
Appears in Proceedings of the Eleventh International Workshop on Machine Learning
pp. 173-180, Rutgers, NJ, July, 1994

Comparing Methods for Re�ning Certainty-Factor Rule-Bases

J. Je�rey Mahoney and Raymond J. Mooney
Department of Computer Sciences

The University of Texas
Austin, TX 78712

mahoney@cs.utexas.edu, mooney@cs.utexas.edu

Abstract

This paper compares two methods for re�n-
ing uncertain knowledge bases using propo-
sitional certainty-factor rules. The �rst
method, implemented in the Rapture sys-
tem, employs neural-network training to re-
�ne the certainties of existing rules but uses
a symbolic technique to add new rules. The
second method, based on the one used in
the Kbann system, initially adds a complete
set of potential new rules with very low cer-
tainty and allows neural-network training to
�lter and adjust these rules. Experimental
results indicate that the former method re-
sults in signi�cantly faster training and pro-
duces much simpler re�ned rule bases with
slightly greater accuracy.

1 INTRODUCTION

Developing systems for automatically re�ning incor-
rect and incomplete knowledge bases is the focus of
a growing amount of machine learning research, e.g.
(Ourston and Mooney, 1990; Towell et al., 1990;
Wogulis and Pazzani, 1993; Koppel et al., 1994). How-
ever, most of this research focuses on revising log-
ical, Horn-clause, domain theories. This paper, by
contrast, focuses on methods for re�ning uncertain
knowledge bases employing rules with certainty fac-
tors (Buchanan and Shortli�e, 1984). Since many ap-
plications require uncertain reasoning, developing re-
�nement methods for such knowledge bases is an im-
portant extension.

Rapture is a theory re�nement system that com-
bines symbolic and neural-network methods to revise
a propositional certainty-factor rule base (Mahoney
and Mooney, 1993). It combines the ability of neural-

network methods to e�ectively adjust numerical pa-
rameters with the ability of symbolic methods to make
concise structural changes. Speci�cally, it �rst uses a
modi�ed version of backpropagation (Rumelhart et al.,
1986) to adjust the certainty factors of existing rules
in order to improve classi�cation performance on a set
of training examples. During this process, rules whose
certainty falls below a certain threshold are deleted.
If simply adjusting the certainty of existing rules is
insu�cient to correctly classify all of the training ex-
amples, Rapture uses a version of ID3's information
gain heuristic (Quinlan, 1986) to determine new fea-
tures that best discriminate the misclassi�ed exam-
ples and includes them in new rules which are then
added to the knowledge base. Backpropagation is then
used again to adjust the certainties of these new rules.
Backpropagation and rule addition/deletion continue
in a cycle until all of the training examples are cor-
rectly classi�ed or a local maximum is reached. Using
this approach, Rapture has successfully revised sev-
eral real-world knowledge bases.

However, a purely neural-network approach to revis-
ing certainty-factor knowledge bases is also possible by
adopting the approach used in Kbann (Towell et al.,
1990; Towell and Shavlik, 1993). Kbann revises log-
ical theories by mapping the rules into an equivalent
neural network, revising the weights of the network
using backpropagation, and optionally re-extracting
symbolic rules from the revised network. Kbann ob-
tains the e�ect of adding new rules to the theory by
including an additional set of low-weighted links in the
initial network. Speci�cally, all of the available fea-
tures are added to the input layer, and low-weighted
links are added to fully connect each layer of the net-
work to the layer immediately above. During back-
propagation, the weights on these extra links may be
adjusted to improve performance on the training data.
During retranslation, the additional links recruited
by backpropagation are translated into new rules or

new features on existing rules. Although Kbann

uses logical theories and linear-threshold networks,
the same approach can be used to re�ne certainty-
factor rule bases by adding analogous low-certainty
rules and allowing modi�ed backpropagation to adjust
their certainties. This approach will be referred to as
Rapture{Kbann.

We chose not to take this approach in Rapture

since we believed that simply adding a large num-
ber of additional low-weighted rules would greatly in-
crease training time and potentially result in an overly-
complex rule-base with decreased accuracy. Conse-
quently, Rapture only adds new rules when they are
required to correctly classify the training data, and
then uses symbolic methods to add a much smaller
number of new rules whose features best discriminate
the problematic cases. In this paper, we present exper-
iments directly comparing Rapture and Rapture{

Kbann in order to demonstrate the advantages of em-
ploying symbolic methods to add new rules, compared
to using neural-network methods to select from a large
number of initially added rules.

The remainder of the paper is organized as follows.
Section 2 presents background information on cer-
tainty factors and Kbann. Section 3 presents a sum-
mary of Rapture and Rapture{Kbann. Section
4 presents experimental comparisons on revising two
real-world knowledge bases, DNA promoter recogni-
tion and a version of the Mycin rule base. Section 5
discusses related work, Section 6 discusses future work,
and Section 7 presents our conclusions.

