLEM algorithm

summarizes the FoIL algorithm.

2.4.2 Golem

GOLEM also contains an outer loop that find a set of consistent clauses covering the posi-
tive examples like FoiL. However, it builds a clause by considering the relative least general
generalization (RLGG) of the pairs of positive examples. It is called relative because the
background knowledge is taken into account when performing the least general generaliza-
tion (LGG) on a pair of positive examples; each example has a sequence of ground back-
ground literals added as its body. The LGG of two terms f1(l1,...,I,) and fa(mq,...,my) is
a new variable v if f1 # fo. Otherwise, it is f1(lgg(l1,m1), ..., lgg(l, my)). The LGG of two
clauses C; = {l1,...,lx} and Cy = {my,...,m,} is defined as: lgg(Cy,C2) = {lgg(l,m) |
l € C; and m € Cy and lgg(l,m) is defined}. As a simple example, consider the clauses
C1 : p(a) < q(b) and Cs : p(c) < g(d). The lgg(Ci,C2) would be the clause p(X) < q(Y).
A more detailed discussion on LGG can be found in (Plotkin, 1970).

The RLGG of two examples can produce a very large clause with a lot of redundant
literals in its body. To reduce the clause size, the search only considers a restricted model
of the background knowledge K, the h-easy model which is the set of all Herbrand instanti-
ations of h-easy atoms of K. (An atom a is h-easy with respect to K if there is a derivation
of a from K involving at most h resolutions.)

GOLEM starts by taking a sampling of RLGGs of pairs of uncovered positive examples
and chooses the one that has the greatest coverage for further generalization. It stops

14

building the clause when this RLGG cannot be further generalized (i.e when any further
generalization produces inconsistent clauses.) Figure 3 is a summary of the algorithm.

2.5 Integrating statistical and relational methods for learning

In recent years, there has been several methods which combine statistical and relational
learning approaches to produce classifiers that are more accurate than using either approach
alone (Slattery & Craven, 1998; Ali & Pazzani, 1996). More precisely, we have take an
approach which uses a relational learning algorithm to learn multiple models from the
training data and combines them using a statistical method. It has been shown that learning
multiple models can improve classification accuracy (Ali & Pazzani, 1996; Kwok & Carter,
1990; Baxt, 1992; Breiman, 1996; Quinlan, 1996a). We are going to briefly review a system
which is most similar to our approach called HYDRA which uses a form of Bayesian learning
to combine multiple models acquired by a relational learning algorithm (Ali & Pazzani,
1995).

The HYDRA system uses a relational learning algorithm very similar to FOIL (Quin-
lan, 1990), which is used to learn multiple descriptions from a given set of training data.
Two particular approaches were employed by the system, namely stochastic hill-climbing
(Kononenko & Kovacic, 1992) and k-fold partition learning (Gams, 1989). In stochastic
hill-climbing, one stores a set of literals that are within some margin o of the best literal
ranked according a certain metric on literals (like info-gain) and then chooses a literal ran-
domly from that set. The probability of a literal being chosen is propotional to its goodness
according to the metric (like the gain of the literal). In k-fold partition learning, one gen-
erates k models by partitioning the training data in k sets of equal size and then learn a
model for all but the ith partition. (There are totally k£ ways of excluding a partition.)
After learning a set of models using either methods, HYDRA then combines all the learned
models into a single model by Bayesian combination (Buntine, 1990).

3 Learning Multiple Models via TABULATE

In this section, we are going to discuss the details of the new induction algorithm used by
CHILL. Since its design is strongly motivated by the CHILLIN induction algorithm (Zelle
& Mooney, 1994), we are going to provide a brief overview of the algorithm here. Then,
we will proceed to explain the motivation for the new algorithm and discuss its details and
various ILP issues it addresses.

3.1 Combining Top-down and Bottom-up Methods in CHILLIN

Top-down or bottom-up approaches to ILP have their own strength and weaknesses. For
instance, GOLEM requires the use of extensional background knowledge (i.e. background
knowledge expressed by listing ground facts) and could result in building clauses with
a lot of redundant literals. Specific constraints like using only the h-easy model of the
background knowledge have to be enforced to deal with some of these efficiency problems.
On the other hand, FOIL requires the target hypothesis to be function-free and therefore
needs specific constructor functions as part of the background knowledge. For instance,

15

to learn the concept member(X, Y) where X is an element of the (non-empty) list Y. One
needs to provide FOIL with a background predicate like head(Y, H) which is (essentially) a
function that returns the first element H of the list Y. The size of the background knowledge
grows with the number of such constructor functions used by the learner and so does the
complexity of the hypothesis space to search (i.e. a larger branching factor). A combination
of the two different methods which takes advantage of the strength of each approach may
therefore open up new approaches to ILP that could perform better than either alone.
CHILLIN' was an attempt at combining both approaches and it was used in CHILL for
learning control rules. Figure 4 shows the outline of CHILLIN.

Procedure Chillin

Input:

et the @ examples
£ the © example
Output:

DEF: the set of learned clauses

DEF:={E«+|Ec ¢t}
Repeat
PAIRS := a sampling of pairs of clauses from DEF
GENS := {G | G = Find_A_Clause(C;,C;, DEF, ¢, ¢7) for (Ci,C;) € PAIRS }
G := Clauses in GENS yielding most compaction
DEF := (DEF — (Clauses subsumed by G)) U G
Until no-further-compaction
Return DEF
End Procedure

Figure 4: Outline of the CHILLIN algorithm

Unlike set-covering alogrithms like FoIL, CHILLIN consists of a compaction outer loop
that builds a more general hypothesis with each iteration. Each iteration tries to find a
clause that maximizes the coverage of the set of positive examples (i.e. most compaction).
A clause is built by finding the LGG of a random pairs of clauses in the building definition
(i.e. DEF) and if the LGG is overly general, it will be specialized by adding literals to its
body in a way very similar to FOIL. The search for a hypothesis is therefore done in a
bottom-up manner since it begins with the most specific hypothesis (i.e. the set of positive
examples) and continues to generalize it through the compaction loop. The specialization of
a clause, however, resembles that of a top-down algorithm as literals are added to its body
for specialization and therefore heuristics like information gain can be used to discriminate
between literals.

Once a clause is found, it will be incorporated into the current theory. Any clause
covered (subsumed) by it will be removed from the theory. A novel kind of subsumption is
adopted here which is called empirical subsumption. A clause C' <. (empirically subsumes)
D if the set of ground unit instances covered by the clause C is a subset of that of the clause

"CHILLIN stands for the CHILL INduction algorithm.

16

D.

3.2 Motivation for the New Algorithm

CHILLIN has been tested on learning simple list processing programs (like append/3) and
was shown to be more effective than either FOIL or GOLEM (Zelle & Mooney, 1994). While
CHILLIN was shown to be a successful attempt to combining top-down and bottom-up
approaches in ILP, it suffers from several weaknesses. First, the search is basically a hill-
climbing search in the hypothesis space which may sometimes get stuck on a local minimum.
It may be interesting to consider other search methods like beam search which attempt to
partially overcome local minima. Using beam search, however, requires the design of a
metric for evaluating each hypothesis in the beam. We explain the details of our metric in
Section 3.3. The goal of the search is to find the simplest consistent hypothesis (or a queue
of hypotheses) guided by an explicitly defined theory evaluation metric. The new algorithm
is described in more detail in Section 3.4.

Second, CHILLIN relies on the LGGs of the positive examples to capture “theory con-
stants” (logical constants that appear in the definition) that may be useful. However, using
LGGs to learning these theory constants is not a very reliable method. For instance, if a
relevant constant like a certain word appears at different locations in the input buffers of
two different parse states, the result of the LGGs of the two parse states would replace the
word by a variable, and therefore could fail to capture useful lexical information. Thus, we
consider making literals with theory constants an explicit process and incoporate appropri-
ate predicates for these literals in the background knowledge for the learner. This is further
described in Section 3.5.

Third, we have considered adding the capability of handling noisy data which is lacking
in CHILLIN. As we mentioned before, noisy data can arise due to the presence of “false
negative” examples. We will further discuss the issue of noise handling in Section 3.7.

Finally, the new algorithm is designed to learn multiple models from the training data so
that they can be integrated via statistical learning methods to produce probabilistic models
for the semantic parser. All these observations were the motivation behind the design of
TABULATE.S

3.3 Compression and Accuracy

The “ideal” solution to an ILP problem is the hypothesis that has the minimum size and the
most predictive power. In practice, however, this is hardly achievable due to two reasons:
1) finding a minimum program is undecidable (because the minimum encoding function is
not computable) and 2) it is uncertain whether the minimum program will have the most
predictive power. Some form of bias that would lead us “close” to this ideal would still
be desirable as the goal of the search is to find hypotheses that perform well. Despite
arguments on its generality (Webb, 1996), the Occam’s Razor Principle® has been the most
widely used form of bias in many learning algorithms and it has its basis in algorithmic

8TABULATE stands for Top-down And Bottom-Up cLAuse construction with Theory Evaluation.
9The famous Occam’s Razor Princple of Willam of Ockham says that “entities should not be multiplied
beyond necessity.”

17

complexity theory. The Occam’s Razor Principle is perhaps best followed in the Rissanen’s
Minimum Description Length (MDL) approach (Rissanen, 1978) where the hypothesis H
which minimizes the theoretical minimum encoding K (H|E)!° is chosen given H = E,
E is the set of examples and H is a hypothesis in a well defined hypothesis space. (The
theoretical minimum encoding is not computable and in practice one employs a “reasonable”
encoding scheme as an approximation to this notion.) However, it has been found (Califf,
1998) that approaches like MDL can sometimes give “too much” weight to the complexity
of the hypothesis over its accuracy during the course of the search and may not be the
best guide in a heuristic search like hill-climbing or beam search. This leads us to the
idea of modifying a metric like MDL to one that puts more emphasis on the accuracy of a
hypothesis. A reasonable choice of the accuracy metric is the m-estimate (Cestnik, 1990).
The m-estimate of the expected accuracy is given by!!
accuracy(H) = M (4)
n+m
where s is the number of positive examples covered by the hypothesis H, n is the total
number of examples covered, p™ is the prior probability of the class @, and m is a parameter.
A metric of calculating the program size similar to one in (Muggleton and Buntine,
1988) is used. The size of a clause C having head H and body B is defined as follows:

size(C) = 1 + termsize(H) + termsize(B) (5)
1 if T is a variable
termsize(T) = ¢ 2 if T is a constant . (6)

2+ E;’ffy(T) termsize(arg;(T)) otherwise

The size of a clause roughly counts the number of symbols in it where a symbol can be a
variable, a constant or a predicate. The size of a hypothesis which is a finite set of clauses
is the sum of the size of the clauses.!? The metric M (H) as our search heuristic is defined

as
accuracy(H) + C

M(H) = log, size(H)

(7)
where H is a hypothesis in the search space and C is a constant. The constant C is used as
a balancing factor between the accuracy and complexity of the hypothesis H. The meaning
of M(H) is that we are trying to find a hypothesis that optimizes compression and accuracy.
Given a hypothesis H in the search space (including inconsistent hypotheses), we want to
find the one that compresses the examples the most without losing “too much” classification
information (or accuracy). However, we need a balancing factor to set the a priori bias
between accuracy and complexity in a particular hypothesis space. The constant C is used
to set the bias on the accuracy of a hypothesis; the larger the value of C, the more accuracy
is emphasized. The constant C' may be determined in different ways. However, we make the

10K (-) is the Kolmogorov complexity function (Kolmogorov, 1965).

