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Abstract

This paper describes Rapture | a system for revising probabilistic rule bases
that converts symbolic rules into a connectionist network, which is then trained via
connectionist techniques. It uses a modi�ed version of backpropagation to re�ne the
certainty factors of the rule base, and uses ID3's information-gain heuristic (Quinlan,
1986) to add new rules. Work is currently under way for �nding improved techniques
for modifying network architectures that include adding hidden units using the UP-
START algorithm (Frean, 1990). A case is made via comparison with fully connected
connectionist techniques for keeping the rule base as close to the original as possible,
adding new input units only as needed.

1 Introduction

The task of rule base (theory) revision is one of taking an approximate domain theory (set
of rules given by from an expert), and �ne-tuning it in order that it more accurately reects
the expert's decision making process. This is commonly achieved through the use of pre-
classi�ed examples of the target concept that guide the revision process. Many techniques,
both symbolic and connectionist, have recently been developed for precisely this task (Shavlik
and Towell, 1989; Towell, 1991; Ourston and Mooney, 1990; Pazzani and Kibler, 1992; Cohen,
1992; Fu, 1993). These methods demonstrate the value of beginning with an initial set of
rules, provided by an expert, that may only be partially correct. When compared to pure
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inductive learning, these knowledge rich methods show superior rates of learning, usually
requiring fewer examples.

One of the weaknesses of the connectionist approaches to date is the inability to modify
their network architectures. The approach of Kbann (Towell, 1991) is to include every
possible feature from the domain in the network, fully connecting, and letting those links
that don't signi�cantly contribute drop out, while training the network via backpropagation.
In extremely complex domains, this can result in excessively large networks that can become
unmanageable. Research presented here indicates that such full connectivity can actually
slow down learning, not only in terms of training time, but also in terms of numbers of
training examples required.

The system described here, Rapture (Revising Approximate Probabilistic Theories
Using Repositories of Examples), attempts to overcome this problem by adding to and
deleting from the initial rule base only as deemed necessary. Rapture begins with an
initial rule base expressed as certainty-factor rules, which is converted into a connectionist
network. Training proceeds with a modi�ed version of backpropagation using pre-classi�ed
training examples. When backpropagation fails to train the network to 100% accuracy on
the training data, network modi�cation is attempted. Currently, rules are added through
the use of ID3's information-gain metric. Rules can also be deleted through weight decay.
Work in progress includes attempting to add hidden units to the network using a modi�ed
version of the UPSTART (Frean, 1990) algorithm.

In the next section, we describe the Rapture system. Results making comparisons to
fully connected techniques are presented, as well as preliminary UPSTART results. This is
followed by related and future work, and conclusions.

2 The Rapture Algorithm

The Rapture algorithm breaks down into three separate modules. First, an initial set
of probabilistic rules is converted into a Rapture network. This initial set of rules (also
known as a domain theory) commonly comes from an expert in the domain, and is quite
often incomplete or otherwise awed. It does, however, contain useful knowledge for solving
the problem at hand, which is how it helps the learning process.

These probabilistic rules are of the form

A
:7
! D B

:2
! D C

:5
! D

where the numbers above the arrows represent certainty factors stating how much evidence
each of A, B, and C contribute towards concluding proposition D. These certainty factors
range from �1 to +1, and combine as in Mycin, which makes use of probabilistic sum.
Probabilistic sum allows two pieces of evidence (x and y) to combine to give resulting evidence
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x + y � x � y. Further details on the combining functions can be found in (Buchanan and
E.H. Shortli�e, 1984).

2.1 Building the Network

Given these probabilistic rules, a Rapture network is built from them via a one-to-one
mapping. Each rule in the rule base corresponds to one link in the network. The certainty-
factor of the rule is the weight that is attached to the link. The nodes on either side of
the link represent the rules antecedent and consequent. Each unique proposition in the rule
base corresponds to one unique node in the network. In the case of an antecedent containing
multiple propositions (that are joined through either conjunction or disjunction), each of
the antecedent nodes must pass through a min (or max) node before being linked to the
consequent node. The trivial example above is shown in Figure 1(a). Figure 1(b) illustrates
the following more complete set of rules.

ABC
:5
! D E

:7
! D C

:1
! G

EF
:8
! G HI

:3
! C I

:2
! E

Once built, we have an exact representation of the symbolic rule base. There is no
information lost in the conversion. The elegance of this representation is the fact that it is
now possible to view the rule base as either a set of symbolic rules, or as a connectionist
network. Once the network has been trained, symbolic rules can be read directly o� of the
network without any need for translation. This approach bridges the gap between symbolic
versus connectionist learning.