" The original definition was given in a more general setting where the classification problem can be n-ary,
n > 2.

12A more refined scheme like the one in (Muggleton, Srinivasan, & Bain, 1992) could be employed to
estimate the number of bits required for an encoding.

18

Accuracy

Complexity

Figure 5: A possible projection of the hypothesis space onto the metric space

assumption that the most general hypothesis ¢(X7, ..., X,) < is as poor as the most specific
hypothesis ¢t in terms of their overall quality.!® Figure 5 shows a possible projection of
the hypothesis space onto the metric space. The metric space represents a reduction of the
hypothesis space; programs that have the same score are considered equivalent. A more
refined definition of the metric M would of course give a better model of the hypotheses (in
terms of their goodness). The two extreme points (St, E;) and (S, Ep) represent the most
general hypothesis and the most specific hypthesis respectively where E;, Ej are the m-
estimates of the most general hypothesis and the most specific hypothesis respectively, and
St, Sp are their sizes respectively. (More generally, they represent the classes of programs
that have the same size and accuracy.) These two points are equally good according to our
assumption which is more formally expressed as:

M(#(Xy,...,Xp) <) = M(£F). (8)
According to the definition of M, it is expanded to
E;+C Ey+C

s, A (9)
Thus, C can be resolved to
EySt — EtSp
=2 ~7 1
C P (10)

We are now ready to describe the new algorithm.

3.4 The TABULATE Algorithm

While top-down or bottom-up methods normally begin the search for hypothesis at one
end of the hypothesis space, TABULATE explores both parts of the search space, akin to
a bi-directional search. More precisely, it considers both refinements of the most general
hypothesis and least general generalizations of existing clauses in a theory.

13While in general it may not be the case that they have the same amount of information content (i.e.
I(t(X1,-..,Xn) <) # I(¢T)), they do represent the worst cases of the two ends of the search space.

19

TABULATE also has a compaction outer loop. The search starts with the most specific
hypothesis which is the set of positive examples.!* Each iteration of the loop attempts
to compact each of the hypotheses in the current search queue. (Each iteration, thus,
corresponds to a single search step of generating the children nodes.) The search employed
is a modified version of the standard beam search we call w-beam search. A standard beam
search considers all the children nodes when selecting the best B from them. However, if
the size B is not big “enough” (due to time or space restriction), the search can run into
a situation where the best few search nodes (which could look “similar” to each other) will
eventually dominate the entire search queue and the search essentially gets stuck on a local
minimum. For instance, when a hypothesis has many good refinements (i.e. a clause that
is being built in the hypothesis has many good refinements'®), then all its children will
occupy a large part of the search queue and in a few iterations the entire queue will consist
only of its descendants. (This problem is not particular to a beam search. In the case of
using a genetic algorithm, one could get into the so-called problem of “lack of diversity in
the population”, which is similar to this problem.) In a w-beam search, a window of size
w is posted as an upper bound on the number of children nodes the search will consider
for a given parent node. In other words, a parent can produce at most w children in the
next search queue. This is to partially avoid the domination problem mentioned above by
“sharing” the search queue among the parents. Notice a w-beam search is reduced to a
standard beam search if w is defined as the maximum branching factor of the search (or
infinity). There are two cases in each iteration: 1) an existing clause is being refined or
2) a new clause is begun. Since a search node can be refined in a top-down or bottom-up
manner, hypotheses found by the algorithm may consist of clauses that are built in either
fashion. The TABULATE algorithm has also taken a “compaction-based” approach like that
of CHILLIN or CiGOL (Muggleton & Buntine, 1988) in that a clause found by the search
is not put aside but included as part of the theory that is being refined. Compaction can
sometimes give a more general (consistent) hypothesis than set covering since clauses that
are built during the search may be further combined to form more general clauses at a later
point in the search. The outline of the TABULATE algorithm is given in Figure 6.

The outline of the refinement operator Refine_Clause is given in Figure 7. We have
incorporated noise-handling and predicate invention within the refinement operator, both
will be discussed further in Section 3.7. There are three possible outcomes in a refinement:
1) the current clause satisfies the noise-handling criterion and does not need to be refined
and it will simply be returned (next; is set to empty), 2) the current clause does not satisfy
the noise-handling criteria and all possible refinements are returned (next; is set to empty if
the jth refined clause satisfies the noise-handling criterion; otherwise, it is set to the refined
clause itself), and 3) the current clause does not satisfy the noise-handling criterion but
there are no further refinements'® and an empty set of clauses is returned (next; is set to
fail). In practice, there may be too many possible refinements and we decided to choose the

“We actually start with a set of LGGs that are correct with respect to the examples and proceed with
the search from there. This helps boost the bottom up search a bit when there is a large number of positive
examples.

5For instance, there may be many literals that yield similar scores on a particular literal selection metric.

8We have posted a predicate arity bound K on the predicate invention routine to avoid straight memo-
rization of examples. This case could happen when it requires an invented predicate of arity bigger than K
to further refine the clause.

20

Procedure Tabulate

Input:
t(X1,...,Xn): the target concept to learn
£t the @ examples
& the © examples
Output:
Q: a queue of learned theories
Theoryy := {E | E € ¢} /* the initial theory */
T(No) := Theoryo /* the theory of the starting search node */
C(No) := empty /* the current clause which is being built */
Q = [No] /* the search queue */
Repeat
cQR:=0
For each search node N; € Q Do
/*
If it is time to build a new clause, then start with the most general hypothesis and LGGs
of existing clauses. Otherwise, keep refining the current clause until it needs no further
refinement. R; is the set of clause refinements of node i.
*
/
If C(N;) = empty or C(N;) = fail Then
Pairs := sampling of S pairs of clauses from T'(1V;)
Find the LGG G in Pairs that has the greatest cover in £T
R; := Refine_Clause(t(X1,...,Xy) <) U Refine_Clause(G <)
Else
R; := Refine_Clause(C(N;))
End If
/*
If current clause cannot be refined but is not accurate enough, then we need to build a new
clause. Otherwise, incorporate the refined clause into the theory of the current search node and
check if the refined clause is acceptable or still needs to be further refined. CQ is the set
of children nodes and C'Q); is the children nodes produced from parent node i.
*
/
If R; =0 Then
CQi := {(T(N:), fail)}
Else
CQi := {(Complete(T(N;),Gj,¢1), next;) | for each G; € Ry, next; = empty if G,
satisfies the noise criteria; otherwise, G,}
End If
CQR:=0QUCQ;
End For

@ := the B best nodes from Q U CQ ranked by metric M
Until termination-criteria-satisfied
Return @
End Procedure

Figure 6: The TABULATE algorithm

21

Procedure Refine_Clause

Input:

C: the clause to be refined

K: the arity bound for an invented predicate
BG: the set of background knowledge

N;: the current search node

Output:

S: the set of refinements of C'

R :=T(N;) —{C}
/*
Check if the clause C is already accurate enough wrt the noise-handling criterion. If so, it
is returned. Otherwise, it needs to be refined. If the clause cannot be refined using background
literal, it be will checked if inventing predicate for it is suitable (i.e. whether the invented
predicate requires arity < K). An empty set of clauses will be returned if a refinement is not
possible, indicating that the search should try to build a different clause.
*
/
If C satisfies the noise-handling criterion Then
S :={C}
Else
If C can be usefully refined using BG Then
S := {G; | Gj:=Add_Literal(L;,C),VL; from BG}
Else
If invented predicate requires arity < K Then
¢ i={ef €T |RIEET)
{'={e €¢ |Cke}
Lip := Invent_Predicate(¢T',¢7',C)
S := {Add_Literal(Lsp, C)}
Else
S:=10
End If
End If
End If
Return S
End Procedure

Figure 7: The clause refinement operator Refine_Clause

22

best n based on their positive information gains to avoid having to deal with the complexity
of a full-fledged search which has to evaluate each of the possible refinements according to
the hypothesis evaluation metric.

There two possible cases after each refinement of a clause. In the first case, the refine-
ment is a new clause being built for the theory. In this case, we will check which clauses in
the current theory are empirically subsumed by the new refinement. Those that are sub-
sumed are removed from the theory. Existing clauses that are empirically subsumed by the
newly refined clause are considered “redundant” and hence eliminated from the theory. In
the second case, it is a specialization of an existing clause in the theory. Positive examples
that are not covered by the resulting theory, due to specializing the clause, are added back
to it. Therefore, the theory is maintained complete during the entire course of the search.
These are all done in the Complete procedure.

Different possible termination criteria can be defined depending on the goal of the search.
For instance, if one wants to emphasize the quality of the solution, one may impose more
requirements for termination but at the expense of using more resources. The termination
criterion in this case checks for two conditions to be satisfied. First, we have taken the
sum of the metric M over each hypothesis in the entire search queue which represents the
quality of the queue of hypotheses. The first condition is satisfied if the next search queue
does not improve the sum. This is like a hill-climbing search in the space of search queues.
Second, we check to make sure that there is no clause currently being built for the theory
in each of the search nodes in the search queue and the last finished clause of each theory
satisfies the noise-handling criterion (i.e. C(Node) = empty for every Node in the search
queue). Finally, a committee of hypotheses found by the algorithm is returned. This set of
hypotheses can be viewed as multiple models of the target concept learned by the algorithm.

3.5 Learning with Theory Constants

In domains like language learning, an inductive learner that can utilize or even synthesize
theory constants is desirable since this kind of knowledge is valuable to the learner as
discriminating features. In parsing, one needs contextual information for disambiguating
different possible parses of a sentence and this information can be represented as theory
constants to the inductive learner. For example, in our previous sample trace of parsing the
sentence “What is the capital of Texas?”, if the phrase “capital” was mapped to money(M,G)
(the amount of money M the state government G has) in the lexicon as well, we would need to
disambiguate between introducing capital /2 or money/2 on the parse stack. In this case, the
context that would be helpful for disambiguating between the two cases could be the absence
of the word government in the input buffer. If we have the predicate phrase_in_buffer(P,S) (the
phrase P appears in the input buffer of the parse state S) in the background knowledge of
the learner, the literal not phrase_in_buffer([government],S) would be useful for constructing
a control rule for the parsing action introduce(capital(_,_), [capital], SO, S1). 17

ILP systems like FFOIL (Quinlan, 1996b) do make use of background knowledge that

"In all the domains described in this proposal, we used the predicates phrase_in_buffer/2 and predi-
cate_on_stack/2 (which checks if a particular predicate is on the parse stack) as the two basic predicates
in the background knowledge. In some of the domains, however, more background predicates were used but
we are not going into all the details here.

23

can handle theory constants (e.g. checking if the value of a variable equals zero). However,
it requires a prior knowledge of the set of constants that will be relevant or necessary for
the learning task. This may be possible for domains like learning functional definitions
where it would be relatively easier to identify a set of “important” constants that may
be relevant to a number of learning tasks (like 0 or 1). In other domains like language
learning, however, identifying a set of useful constants that is reasonably comprehensive
would be rather difficult as one would be required to have enough prior knowledge of the
relevant contextual information but this is what the learning system is suppose to find out.
Handcrafting some possibilities or throwing in an entire dictionary would be either too
ineffective or inefficient. Therefore, instead of engineering them as prior knowledge to the
system, we obtain possible theory constants from the training data. This, however, requires
the system to generate or extract theory constants from examples given a set of background
predicates.'®

More precisely, the idea is that given a set of positive and negative examples of the
target concept and a set of background knowledge in which each background predicate
comes with mode declaration and argument-type definition, we generate a new set of liter-
als which would use “constants” that appear in the set of examples for the learner. Using
phrase_in_buffer/2 as an example where the sentence “What is the capital of Texas?” is
a positive example and “What fraction of the Texas government state capital is spent on
highway construction?” is a negative example for the parsing action introduce(capital(_,-),
[capital], SO, S1), we generate the following set of literals if we restrict ourselves to consid-
ering only one-word phrases:

phrase_in_buffer([what],S)

phrase_in_buffer([texas],S)
phrase_in_buffer([?],S)
not phrase_in_buffer([what],S)

not phrase_in_buffer([texas],S)
not phrase_in_buffer([government],S)

not phrase_in_buffer([spent],S)

not phrase_in_buffer([on],S)

not phrase_in_buffer([highway],S)

not phrase_in_buffer([construction],S)
not phrase_in_buffer([?],S)

3.6 Predicate Invention

While earlier ILP systems assume a sufficient amount of background predicates to start
with, more recent approaches have abandoned that assumption and allow the learner to

18The set of background knowledge would have to contain predicates that can take theory constants as
their arguments. The set of relevant background predicates, however, are much easier to choose than the
set of constants.

24

extend its vocabulary when the given set of background knowledge is not sufficient for the
learning.

The purpose of inventing a literal for a clause is to constrain some of the variables
in the clause so as to exclude some negative examples the clause is covering. In general,
separating the positive and negative examples may require constraining multiple variables.
We have adopted the approach similar to CHAMP (Kijsirikul, Numao, & Shimura, 1992) for
predicate invention in TABULATE. A greedy algorithm is employed to find the smallest set
of variables that would separate the positive and negative examples; the set of instantiations
of the positive and negative examples form two disjoint sets. Such a set always exists as
long as the set of positive and negative examples are mutually disjoint. The search begins
with an empty set of variables. A variable is added to the set one at a time; the one that
separates the most positive examples from the negative examples is chosen first. The set of
instantiations of these variables forms the new set of positive and negative examples for the
new literal. The predicate invention algorithm (in CHILLIN) can then be recursively called
to learn a new concept.

3.7 Noise Handling

In the task of parsing sentences into logical queries, noise could arise when there exists
more than one possible consistent logical queries for a given sentence!®. Different ways
of annotating the training data could give rise to ambiguities among the parsing actions
which are more “artificial” than lexical; in our case, these could be false negative examples
collected for the learner. Instead of checking for them when collecting the training data or
enforcing a particular “style” of annotation which are both time-consuming and impractical,
we treat them as noise in the training data and let the learning algorithm handle them.
We have adopted the approach taken in RIPPER (Cohen, 1995) to handle noise. In
particular, a clause needs no further refinement when it meets the following criteria:

p—n
p+n>5 (11)

where p is the number of positive examples covered by the clause, n is the number of negative
examples covered and —1 < 8 < 1 is the noise parameter. Unlike in RIPPER where 3 is a
fixed constant and selected according to the assumption on the amount of noise in the data,
we set 3 to some high value (i.e. close to 1) and decrease its value whenever the sum of the
metric over each hypothesis in the search queue does not improve but some of the search
nodes still have an unfinished clause or a failed clause. In other words, we estimate the
value of 8 and therefore the amount of noise in the data instead of relying on assumptions
about the data.

9Equivalent logical queries for the same sentence do exist since there may be various ways of structur-
ing a query and all of them mean the same thing. For instance, the meaning of answer(C, (capital(C,S),
const(S, stateid(texas)))) is the same as answer(C, (state(S), city(C), capital(C,S), const(S, stateid(texas))));
both queries give exactly the same answer. They are, nevertheless, two distinct queries.

25

4 Statistical Semantic Parsing

Unlike the approach taken by Miller (1996) where an explicit generative (semantic) grammar
is used to build a probabilistic model for the parser, our approach does not involve the use
of such a grammar (which may not be readily available for our domains). A different
probabilistic model that does not assume the use of such a grammar is developed. The
model will be described followed by a discussion of probability estimation.

4.1 The Parsing Model

Before we proceed to describe the statistical parsing model we are going to build, let’s first
present some definitions essential to the discussion.

A parser is a relation Parser C Sentences X Queries where Sentences and Queries are
the sets of natural language sentences and logical queries respectively. Given a sentence I,
the set Meaning(l) = {q € Queries | (l,q) € Parser} is the set of logical queries which are
possible interpretations of the given sentence [. Our task here is to learn a semantic parser
that implements the target relation Parser.

A parse state is a tuple (stack,buffer) where stack is a list of lezicalized®® logical forms
(the meaning of a lexical entry) and the buffer is a list of words from the input sentence.
The set States is the set of all syntactically well-formed parse states. A parsing action a;
(which is the ith action of our learned parser and i > 1) is a function a;(s) : InStates; —
OutStates; where InStates; C States is the set of states to which the action is applicable and
OutStates; C States is the set of states constructed by the action (given the input states).
The function ag(l) : Sentence — InitialStates maps each sentence ! to a corresponding
unique initial parse state in InitialStates C States which is the starting state for our learned
parser given [. Suppose our learned parser has n total parsing actions, the partial function
an+1(8) : FinalStates — Queries is defined as the action that retrieves the logical query
from the final state s € FinalStates C States if one exists. Right now, we assume that the
learned parser is complete with respect to the data; there is always a path from the sentence
[to one of the logical queries in Meaning(l). This assumption, however, is not true. Since
the learned parser is derived from the training data, it could suffer from missing certain
parsing actions which are essential to completing a parse if they are not part of the training
data. (This problem is further discussed in Section 6.) Hence, some final states may not
“contain” a logical query and therefore the function a,,; is only a partial function. In cases
where this actually happens, the parser would simply report a failure. A state is called a
final state if there exists no parsing action applicable to it. A path is a finite sequence of
parsing actions.

Given a sentence [, a good state s is one such that there exists a path from it to a logical
query g € Meaning(l). Otherwise, it is a bad state. Since we lexicalize our parse states, the
input sentence [can be constructed from the corresponding given parse state s. Therefore,
the set of parse states can be uniquely divided into the set of good states and the set of
bad states given [and Parser. In other words, we have, States = States™ U States™ where
States™ denotes the set of good states and States™ denotes the set of bad states. Now, we

20We lexicalized logical forms by attaching each logical form on the stack with a buffer that contains the
words from the input sentence that cuased this form to be introduced. See Section 2.3.2.

26

are ready to discuss our parsing model.

Given an input sentence [, the goal of the learned parser is to search for a logical query
G such that the probability of § being in Meaning(l) is maximized. In other words, we want
to find § given [such that

¢ = argmax, P(q € Meaning(l) | | = q) (12)

given that there is a path from [to ¢ (denoted as | = ¢q). Instead of building a probabilistic
model for how likely a logical query would be generated given a sentence (as in most cases
in statistical syntactic parsing), we build a model to estimate how likely a parse from a
given sentence would represent a correct meaning for it.

Now, we need to define what P(q € Meaning(l) | l = q) is. First, we notice that

P(q € Meaning(l) | | = q) = P(s € FinalStates™ | | = s and an11(s) = q) (13)

where FinalStates™ = FinalStates N States™ (the set of good final states). We can drop the
conditions and denote the above probabilities as P(qg € Meaning(l)) and P(s € FinalStates™)
respectively as long as they are assumed in the context of the discussion. This is to say
that the probability that a given logical query (as a result of parsing /) is the meaning for
[is the same as the probability that the final state (from which the logical query can be
retrieved) is a good state (by the definition of a good state). More precisely, given a final
state s produced by parsing [, and ¢ = a,11(s), we have

s € FinalStatest < q € Meaning(l). (14)

Obviously, we need to determine in general the probability of having a good resulting
parse state, or more precisely, P(s;j+1 € OutStates;") for a parse state s;41 and an action a;
where OutStates;” = OutStates; N States™ (the set of good output states). Given any parse
state s; at the jth step of derivation (a derivation is a path from [to ¢) and a parsing action
a; such that sj;1 = a;(s;) (i.e. the action is applicable to s; producing the next state s;;1),
we have

P(s;j+1 € OutStates]) = (15)
P(sjt1 € OutStates | s; € InStates;)P(s; € InStates;) +
P(sjt1 € OutStates; | s; ¢ InStates])P(s; ¢ InStates])

where InStates; = InStates; N Statest (the set of good input states to the action a;). So,
the meaning of the equation is that the probability of a certain parse state being a good
one is the sum of the probability that assuming the previous parse state is a good one,
the application of the action would produce a good next parse state and the probability
that assuming it is a bad state, the parsing action would produce a good one, with these
probabilities being weighted by the probabilities that the previous parse state is a good one
or a bad one respectively. Since by definition no parsing action could produce a good parse
state from a bad one, the second term is simply zero and we have

P(sj+1 € OutStates) = P(sj4+1 € OutStates] | s; € InStates;)P(s; € InStates;).
(16)

27

Now, we are ready to derive a method for estimating P(q € Meaning(l)). Suppose
q = ant1(Sm) (i.e. s, is the final state), we have

P(q € Meaning(l)) (17)
= P(sm € FinalStates™)
= P(sm € FinalStates™ | s;,—1 € InStates, _)P(sm—1 € InStates))

= P(sm € FinalStates™ | s;m—1 € InStates] _)...
P(s; € OutStates;i;._1 | sj_1 € InStatest_l) .
P(sy € OutStates], | s1 € InStates))P(s1 € InStates;.)

where aj, denotes the index of which action is applied at the kth step. Since the initial state
is always a good state, we know that

P(sy € InStates)) = 1. (18)
So, now we have
m—1
P(q € Meaning(l)) = H P(sji1 € OutS’tatest’;j | s; € InStatesng). (19)
j=1

We will proceed to discuss how to estimate the probability of P(a;(s) € OutStates; |
ERS InStates;r) given an action a; and a parse state s.