2.2 Certainty-Factor Backpropagation

The resulting network is then trained using the technique of gradient descent to minimize
error in the network. In order to achieve this, standard backpropagation can not be used
directly, as the combining functions for certainty-factors are di�erent from those of standard
neural networks. Because of this, the gradient descent formulae had to be modi�ed accord-
ingly, resulting in what we label Certainty-Factor Backpropagation (CFBP). Speci�cally, the
formulae used are

�pwji = ��pjopi(1 �
X

k 6=i

� wjkopk) (1)

If uj is an output unit

�pj = (tpj � opj) (2)

If uj is not an output unit
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A

MIN

D G

MIN

B C E F

.5
.7 .1

.8

MIN

IH

.2

.3

D

A B C

.5.2.7

A       D            B       D            C       D
.7 .2 .5

(a)

(b)

ABC       D              E       D              C       G.5 .7 .1

EF       G              HI       C              I       E.2.8 .3

Figure 1: Converting Rules into Rapture-Networks

�pj =
X

kmin

�pkwkj(1 �
X

i6=j

� wkiopi) (3)

The \Sigma with circle" notation represents probabilistic sum over the index value, and the
� notation is shorthand for two separate cases. If wjiopi � 0, then � is used, otherwise
+ is used. The kmin subscript refers to the fact that we do not perform this summation
for every unit k (as in standard backpropagation), but only those units that received some
contribution from unit j. Since a unit j may be required to pass through a min or max-node
before reaching the next layer (k), it is possible that its value may not reach k.

CFBP is simply gradient descent learning where the standard backpropagation formulae
are modi�ed to work with certainty-factor combining functions. Further details, along with
a derivation of these formulae can be found in (Mahoney and Mooney, 1993).
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Loop until 100% training accuracy is achieved.

1. Perform CFBP on the network. Use given training examples, and as many epochs as
necessary until mean-squared error decreases by < �.

2. If not 100% training accuracy, delete zero-valued links from the network. use ID3
information gain to add new input units. Make one new rule for each output unit
misclassifying positive examples.

Figure 2: Overview of the Rapture Algorithm

2.3 Architecture Modi�cation

Unfortunately, CFBP alone is often insu�cient by itself to fully train the network. Rapture-
networks are considered fully trained when they achieve 100% accuracy over the training ex-
amples. This inability to fully train is usually an indication that the network architecture as
given by the domain expert is incomplete or inaccurate, and needs to be altered. Rapture
contains simple means for adding and deleting links from the network.

Whenever the value of a link comes within 0:01 of zero after training, it is deleted from
the network. This is due to the fact that no values are propagating forward through this
link, and its removal can have no e�ect on the network. Similarly, Rapture contains a
simple mechanism for adding links into the network. This is achieved through utilizing
ID3's (Quinlan, 1986) information-gain metric. For each output category with misclassi�ed
examples, a search is made for the best feature-value combination (e.g., COLOR-RED) that
could be used to help correctly classify these examples, using information-gain to discriminate
examples. An input node with this feature-value is linked directly into the output node with
small positive weight, and similarly with small negative weight into the other output nodes.

Adding links in this fashion has enabled Rapture to completely train essentially all of
the domains studied to date. However, the original Rapture contains no mechanism for
creating hidden units in the network, which is the source of current research. An overview
of the Rapture algorithm is depicted in Figure 2.

3 Comparisons with Fully Connected Systems

Figure 3 presents learning curves for the DNA promoter-recognition problem. A prokaryotic
promoter is a short DNA sequence that precedes the beginnings of genes, and are locations
where the protein RNA polymerase binds to the DNA structure (Towell, 1991). A theory
designed to recognize such strings composed of DNA-nucleotides was given to Rapture for
revision. The data set used for these experiments is one of 106 examples, for which there are
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Figure 3: PROMOTER Testing Accuracy

53 positive examples (i.e. promoters), and 53 negative examples. An example consists of a
sequence of 57 DNA nucleotides, each of which can take on one of four values|A, C, G, or
T. The original theory for this recognition task, based on information provided by O'Neill
and Chiafari (1989), was used as an initial theory for Rapture, Kbann, and CF-Kbann.