4.2 Estimating Probabilities for Parsing Actions

Since in CHILL, the collection of positive and negative examples for learning a control rule
for each parsing action facilitates learning a decision list for the set of parsing actions, the
probabilities of the parsing actions are, therefore, estimated according to such a model.
Alternatively, one could collect negative examples from all the parsing actions and treat the
parser as a set of independent parsing actions instead of a decision list. This issue will be
further discussed in Section 6. Although the current method may not be the best one, its
resemblance to that of learning a decision list makes a direct comparison of the performance
of the two approaches of parsing more intuitive since the learner in each system is given
exactly the same set of positive and negative examples. Since there will be no learning
for the last parsing action a,, in a decision list (as there will be no negative examples
collected for it), we will treat the probability estimation for it differently. Let’s begin with
a discussion on how probabilities are estimated for the actions a1,...,a,_1.

The result of learning control rules for the parser is that each parsing action has learned
a set of hypotheses which serve to identify the conditions under which that parsing action
should be applied. These hypotheses can be viewed as the contextual information that would
be useful for making the decision of whether to apply the action or not. Some hypotheses
may be more “important” than others in the sense that they carry more weight in the
decision. The committee of hypotheses, like a set of features, can be used to estimate the
probabilities of the goodness of various actions given a parse state. A weighting parameter

28

(or a priority weight) is also included to lower the probability estimate depending on the
position of the action a; in the decision list of actions applicable to the given parse state;
the further down an action is in a decision list, the less likely it will be applied. For actions
a; where1 <3 <n-—1:

P(a;(s) € OutStates; | s € InStates]) = pPos(-1 Z AP (a;i(s) € OutStates; | hi) (20)
hpeH

where s is a given parse state, pos(i) is the position of the action a; in the list of actions
applicable to state s, Ay and 0 < pu < 1 are weighting parameters , and H C @ is the
chosen subset?! of hypotheses learned by the induction algorithm for the action a;. The
sum of A\ for all k is equal to one. In other words, the probability of an action is estimated
by linearly combining the conditional probability estimates of each of the learned models
and then weighting by an exponential decay factor depending on the position of the action
in the decision list. We will further discuss how A, and P(a;(s) € OutStates; | hy) are
determined. Now, we are ready discuss the probability model for the action a,.

To build the probability model for the last action a,, we could use the maximum likeli-
hood estimate since we have a relatively large number of examples.2? However, using just
the ML estimate directly would mean we are ignoring any contextual information that might
be available (particularly since there will be no learning for the last action). Recall that
equation (20) will yield an estimate for the goodness of each action a; to a,_1. We devise
a simple test that checks if the maximum of the set of estimates A(s) obtained from the
subset of the actions aq,...,a,_1 applicable to s is less than or equal to a certain threshold
a. The intuition is that the goodness of the last action is conditioned on whether the best
estimate of any previously applicable action is no greater than a certain threshold. If A(s)
is empty, we just take the maximum as zero. More precisely,

c(an(s)e OutStatesy) . -
P(an(s) € OutStates; | s € InStates,) = c(sc InStatesT) if maz(A(s)) < o
0 otherwise

(21)

where « is the threshold?, c(a,(s) € OutStates,’) is the count of the number of good states
produced by the last action, and c(s € InStates,’) is the count of the number of good states
to which the last action is applicable.

Now, let’s discuss how P(a;(s) € OutStates; | hy) and X are estimated. Suppose that
D is the set of positive and negative examples?* collected for an action a;. Since the set of
training data may have noise, we need to include this factor in our estimation. Noisy data
will only appear in the set of negative examples, if any. Positive examples cannot be noisy
since they are collected from example analysis and if a parsing operator is wrongly applied
to a certain parse state, a correct parse has no chance of being discovered, and therefore it

21'We require that the cardinality of H should not be more than that of the entire set of positive examples.

22The typical number of examples for other actions is usually within the range one to a few hundred.
However, the number of examples for the last action could be around a few thousand.

23The threshold is set to 0.5 for all the experiments performed in the next section.

24The set of negative examples used to induce the hypotheses are collected from parsing operators below
the current operator in the decision list. However, the set of negative examples used here for probability
estimation include those above the current operator. This is done primarily for the reason of accuracy of
estimation.

29

will not be considered a positive example of the operator. The degree of noise assumed is
given by the parameter 3 stated in equation (11). We need to first compute the probability
of having noisy negative examples given 8 and a particular set of examples D. If we think
of B as the lower bound on the degree of “noise freeness” in D, then

. _p(1-p)
1+ (22)
is an estimate on the number of negative examples allowed to be covered by a clause where

p is the number of positive examples in D. Now, if we define

e if,<n
= n - 2
0 { 0 otherwise (23)

where n is the number of negative examples in D, then 8 is an estimate of the probability
that a negative example is corrupted. Now, if hy |= s (i.e. hy labels s as a good state for
this operator), we have
Pe + 0 *Ne
P(a;(s) € OutStates] | hy) = =———= 24
(ai(s) Fih =2 24)
where p, is the number of positive examples covered by hy and n. the number of negative
examples covered. Otherwise, if hy [~ s, we have
+60-n
P(a;(s) € OutStates; | hy) = Pu? Tu (25)
Py + 1y
where p,, is the number of positive examples rejected by hy and n, the number of negative
examples rejected.
One could use a variety of linear combination methods to estimate the weights Ag.
However, we have a taken a very simple approach here. \j is determined by the complexity

of the hypothesis hy:
size(hg)™!

k= .
i) size(hy) !
Intuitively, it means the more complex an hypothesis is, the less probable it is and therefore

the less weight it carries in a combined decision. We will discuss other linear combination
methods in Section 6.

(26)

4.3 Searching for a Parse

To find the most probably correct parse, the parser employs a beam search starting with the
initial parse state. This is similar to using a beam search to find the most probable parse
tree in probabilistic syntactic parsing (Ratnaparkhi, 1999; Collins, 1996). At each step of
the derivation, the parser finds all the parsing actions that are applicable to the parse state
and calculates the probability of correctness of each of them using equations (20) and (21).
It then computes the probability of the correctness of each derivation up to that point using
equation (19). The search queue is sorted by the probability of each derivation. If a parse
state cannot be further expanded (i.e. the parser cannot find any applicable action to the

30

Procedure ProbParse

Input:

s: the input sentence

B: the beam size

Q@: the parse queue

Ops: the set of parsing actions
Output:

Query: the resulted logical query

So := the initial parse state created from input sentence s
Q := [So]
While Head(Q) does not contain a query Do
For each parse state S; € Q Do
Find the sublist of parsing action A; from Ops which are applicable to S;
If A; # () Then
Expand S; by each action in A; to get a list of children parse states in Q;

Else
If S; contains a query Then
Qi = [Si]
Else
Q=10
End If
End If
End For
@ := the best B parse states from Ul. Q:
End While

Query = the query contained in Head(Q)
Return Query
End Procedure

Figure 8: The parsing algorithm using a beam search

parse state), the parser checks if a logical query can be obtained from the parse state. If so,
the parse state remains in the parse queue. Otherwise, it is removed. The parser stops when
a complete parse is found on the top of the parse queue or a certain time limit is passed
(in which case a failure is reported by the parser). A summary of the parsing algorithm is
shown in Figure 8 (assuming a parse can always be found).

5 Experimental Results

5.1 The Domains

Three different domains are used for demonstrating the performance of the new approach.
The first one is the United States Geography domain. The database contains about 800
facts implemented in Prolog as relational tables containing basic information about the
U.S. states like population, area, capital city, neighboring states, major rivers, major cities,
and highest and lowest points and their elevation. It also contains information about rivers

31

@] Netscape: The Restasrant Guery Sysiem [k 3] 8] Metscape: Resull from Restasrant Guery System [

Fie Edi View Go Communicator Hep | File Edt View Go Communicalor Help |
<« = 3 4 =2 m 4 @ - <« ¥ 3 4 =2 m 4 @ -
Back Forward Reload Home Search Netscape Print Security Siop Back Forvard Reload Home Search Netscape Print Security Siop

" Booknarks & Location [nttp: //www. Co . utexas . edu/users/ /@) Whats Relsked| 1 " Bookmarks b Location fnt tp: //wwew. s . utexac . edu/users, /| @) Whats Relaied

& Intemet 4 Loakup 4§ New&Cool i & Intemet 4 Loakup 4§ New&Cool

THE QUERY YOU POSTED:

Wnere is a good Chinese restaurant in Palo Alto?
RESULT:

RESTAURANT NAME HOUSE NO. STREET TV RATNG
Al g face to a N. Califi GHINA DELIGHT RESTAURANT a6t EMERSONST PALG ALTO 32
Dnmhaw CHINA LION 345 BL CAMING REAL ~ PALG ALTO 33
FRESH TASTE MANDARIN KITCHEN 3il ELCAMING REAL PALG ALTO 35
Subimil your query (a full English question, not keywords): NG NING SZECHWAN HUNAN GOURMET 443 EMERSON 5T PALG ALTO 33
Where is a good Chinese restaurant in Pale Altc? MANDARIN GOURMET — RAMONAST PALO ALTO 29
MITGS VILLA 1700 EMBARCADERD KD PALC ALTO 34
I' MR CHAUS CHINESE FASTFOOD 81 ELCAMING REAL PALG ALTO 2
PEKING DUCK RESTAURANT wil] ELCAMINO REAL PALG ALTO 20
RANGOON RESTAURANT 565 BRYANT ST PALGALTO 31
SUHONG RESTAURANT 4ol ELCAMING WAY ~ PALC ALTO 32

THE SQL GENERATED:

SELECT GENERALINPD NEST_NANE, LOCATIONS. HO
5 ETREET_NANE, | CATIONS.C ITV_NAME, [,[u[;h,num PFATING
TONS

Contact webmaster al rperfiics.utexas.edr

o [T | s s aw @ 2] [oo Ak e a@ @ 2|

Figure 9: Screenshots of a user’s request in English

and the population of cities. A handcrafted parser called Geobase was constructed for the
domain by people who built the database. We used this parser in our experiments for the
comparison of results.

The second application is a restaurant database query system. The database contains
information about restaurants in the Northern California including the Bay area. The types
of information in the database are the name of the restaurant, its location, the specialty
of the restaurant and a rating on the quality of the restaurant given by customers. The
database currently contains more than nineteen thousand entries (or rows in a relational
table). The purpose of the application is to provide tourists with restaurant information
like many of the online dinning guides on the Web. While most of them require a user to
select entries (from a possibly large tables) or enter them in some kind of HTML forms to
access the information in their databases, we have provided a natural language interface to
the database so that a user can ask questions in English. Sample screenshots of the Web
interface developed for the system is shown in Figure 9.

The third domain consists of a set of 300 computer-related job postings, such as job
announcements, from the USENET newsgroup austin.jobs. Information from these job
postings are extracted to create a database (Califf & Mooney, 1999) which contains the
following types of information: 1) the job title, 2) the company, 3) the recruiter, 4) the
location, 5) the salary, 6) the languages and platforms used, and 7) required or desired
years of experience and degrees. This database is updated on a daily basis and it currently
has several thousand entries.

32

5.2 Experimental Design

The U.S. Geography domain has a corpus of 560 sentences. Approximately 100 sentences
were collected from user requests?® on the Web for the first few months?® since the system
was put into use and the rest were collected from undergraduate students in our department.
To compare the new system to the original one, we included the test result for the subset of
250 sentences which were used in (Zelle & Mooney, 1996) as well. The restaurant database
query system has a corpus of 250 sentences and they are all artificially generated by hand
(and partly based on user requests). The job database information system has a corpus of
400 sentences. Again, they are all artificially made with the help of a simple grammar that
generates certain obvious types of questions people may ask.

The experiments were conducted using 10-fold cross validation. The corpus is divided
up into ten partitions of equal size, each trial uses a particular partition as the test data
and the rest of the partitions are used for training. The test result is the average of the
results of the ten trials. In each test, the recall (a.k.a. accuracy) and the precision of the
parser are reported. Recall and precision are defined as follows:

Recall — # of correct queries produced (27)
N # of sentences

Precisi # of correct queries produced (28)
recision = .
of successful parses

The recall is the number of correct queries produced divided by the total number of sentences
in the test set. The precision is the number of correct queries produced divided by the
number of sentences in the test set from which the parser produced a query (i.e. a successful
parse). A query is considered correct if it produces the same answer set as that of the correct
logical query.

5.3 Results

A beam size of five and a window size of two were used by the TABULATE algorithm for
all the experiments. The results of running the 10-fold cross validation test on the corpora
are shown in Table 6. Different beam sizes were also used by the probabilistic parser to
illustrate their effects on the performance of the parser.

In the experiment with 250 sentences from the U.S. Geography domain, we reported
the following results: 1) the recall (and precision) of CHILL using TABULATE (only the best
hypothesis from the committee of hypotheses was used as the control rule for a parsing
action), 2) the recall (and precision) of CHILL with probabilistic parsing (ProbParse) using
different beam sizes, 3) the recall of the original CHILL (which uses the CHILLIN induction
algorithm), and 4) the recall of Geobase which is a hand-crafted parser built for the domain.

The best recall and precision of CHILL with probabilistic parsing were 80.40% and
88.16% respectively using a beam size of twelve while that of CHILL using TABULATE were
75.60% and 92.65% respectively. The performance of the probabilistic parser degraded
when decreasing the beam size. The drop in performance, however, was not rapid except

25We have a log of all online user requests. The current total amounts to nearly four thousand.
26The system has been deployed for almost two years.

33

Geo250 Geob60 Jobs400 Rest250
R P R P R P R P

CHIiLL+ProbParse(12) 80.40 88.16 71.61 78.94 80.50 86.56 99.20 99.60
CHILL+ProbParse(8) 79.60 86.90 71.07 79.76 78.75 86.54 99.20 99.60
CHiLL+ProbParse(5) 78.40 87.11 70.00 79.51 74.25 86.59 99.20 99.60
CHILL+ProbParse(3) 77.60 87.39 69.11 79.30 70.50 87.31 99.20 99.60

CHILL+ProbParse(1) 67.60 90.37 62.86 82.05 34.25 85.63 99.20 99.60

CHILL+TABULATE 75.60 92.65 69.29 89.81 68.50 87.54 99.20 99.60
CHILL+CHILLIN 68.50 - - - - - - -
Handcrafted Parser 56.00 - - - - - - -

Table 6: Results on all the experiments. Geo250 consists of 250 sentence from the U.S. Ge-
ography domain. Geob560 consists of 560 sentences from the same domain. Jobs400 consists
of 400 sentences from the job postings domain. Rest250 consists of 250 sentences from the
Northern California restaurant domain. R = Recall and P = Precision. ProbParse(B) is
the probabilistic parser using a beam size of B. The handcrafted parser used for the U.S.
Geography domain is Geobase.

for the case when the beam size was one. The recall of the original system using CHILLIN
was around 68.5% and that of Geobase was 56.0%.

In the experiment with 560 sentences from the same domain, the same set of results were
reported except those of the original CHILL and the Geobase. The best recall and precision
of CHILL with probabilistic parsing were 71.60% and 78.94% respectively using a beam size
of twelve while that of CHILL using TABULATE were 69.29% and 89.81% respectively. Again,
the drop in performance of the probabilistic parser due to decreasing the beam size was not
rapid (around -2% for -9 in the beam size) except when the beam size was one.

The same set of results were reported for the experiment with 400 sentences from the
USENET newsgroup job postings domain. The best recall and precision of CHILL with
probabilistic parsing were 80.50% and 86.56% respectively while that of CHILL using TAB-
ULATE were 68.50% and 87.54% respectively. This time, however, the drop in performance
of the probabilistic parser using a smaller beam size than twelve was very significant (around
-10% for -9 in the beam size and around -50% for -11 in size).

In the last experiment with the 250 sentence corpus from the Northern California restau-
rant domain, the best recall and precision of CHILL with probabilistic parsing were 99.20%
and 99.60% respectively which is the same as that of CHILL using TABULATE. Figure 10
and Figure 11 show the performance of the probabilistic parser using various beam sizes in
the different domains.

5.4 Discussion

Before we proceed to discuss the results, let’s consider some of the potential advantages
and disadvantages of the present approach. Then, we can discuss the results with an
understanding on the conditions under which the system would perform well.

34

100 -

B =] ea)

80

70

% Recall

60 - -

50 i

Corpus 1 —+—

! Corpus 2 ---x---
40 | Corpus 3 ---%--- E
‘ Corpus 4 &

30 1 1 1 1 1
0 2 4 6 8 10 12

Beam Size

Figure 10: The recall of the parser using various beam sizes in the different domains

First, the present approach is largely motivated by the observation that the original
system is very brittle; it takes only one overly general (or specialized) control rule to miss a
correct parse. The use of a probabilistic approach in parsing adds a layer of robustness to
the system by considering a set of parses where the overall quality of a parse is considered.
This allows room for making some mistakes during the course of parsing a sentence because
of the presence of imperfect control rules. The probabilistic parser will perform better
than the original approach if the correct parse has the best overall quality (i.e. the most
probable) and the beam size is big enough to overcome local minima which are places where
the parser makes mistakes. The second advantage is the use of a probabilistic classifier (by
combining multiple learned models). Using a committee of hypotheses can usually perform
better than using just a single hypothesis. This has been demonstrated in other domains
as well.

While a probabilistic approach has potential advantages in the robustness of the system,
it relies on the precision of probability estimation. If there is a lack of data in a domain, it
could be hard to achieve a certain level of accuracy required for good performance of the
system and very often this means replying on some default models may be necessary. A
second potential disadvantage would be the decrease in precision since considering a set of
parses would most likely lead to outputing more spurious parses by the system. A third
potential disadvantage would be the amount of time needed to successfully find a parse.

Now, let’s consider the general performance of the different systems in all the domains.
The experimental results from the different domains demonstrated that the system did gain
robustness because of considering a set of parses; the performance of the system increased
monotonically with the beam size in most of the domains. It was most apparent in the
third experiment (400 sentences from the job postings domain) where the system signifi-

35

100 O T =] T = T & T t

95 - Corpus 1 —+— -
Corpus 2 ---x---
Corpus 3 ---%---

Corpus 4 -
c 90
il
i)
[
o
o
S g5t -
X\
80 SO [— e E
75 1 1 1 1 1
0 2 4 6 8 10 12
Beam Size

Figure 11: The precision of the parser using various beam sizes in the different domains

cantly outperformed the original system. However, it was also the case that there might
be a lack of data (at least in some of the domains) since using a beam size of one (which
rendered the search effectively a best first search like that of using a decision list) would
lead to significantly worse performance than the original system; the probabilistic classifier
alone was not performing better than that of a decision list. Precision of the system some-
what decreased but not by a significant amount except in the second experiment. All the
experiments were run on a 167MHz UltraSparc work station in Sicstus Prolog. Although
results on the parsing time of the different systems were not formally reported here, it was
noted that the difference between using a beam size of three and the original system was
less than two seconds (i.e. the average amount of time required to find a successful parse)
in all the domains but significantly increased to around twenty seconds when using a beam
size of twelve.

While there was an overall improvement using the new approach (as far as recall is
concerned), its performance varied greatly from one domain to another. In the second
experiment, the best improvement in recall was merely around 2%. Using the same beam
size, however, the system had a +10% improvement in recall over the original system.
This suggests that there maybe other factors in the picture specific to a particular domain.
Currently, it is not certain that what these factors might be but it is suspected that factors
like the quality of the lexicon used by the system, the relative amount of data available
for calculating probability estimates, and the problem of “learning an incomplete parser”
with respect to test data might all be potential bottlenecks in the picture. Finally, the
performance of the two systems were very close to each other in the last domain and their
performance were near perfect in both the recall and the precision. This is primarily because
the domain was relatively easier; the systems achieved 90+% in recall and precision given

36

only roughly 30% of the training data. (These results on training the systems with various
amount of data are not shown here since they have not been collected for all the domains.)