This graph is a plot of average performance in accuracy at classifying novel test examples
over 25 independent trials. It is signi�cant that Rapture is performing better than the fully
connected systems. Kbann (Towell, 1991) is a neural network that has been initialized with
expert knowledge. CF-Kbann is a hybrid system that is an implementation of Kbann
that uses certainty-factor combining functions and CFBP. T-tests con�rm that Rapture is
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performing signi�cantly better than the other systems with the exception of Kbann (which
was run on di�ering train and test splits for which we do not have the data). These plots
are an indication of the fact that adding in every possible feature and fully connecting can
actually hurt performance. It is for this reason that more steamlined methods for adding in
new units and modifying network architecture are desired.

4 Creating Hidden Units

One method for creating hidden units that we are currently exploring uses the UPSTART
algorithm (Frean, 1990). This is a connectionist technique for adding new hidden units
directly below an output unit. For each output unit that has mistaken examples, all of the
false negative and false positive examples are collected. Two new hidden nodes are then
created, and placed directly below this output unit. These new units are designed to correct
the mistaken examples. One of these units is trained to be active for all of the false positives.
This unit then connects with negative weight to the output unit. Similarly, the other new
unit is trained to be active for the false negatives, and its output is connected positively to
the output unit. If an output unit has only false positives (or only false negatives), then
only one hidden unit need be created. Assuming the hidden units are trained correctly, the
mistaken examples will now be correctly classi�ed.

This algorithm �ts quite well into the overall Rapture scheme. Once CFBP and ID3
show no improvement in overall mean-squared error, the UPSTART module is called. The
algorithm checks each output unit with mistaken examples and applies UPSTART. This
simply means that two new hidden units are created, which have no input units, and are
connected (one positively, one negatively) to the output unit. The task is now reduced
to training each new unit to become active only on its particular examples (say the false
negatives). Rapture is then called recursively on the new unit, with the false negatives
as positive examples, and the rest of the examples as negatives. This node, then begins
getting new input features (from the original node addition module), whose weights are
then massaged via CFBP. This continues recursively, until �nally all training examples are
successfully categorized.

To date, experiments with the UPSTART module have only been run on one dataset.
This is the soybean dataset. The soybean data comes from Michalski and Chilausky (1980),
and is a data set of 562 examples of diseased soybean plants. Examples are described by
a string of 35 features including the condition of the stem, the roots, the seeds, as well
as information such as the time of year, temperature, and features of the soil. An expert
classi�ed each example into one of 15 soybean diseases. This data set has been used as a
benchmark for a number of learning systems.

The most signi�cant result of this experiment is the decrease in training time. Without
UPSTART, convergence to 100% training accuracy does not occur for Rapture on training
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Figure 4: SOYBEAN Testing Accuracy

sets larger than 150 examples. With UPSTART, convergence has been successful up to 300
examples. Unfortunately, this increase in training accuracy does not seem to carry over to
generalization accuracy in this domain. This may be an indication that UPSTART is only
causing a number of examples to be memorized.
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5 Related and Future Work

The most closely related work to this has been done in conjunction with Kbann. Towell's
original work contained a suggestion for adding new hidden units into a Kbann-net that
would seem to work only in very specialized domains, such as Promoter Recognition. This
was achieved through adding \cone" units that would connect contiguous features. Opitz
(Opitz and Shavlik, 1993) recently created a means for adding new hidden nodes that link
into the nodes in the Kbann network with the highest error rates. These nodes are selected
heuristically by measuring their performance on sets of tuning examples. Lacher (Lacher,
1992) has independently developed a very similar backpropagation technique (ENBP) for
use with EMYCIN expert networks, though there apparently has been no work on network
architecture modi�cation.

Much of the future work for this project will be devoted to discovering new ways to alter
network architectures to more accurately classify data. The UPSTART algorithm de�nitely
holds promise, though a search for a good domain to fully demonstrate its potential is
currently underway. Work is also underway investigating the di�erences between standard
backpropagation and CFBP. Since the combining functions are signi�cantly di�erent, it is
not known how their convergence biases di�er.

6 Conclusions

The results to date show that this line of research has much promise. Rapture seems to
consistently outperform fully connected network approaches. It seems clear that more focus
needs to be placed on techniques for modifying network architectures, especially hidden
unit creation. The UPSTART algorithm seems to be one approach of merit. In domains
studied to date, hidden node creation has not been a factor, as they can be characterized
successfully with one-layer networks. We hope to demonstrate UPSTART's full potential
through a domain requiring new hidden nodes.

One of the major bene�ts of the Rapture approach is its ability to completely represent
a symbolic rule base, while at the same time be viewed as a connectionist system. There
is no need for any translation or re-translation as each representation is equivalent to the
other.
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