The recall of CHILL using TABULATE was significantly better than that of using CHILLIN.
This shows that the use of background knowledge with theory constants and beam searching
the hypothesis space builds better control rules for the parsing actions. Our experience is
that (by inspecting the learned control rules) hypotheses discovered by TABULATE tend to
be more general and readable than those of CHILLIN (given the same set of positive and
negative examples). Finally, Geobase performed the worst among the results which was
largely due to hand-crafting rules that do not scale up with the task.

6 Future Work

There are several areas where we would like to look into as possible directions for future
work. Each of these areas will be discussed here. More precisely, we would like to explore
the first eight listed areas below and accomplish them as part of the future work of this
proposal. The last two suggested areas for future work are interesting directions for a more
long term goal of the project.

6.1 Performing More Extensive Experiments

Currently, the biggest corpus we have experimented with is the one in the U.S. Geography
domain with 560 sentences. It is interesting to expand some of the corpora in the different
attempted domains and see if the approach would scale up well with the tasks. In all the
domains, we have implemented online demos accessible through the World Wide Web to
collect real world data. For instance, in the Geography domain, the NLI system has been
deployed for more than two years and more than 4,000 requests to the database have been
made so far.

6.2 Dealing with Incompleteness

The assumption that the parser is complete with respect to unseen data (which means there
is at least one correct parse for each input sentence that can be parsed into a query given
the parser) simply does not hold. In other words, there are cases where the parser just
cannot proceed because the “right” parsing operator is missing. This is due in large part
to the fact that the parser is acquired from training examples; only parsing operators used
to parse the training examples are learned but there may be parsing operators required to
parse the test cases that are not used for parsing the training data. One way to solve this
problem is to allow the parser to “invent” parsing operators when it comes to an impasse
due to missing the right operators by inspecting the current parse state. More precisely,
we can invent operators for COREF_VARS, DROP_CONJ, and LIFT_CONJ by checking if
the remaining predicates on the parse stack can be further processed. For instance, if there
is a predicate on the parse stack that can be dropped into the body of a meta predicate,
we can try dropping it and see if a correct query would be produced. We cannot invent
operators for INTRODUCE since we do not have the target logical query for the sentence.
We do not need to invent operators for SHIFT.

37

The estimation of probabilities for these “invented” parsing operators, however, are
different from the current approach since it cannot be based on any training data at all.
One potential method of estimating their probabilities is by estimating the probability that
given, for instance, a DROP_CONJ operator in the existing parser, the application of the
operator to a parse state would give a good resulting parse state. This method is similar to
estimating the probability of a grammar rule in a probabilistic context-free grammar.

We incorporated the ability to invent operators in the existing parser used by CHILL.
Preliminary results of the different domains were around 8% to 10% improvement in recall
and precision. (The control rules were learned using TABULATE.)

6.3 Improving Precision

Second, we would like to look into ways to improve the precision of the parser. One possible
way is to implement a test on the resulted parse queue and see if the probability of “best”
parse is significantly higher than, say, the second parse. A set of parses with similar proba-
bilities could suggest that no correct parse has been found (or perhaps the question is truly
ambiguous). Problems with parsing precision can also be partially overcome by tackling
the problem of parser incompleteness since improving the recall of a parser (significantly)
would probably improve the precision as well.

Another possible avenue is to consider mapping all queries found by the parser back
to English (which can be done by reversing the mapping of the lexicon and inspecting the
structure of the logical query) and let the user pick the right interpretation (if any) in cases
where the best query found is not significantly better than the second query. This potentially
allows online learning from user input which will be further discussed in Section 6.8 below.

6.4 Exploring Various Linear Weighted Combination Methods

Various methods for estimating the weights in a linear evidence combination model have
been developed: using a EM algorithm for iterative weight updating, Bayesian combination
(Buntine, 1990), and Likelihood combination (Duda, Gaschnig, & Hart, 1979). In partic-
ular, we would like to explore the Bayesian combination method since it is closest to the
optimal Bayes classification. More precisely, the method estimates the probability of a class
¢ given an example z, the training data D, and the set of hypotheses H produced by the
learning algorithm by:

P(c|e,H)=) P(c|z,h)P(h | D) (29)

hycH

P(c | z,hy) can be estimated according to equations (24) and (25), or better, using ap-
propriate smoothing techniques when there is a lack of training data which will be further
discussed below. The estimation of P(hy | D) is not going to be discussed here since it
involves a heavy amount of details. It would also be interesting to improve the existing
method so that it would be tolerant to the presence of noise.

6.5 Improving Probability Estimation Using Smoothing Techniques

Currently, some conditional probabilities are overestimated (e.g. the results are too close to
1.0) for poorly learned models resulting in worse classification performance. The m-estimate

38

(Cestnik, 1990) method of smoothing the ML estimates for the conditional probabilities is
not entirely satisfying due to the extreme lack of data in some cases. New smoothing
techniques that base on a priori assumptions about the quality of the learned models may
need to be developed. One potential method is to linearly interpolate an additional model
(Stanley & Goodman, 1996; Jelinek & Mercer, 1980):

Pinterpolated(c | hk) =)\P(C | hk) + (1 -)\)Q(hk) (30)

where c is a class, hy is a hypothesis in the set of hypotheses produced by the learning
algorithm, 0 < A < 1 is a parameter, Pjpterpolated(- |) is the interpolated probability
estimate, P(- | -) is the ML estimate, and Q(hy) represents a default model of hy, for
instance, the a priori probability of hy. So, if hy is a poorly learned model, Q(hy) would
be a smaller value than the ML estimate. Therefore, the interpolated estimate is less than
the (overestimated) ML estimate.

6.6 Abandoning The Decision List Framework

The current approach is modelling the semantic parser as a decision list. Negative exam-
ples for a parsing action are collected only from parsing actions further down in the list,
an exponential decay factor is used to model the a priori probability of a parsing action
depending on its position in the decision list, and an explicit model for the last parsing
action is built to improve performance. However, such a restriction on modelling a decision
list is not necessary. A new way of modelling the semantic parser is to consider the parsing
actions as a set instead of a decision list, and negative examples will be collected from all
other parsing actions. The potential benefit of this new way of collecting examples is that
the learning algorithm can learn a more discriminative set of hypotheses. In the current
approach, parsing actions that are closer to the end of the decision list have fewer training
examples and therefore are more prone to poor probability estimation and very often suffer
from no learning at all. However, in practice, there may be a lack of training data for some
parsing actions, and a more realistic approach would be combining decision list modelling
with this new framework since some parsing actions may not have any negative examples
in the training data (and therefore no learning is possible).

6.7 Meta Learning

While there is a lack of data for some parsing actions, learning the default model for the
last parsing action SHIFT is not an easy task, however, since one normally can have up to
several thousand training examples for the last parsing action. This suggests that directly
learning models that capture contextual information for these great number of parse states
may not be a very effective approach to the problem. However, if one considers learning
models that capture the results of the decisions made by other parsing actions, a potentially
much more compact set of hypotheses can be learned for the default parsing action. This
is similar to meta learning in the sense that a new set of examples have to be generated for
the last parsing action by including information on parsing decisions made by other parsing
actions.

39

6.8 Online Learning

The idea of online learning is that given that the parser produces a set of queries and the
correct one is somewhere in the set but not the best one (i.e. not the most probably correct
one) and that the user can give feedback to the system, for instance, by picking out the
right one for the system from the set of queries, the parser can learn online with this new
piece of information by appropriately adjusting the weights of the multiple learned models
for some subset of parsing actions. More precisely, suppose S is the set of queries found
by parsing the sentence [, ¢ is the best query in S, ¢* is the correct query in S, and the
following are the derivations of [= g and [= ¢* respectively:

l—>s81--8p, 221 Ty = ¢
L8182y Ym > ¢

A transition from state a to b, a — b, represents a single step in a derivation. We will
use the term transition probability in this context to represent the conditional probability
P(a*t | b") of the transition from state a to b where s™ represents that the state s is a
good state. Since we know that P(q* € Meaning(l)) < P(q € Meaning(l)), some of the
transition probabilities in the derivation [= g are overestimated, or some of the transition
probabilities in the derivation | = ¢* are underestimated. We assume that both cases
occur here. Let X be the set of transitions whose probabilities are overestimated in the
derivation | = g and Y be the set of transitions whose probabilities are underestimated
in the derivation [= ¢*. The goal of the learning is to reduce the classification errors of
the classifiers that produce the probabilities from the sets X and Y. Before we proceed
to discuss how this may be achieved, we need to first discuss how the sets X and Y are
determined.

Since all the transitions from s; up to sp are shared by both derivations, they will
not be part of X or Y. (Altering their probabilities will not make P(q* € Meaning(l)) >
P(q € Meaning(l)).) Let’s consider the derivation ! = g. We know that the states s; to
sy are all good states and the rest are bad states. Since s is a good state and z; is a bad
state, the probability, P(z] | s,‘c"), of the transition sy — x; is overestimated. (In fact, it
should be zero.) The set X simply consists of this transition. The other transitions are
not included in X since we are not certain if their probabilities are overestimated. The set
Y can be determined heuristically by removing a transition one at a time from sz to Y,
and checking if the product of the rest of the transition probabilities is now greater than
P(q € Meaning(l)). Transitions with lower probabilities are considered first. The goal is to
find a minimal set of transitions whose probability estimates if improved would yield the
most improvement to the estimation of P(¢* € Meaning(l)). Now, we are ready to discuss
how the classifiers that produce these probability estimates can be improved.

We will restrict our discussion to the case where the transition in the set X or Y is
not done by a SHIFT operator. (The case where a SHIFT operator is involved will be a
little more complicated.) For any transition in the set X, since the corresponding classifier
produces an overestimation of the transition probability, we need to adjust some of the
parameters of the classifier so that this probability can be lowered. Similary, we need to
adjust the parameters of the classifiers for the set Y so that the probability estimates of the
transitions are increased. More precisely, suppose the classifier has the set of models h; with

40

the set of weights A\;. We can change the weights A; so that the probability estimates are
maximized (or minimized). However, to avoid overfitting one single training example, one
needs to define a learning parameter (similar to that of a perceptron learning algorithm) and
update the weights according to the amount of errors made. In this case, we can assume
that the target is one if the goal is to maximize the probability estimates; otherwise, the
target is zero. However, we will perform only one step of the computation since we do not
want the weight updating procedure to overfit a single training example. This is similar
to performing one step of weight updating on one particular misclassified example in a
perceptron learning algorithm (or other linear weight updating algorithms).

6.9 Probabilistic Relational Models

Recently, there has been research work on learning probabilistic relational models (PRMs)
for databases (Friedman, Getoor, Koller, & Pfeffer, 1999) which generalizes the traditional
approach of learning Bayesian networks (Pearl, 1988). Like the learning of Bayesian net-
works, a PRM learns a structured representation of the probabilistic model; structural
dependency between attributes (or random variables) are captured and a complex proba-
bility distribution is built over them. However, in PRM learning, one can go beyond the
bound of a propositional (or attribute-value based) representation and build the learning
framework on a first-order representation which captures relational knowledge present in
the domain. We would like to explore this relatively new type of learning approach to a
problem where both relational knowledge and probabilistic models are necessary for the
task and see if we can build our classifiers using techniques from this new approach.

6.10 Discourse Processing

The current approach to database information retrieval through a natural language interface
assumes that all the necessary information to interpret a user database access is present
in the context of the sentence. In reality, however, information exchange happens more
often through a dialog. This suggests that extending the current approach to allow a dialog
between the user and the computer would be desirable. However, this requires processing of
discourse context and information and integrating them with the meaning of the sentence to
fully interpret the meaning of a user database access (Miller et al., 1996; Koppelman, Pietra,
Epstein, & Roukos, 1995). More precisely, given a discourse history H (which contains all
the previous user input sentences in the current session of a database access), we need to
find the query ¢ given a sentence [such that

¢ = argmax, P(q € Meaning(l,H) | Ismi1:1 = 8m ATH(Sm; Smi1) A Smy1 = q) (31)

where Meaning(l, H) is set of correct queries given the sentence [and the discourse history
H, s, is the final state of parsing the sentence [using the acquired semantic parser (without
operator invention), rg is a relation that relates a (final) state s,, to a possible completion
Sm+1 of the state given H which is further parsed into the query ¢ (possibly with operator
invention). A completion of a state given the discourse context is the result of a transfor-
mation of the state using the information from the context. Since the discourse context H
is now part of the probabilistic model and it needs to be included in the new model.

41

The definition of a good state also needs to be extended as well since we now have a
pre-discourse and a post-discourse model. The pre-discourse model is a probabilistic model
of parsing the sentence [into a certain good final state s,,. Discourse processing is primarily
handled by properly constructing the relation rgy and building a probabilistic model for it.
The post-discourse model is a probabilistic model of parsing the resulting completed state
Sm+1 into the target query ¢. It is immediately obvious that our current approach is a
special case where H = (), 7y is the identity relation (which relates everything to itself),
and $pm = Smi1. Suppose Ry(sm) = {s | ra(sm,s)} (i.e. the set of possible completions
of s;, given H). A good state x in the pre-discourse model is one such that there exists a
“path” from it to the target query, or more precisely, x = y and there exists z € Ry(y)
such that z = ¢. A good state in the post-discourse model can simply be the same as
the definition of a good state in our current framework. It is interesting to verify that the
definition of a good state in the pre-discourse model is reduced to that of the post-discourse
model when H = () and rpg is the identity relation. Now, we can construct a probabilistic
model of P(q € Meaning(l, H)) (the conditions are dropped for the simplicity of discussion):

P(q € Meaning(l, H)) = (32)
m—1 n—1

MaTs,. 1€Ry(5m) H P(S;:—l | Sj) ’ P(S'r—:.—l—l ‘ S:—niH) : H P(S;_—H ‘ S;_)
i=1 j=m+1

where s,, is a final state in the post-discourse model and =™ represents generally the notion
that the state z is a good state in either models. The three terms on the right side of
the above equation (from left to right) represent the pre-discourse model, the discourse
processing model, and the post-discourse model respectively. The estimation of probabilities
in the post-discourse is the same as that of our current approach. Intuitively, the above
equation means that the probability of a query ¢ being a correct meaning of a sentence
[given the discourse context H is the product of the probability that [can be parsed to
some good final state s, (in the pre-discourse model), the probability that the resulting
transformed state (given s, and the discourse context) sp,+1 is a good state (in the post-
discourse model), and the probability that this state is parsed to some good final state s, (in
the post-discourse model). Since in general there could be more than one path from [to g,
we just choose the one that has the maximum probability. Of course, more work still needs
to be done to verify that the probabilistic model defined above is a reasonable one. Let’s
go through a trace of the following example to illustrate the task of discourse processing.
We assume that the relation rgy has been properly constructed already. Suppose we have
the following scenerio in a database access session:

USERI1: What is the capital of Texas?
SYSTEM1: < Display the answer Austin>
USER2: What about California?

SYSTEM2: < Display the answer Sacramento>

The system starts with an empty discourse H = () when the session begins. Therefore,
the first question asked by the user is simply parsed to a logical query like we did before.
More precisely, we have the following parse state and logical query at the end of the parsing:

42

Parse Stack: [answer(C, (capital(C,S), const(S,stateid(texas)))):[?.texas,of capital,the,is,what]]
Input Buffer: |[]
Query: answer(C, (capital(C,S), const(S,stateid(texas))))

Now, the user asks the second question and the discourse history contains the final parse
state and the logical query as shown above. The system first parses the sentence to some
final state and suppose we have the following:

Parse Stack: [const(_,stateid(california)):[?,california], answer(_,_):[about,what]]
Input Buffer: |[]

At this point, the system constructs a possible completion of the final state given the
discourse context. Let’s assume that there is only one completion. The following is a rea-
sonble possible completion given the discourse context:

Parse Stack: [capital(_,_):[], const(_,stateid(california)):[?,california], answer(_,_):[about,what]]
Input Buffer: |[]

In this case, we assume that the system recognizes that the user is asking for informa-
tion about the capital city of California and it therefore adds the necessary predicate on the
parse stack. After that, the system proceeds to parse the resulting state and we finally have:

Parse Stack: [answer(C, (const(S,stateid(california)), capital(C,S))):[?,california,about,what]]
Input Buffer: |[]
Query: answer(C, (const(S,stateid(california)), capital(C,S)))

Now, we have a good final parse state and the system can proceed to retrieve the an-
swer from the database. The above scenerio is, of course, an imagined example of what a
real database access session could look like. Future work would be focusing on developing
a method for constructing the relation given the discourse context and the probabilistic
model for it.

7 Related Work

Our approach is novel in the sense that it combines the strength of a relational and statistical
learning approach to the problem of semantic parsing. There are other (relatively recent)
approaches to the same problem as well, and we are going to briefly review two related
but different pieces of work on semantic parsing here. Both were applied to the task in
the Air Travel Information Service (ATIS) project (Miller, Bobrow, Ingria, & Schwartz,
1994). The goal of the project is to develop a spoken natural language interface for air
travel information like obtaining flight information.

7.1 Semantic Parsing with Discourse Modelling

Miller (1996) describes a system that maps an input user request for flight information to
a corresponding frame structure which will be translated to SQL given a discourse context.
Instead of logical queries, the meaning of a sentence is represented as a parse tree whose
non-terminal nodes contain syntactic and semantic information for the components of the
sentence. For example, the word in in the user request “When do the flights that leave from

43

Boston arrive in Atlanta?” (Miller et al., 1996) is represented as a tree node labelled with
prep (a preposition) and location (a location indicator). A standard frame-slot represen-
tation is used to capture information expressed in a parse tree. The parse tree will be used
to decide what frame type should be used and the slots contain necessary for constructing
the target SQL which hopefully would retrieve the relevant flight information. The parse
tree is also tagged with specific frame and slot contructors. The discourse processing part
only focused on resolving “hidden” constraints in a user request. (Problems like pronoun
resolution, however, are not addressed since they are less relevant to the task.) For instance,
a possible “hidden” constraint in the user request “Which flights are available on Tuesday?”
given the context that the user asked about flight information from Boston to Denver would
be that flights may be referring to only those from Boston to Denver. The statistical model
built for the parser can be broken down into two components: 1) a model for the “pre-
discourse” meaning of a sentence and 2) a model for the “post-discourse” meaning. The
“pre-discourse” model is built for the grammar which is encoded in a recursive transition
network which resembles more to statistical syntactic parsing. In our approach, since we
do not have an explicit grammar constructed for our domains, the model is built directly
for the parsing actions learned from the training data. We do not have a “post-discourse”
model either since our tasks do not assume the database querying is to be done in a dialogue
orient environment. Ambiguity resolution of possible different frames is done by selecting
the most likely one (the product of the two statistical models) given the current discourse
context.

7.2 Using Semantic Classification Trees for Semantic Interpretation

Another system called CHANEL was developed to handle the same task (Kuhn & De Mori,
1995). An intermediate representation language is used to represent the meaning of an input
sentence which can be automatically translated to SQL. The intermediate representation
language has two components: 1) a list of displayed (database) attributes and 2) a set of
constraints over those attributes. This is very similar to the approach we have taken in
the Northern California restaurant domain where we also use a representation language
that can be mapped to either SQL or logical query. In CHANEL, semantic interpretation is
handled by using a semantic classification tree (SCT). An SCT is similar to the standard
decision tree (Quinlan, 1986). The internal nodes, however, contain patterns expressed in a
simplied form of regular expression for matching against an input sentence. These patterns
check for specific combination of words in an input sentence. Training up an SCT is also
very similar to decision tree learning, using the information gain metric. An SCT is built for
each attribute; each input sentence is classified as either positive or negative to whether the
particular database attribute should be included in the displayed attribute list. Creating
a list of constraints is also done by using SCTs. However, it is more involved and the
details will not be explained here. To map a user input to an SQL, the system first creates
a partial parse using a hand-crafted chart parser. The output is transferred to a robust
matcher using these SCT's to create the displayed attribute list and the set of constraints
which will be further translated into an SQL.

44

8 Conclusion

Semantic parsing is an important area in natural language processing and has been proved
useful for tackling realistic NLP tasks like building natural language interfaces. However,
handcrafting such applications is both time-consuming and ineffective, resulting in poor
performance and scalability. Automated parser acquisition is therefore desirable. However,
to avoid robustness problems of building a deterministic parser, one may want to consider
a more probabilistic framework of parsing.

In this proposal, a probabilistic framework for semantic parsing is presented. The frame-
work models a parser directly and does not assume the use of a generative semantic grammar
which may not be available to the domain of interest. A new ILP learning system, TAB-
ULATE, is also introduced which can be used to learn multiple models from a given set of
training data. These multiple learned models are integrated via statistical techniques like
linear weighted evidence combination to produce probabilistic models for learning a seman-
tic parser. Experimental results show that such an approach could outperform a purely
logical approach in terms of accuracy of the parser.

While existing research on integrating statistical and relational learning methods puts
more emphasis on producing a classifier for a certain classification task, the emphasis here
is not just to produce a classification system but also a precise probability model that
would allow good parsing performance. Precision of probability estimation, therefore, takes
an even higher priority. The current system suffered from some of these problems with
probability estimation and therefore performed relatively close to a deterministic parsing
approach in some of the domains where data may not be readily available. Future research
direction would be focusing on further improving some of the problems encountered by the
existing approach and demonstrating its improved ability to automate the construction of
natural language interfaces to databases.

9 Acknowledgements

I would like to extend my gratitude to my supervising professor Dr. Raymond Mooney for
his patience during the course of the work and his timely and critical comments without
which the work could not have come this far. I would also like to thank everyone else
in the committee for their time and effort. Special thanks to the people in the Daim-
lerChrysler Research and Technology Center who made the experimental database in the
Northern California restaurant domain available for research purposes. The research was
supported by the National Science Foundation under grant IRI-9704943 and a grant from
the DaimlerChrysler Research and Technology Center at Palo Alto in California.

References

Abramson, H., & Dahl, V. (1989). Logic Grammars. Springer-Verlag, New York.

Ali, K., & Pazzani, M. (1995). Hydra-mm: Learning multiple descriptions to improve
classification accuracy. International Journal on Artificial Intelligence Tools, /.

45

Ali, K., & Pazzani, M. (1996). Error reduction through learning multiple descriptions.
Machine Learning Journal, 24:3, 100-132.

Allen, J. F. (1995). Natural Language Understanding (2nd Ed.). Benjamin/Cummings,
Menlo Park, CA.

Armstrong-Warwick, S. (1993). Preface (to the special issue on using large corpora). Com-
putational Linguistics, 19(1), iii-iv.

Bahl, L. R., Jelinek, F., & Mercer, R. (1983). A maximum likelihood approach to continuous
speech recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2), 179-190.

Baxt, W. G. (1992). Improving the accuracy of an artificial neural network using multiple
differently trained networks. Neural Computation, 4, 772-780.

Berwick, B. (1985). The Acquisition of Syntactic Knowledge. MIT Press, Cambridge, MA.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Brown, J. S., & Burton, R. R. (1975). Multiple representations of knowledge for tutorial
reasoning. In Bobrow, D.; & Collins, A. (Eds.), Representation and Understanding.
Academic Press, New York.

Buntine, W. (1990). A theory of learning classification rules. Ph.D. thesis, University of
Technology, Sydney, Australia.

Califf, M. E., & Mooney, R. J. (1999). Relational learning of pattern-match rules for infor-
mation extraction. In Proceedings of the Sizteenth National Conference on Artificial
Intelligence, pp. 328-334 Orlando, FL.

Califf, M. E. (1998). Relational Learning Techniques for Natural Language Information
Ezxtraction. Ph.D. thesis, Department of Computer Sciences, University of Texas,
Austin, TX. Also appears as Artificial Intelligence Laboratory Technical Report AI
98-276 (see http://www.cs.utexas.edu/users/ai-lab).

Cameron-Jones, R. M., & Quinlan, J. R. (1994). Efficient top-down induction of logic
programs. SIGART Bulletin, 5(1), 33-42.

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. In Pro-
ceedings of the Ninth European Conference on Artificial Intelligence, pp. 147-149
Stockholm, Sweden.

Charniak, E. (1996). Tree-bank grammars. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pp. 1031-1036 Portland, OR.

Charniak, E., Hendrickson, C., Jacobson, N., & Perkowitz, M. (1993). Equations for part-
of-speech tagging. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pp. 784-789 Washington, D.C.

46

Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted text.
In Proceedings of the Second Conference on Applied Natural Language Processing, pp-
136-143 Austin, TX. Association for Computational Linguistics.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth Interna-
tional Conference on Machine Learning, pp. 115-123.

Collins, M. J. (1996). A new statistical parser based on bigram lexical dependencies. In Pro-
ceedings of the 34th Annual Meeting of the Association for Computational Linguistics,
pp- 184-191 Santa Cruz, CA.

Collins, M. J. (1997). Three generative, lexicalised models for statistical parsing. In Pro-
ceedings of the 35th Annual Meeting of the Association for Computational Linguistics,
pp. 16-23.

Duda, R., Gaschnig, J., & Hart, P. (1979). Model design in the prospector consultant system
for mineral exploration. In Michie, D. (Ed.), Ezpert systems in the micro-electronic
age. Edinburgh University Press, Edinburgh, England.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic rela-
tional models. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99) Stockholm, Sweden.

Gams, M. (1989). New measurements highlight the importance of redundant knowledge. In
European Working Session on Learning (4th: 1989) Montpeiller, France.

Hendrix, G. G., Sacerdoti, E., Sagalowicz, D., & Slocum, J. (1978). Developing a natural
language interface to complex data. ACM Transactions on Database Systems, 3(2),
105-147.

Hirschberg, J. (1998). Every time I fire a linguist, my performance goes up, and other
myths of the statistical natural language processing revolution. Invited talk, Fifteenth
National Conference on Artificial Intelligence (AAAI-98).

Jelinek, F., & Mercer, R. L. (1980). Interpolated estimation of markov source parameters
from sparse data. In Proceedings of the Workshop on Pattern Recognition in Practice
Amsterdam, The Netherlands.

Kijsirikul, B., Numao, M., & Shimura, M. (1992). Discrimination-based constructive induc-
tion of logic programs. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 44-49 San Jose, CA.

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information.
Problems of Information Transmission, 1, 4-7.

Kononenko, I., & Kovacic, M. (1992). Learning as optimization: Stochastic generation of
multiple knowledge. In Machine Learning: Proceedings of the Ninth International
Workshop Aberdeen, Scotland.

47

Koppelman, J., Pietra, S. D., Epstein, M., & Roukos, S. (1995). A statistical approach to
language modeling for the atis task. In Eurospeech 1995 Madrid.

Kuhn, R., & De Mori, R. (1995). The application of semantic classification trees to nat-
ural language understanding. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(5), 449-460.

Kwok, S., & Carter, C. (1990). Multiple decision trees. Uncertainty in Artificial Intelligence,
4, 327-335.

Litman, D. J. (1996). Cue phrase classification using machine learning. Journal of Artificial
Intelligence Research, 5, 53-95.

Manning, C. D.; & Carpenter, B. (1997). Three generative, lexicalised models for statistical
parsing. In Proceedings of the Fifth International Workshop on Parsing Technologies,
pp. 147-158.

Merialdo, B. (1994). Tagging English text with a probabilistic model. Computational
Linguistics, 20(2), 155-172.

Miller, S., Bobrow, R., Ingria, R., & Schwartz, R. (1994). Hidden understanding models of
natural language. In Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics, pp. 25-32.

Miller, S., Stallard, D., Bobrow, R., & Schwartz, R. (1996). A fully statistical approach
to natural language interfaces. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics, pp. 55—61 Santa Cruz, CA.

Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by in-
verting resolution. In Proceedings of the Fifth International Conference on Machine
Learning, pp- 339-352 Ann Arbor, MI.

Muggleton, S., & Feng, C. (1992). Efficient induction of logic programs. In Muggleton, S.
(Ed.), Inductive Logic Programming, pp. 281-297. Academic Press, New York.

Muggleton, S. H., Srinivasan, A., & Bain, M. E. (1992). Compression, significance and
accuracy. In Proceedings of the Ninth International Conference on Machine Learning.

Muggleton, S., & Raedt, L. D. (1994). Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19, 629-679.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Inc., San Mateo,CA.

Pereira, F., & Shabes, Y. (1992). Inside-outside reestimation from partially bracketed cor-
pora. In Proceedings of the 30th Annual Meeting of the Association for Computational
Linguistics, pp- 128-135 Newark, Delaware.

Plotkin, G. D. (1970). A note on inductive generalisation. Machine Intelligence, 5, 153-163.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.

48

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5(3),
239-266.

Quinlan, J. R. (1996a). Bagging, boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 725-730 Portland, OR.

Quinlan, J. R. (1996b). Learning first-order definitions of functions. Journal of Artificial
Intelligence Research, 5, 139-161.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Ratnaparkhi, A. (1999). Learning to parse natural language with maximum entropy models.
Machine Learning, 34, 151-176.

Reeker, L. H. (1976). The computational study of language acquisition. In Yovits, M., &
Rubinoff, M. (Eds.), Advances in Computers, Vol. 15, pp. 181-237. Academic Press,
New York.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-471.

Siklossy, L. (1972). Natural language learning by computer. In Simon, H. A.; & Siklossy,
L. (Eds.), Representation and meaning: Ezperiments with Information Processsing
Systems. Prentice Hall, Englewood Cliffs, NJ.

Slattery, S., & Craven, M. (1998). Combining statistical and relational methods for learn-
ing in hypertext domains. In Page, D. (Ed.), Proceedings of the 8th International
Workshop on Inductive Logic Programming, pp. 38-52. Springer, Berlin.

Stanley, C., & Goodman, J. (1996). An empirical study of smoothing techniques for lan-
guage modeling. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics.

Thompson, C. A., & Mooney, R. J. (1999). Automatic construction of semantic lexicons
for learning natural language interfaces. In Proceedings of the Sizteenth National
Conference on Artificial Intelligence, pp. 487-493 Orlando, FL.

Tomita, M. (1986). Efficient Parsing for Natural Language. Kluwer Academic Publishers,
Boston.

Waltz, D. L. (1978). An English language question answering system for a large relational
database. Communications of the Association for Computing Machinery, 21(7), 526—
539.

Warren, D. H. D.; & Pereira, F. C. N. (1982). An efficient easily adaptable system for in-
terpreting natural language queries. American Journal of Computational Linguistics,

8(3-4), 110-122.

Webb, G. I. (1996). Further experimental evidence against the utility of occam’s razor.
Journal of Artificial Intelligence Research, 4, 397-417.

49

Woods, W. A. (1970). Transition network grammars for natural language analysis. Com-
munications of the Association for Computing Machinery, 13, 591-606.

Zelle, J. M. (1995). Using Inductive Logic Programming to Automate the Construction of
Natural Language Parsers. Ph.D. thesis, Department of Computer Sciences, Univer-
sity of Texas, Austin, TX. Also appears as Artificial Intelligence Laboratory Technical
Report AT 96-249.

Zelle, J. M., & Mooney, R. J. (1994). Combining top-down and bottom-up methods in
inductive logic programming. In Proceedings of the Eleventh International Conference
on Machine Learning, pp. 343-351 New Brunswick, NJ.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries using inductive
logic programming. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, pp. 10560-1055 Portland, OR.

50