2 BACKGROUND

2.1 CERTAINTY FACTORS

Rapture uses propositional certainty-factor rules to
represent knowledge. These rules have the following

form: A
0:8
! D, representing that belief in proposi-

tion A gives a 0:8 measure of belief in proposition D.
Certainty factors can range in value from �1 to +1,
representing how much the rule increases or decreases
belief in the consequent. A certainty factor of +1 rep-
resents absolute certainty (true), whereas one of �1
represents total disbelief (false).

Rules combine evidence via probabilistic sum, de�ned
for positive evidence as a � b � a + b � ab. Assume

we also have the rule: B
0:5
! D. Given that A and

B are true, our measure of belief in D becomes 0:9
(= 0:8 + 0:5 � 0:8 � 0:5). Negative certainty fac-
tors combine using a � b � a + b + ab. All posi-
tive evidence is combined to determine the measure
of belief (MB) of a proposition and all negative ev-

idence is combined to obtain a measure of disbelief
(MD). The certainty factor is then calculated using
CF = (MB +MD)=min(MB;MD).

Certainty-factor rules may also contain multiple an-

tecedents, as in A ^ B ^ C
0:7
! D. Conjunctions are

evaluated using MIN . The minimum certainty fac-
tor from among A, B, and C is multiplied by 0:7 to
determine D's certainty factor. Similarly, the MAX
function is used with antecedent disjunction.

2.2 KBANN

As described in the introduction, Kbann is a theory
re�nement system which translates a rule base into a
neural network and then re�nes it using backpropaga-
tion. First, a logical circuit is created using the AND-
OR graph of the theory, and the weights of the units
in the network are set to simulate AND and OR gates.
In addition, all of the features in the data are added to
the input layer. The network is then fully connected
by adding low-weighted links from every node in layer
n to every node in layer n+ 1.

Once built, the network is trained using backprop-
agation, and links whose weights fall below a given
threshold are deleted. To help minimize the size of the
network, weight-decay (Hinton and Sejnowski, 1986)
is utilized. By adjusting each weight in the network
slightly towards zero after each weight update, links
that are not contributing to the network are elimi-
nated.

After training, symbolic rules can be extracted from
the network. By analyzing the weights of the incom-
ing links, each unit is translated into a set of M-of-N
rules. Such rules are satis�ed if at least M of their N
antecedents are true. The resulting rulebase is gener-
ally much simpler than the revised network; however,
there is no guarantee that the two representations are
identical.

3 RAPTURE

3.1 THE RAPTURE ALGORITHM

This section summarizes the re�nement algorithm
used by Rapture which is outlined in Figure 1. Fur-
ther details can be found in (Mahoney and Mooney,
1993). After acquiring a probabilistic rule-base from
an expert, the rules are mapped into an equivalent net-
work. The certainty factors of the rules are mapped to
weights on connections between nodes of the network.
Unlike standard neural networks, in which the total
input to a node is determined by a linear sum of all
incoming activations, the total input is the probabilis-

tic sum of the incoming activations. No thresholding
output function is needed since the probabilistic sum
already provides the necessary non-linearity.

Once built, the network is re�ned to correctly clas-
sify a set of training examples. Network training is
performed in two phases. In the �rst phase, a modi-
�ed version of backpropagation is used to adjust the
certainty factors on existing rules. The normal back-
propagation equations are altered in order to perform
gradient descent for certainty-factor combination func-
tions such as probabilistic sum, MIN, and MAX. This
process is called CFBP (certainty-factor backpropa-
gation). After training with CFBP, nodes and links
whose weights have dropped below 0:01 are removed.

CFBP alone, however, may fail to train the network
to 100% accuracy. This is an indication that the
network architecture needs modi�cation. Two tech-
niques are used to add new rules. First, new input
features are added to the network. Speci�cally, ID3's
information-gain metric is used to �nd features that
will most improve classi�cation accuracy. For each
output category with mistaken examples, information
gain is used to �nd the feature that best distinguishes
between 1) those examples that belong to this output
category, but are being misclassi�ed into other \bad"
categories (e.g. false negatives), and 2) all positive
examples (true positives) of the bad categories of set
1. All features are converted to binary, resulting in
features such as COLOR = RED (yes/no) or AGE < 40
(yes/no). The chosen new feature is inserted into the
network as positive evidence for the correct category,
and as negative evidence for the bad categories. This
has the desired e�ect of making correct classi�cation of
the originally mis-classi�ed examples more likely. All
new links are directly connected to the corresponding
output node with small weights (0:1).

Once new links are in place (one for every output cat-
egory that has mis-classi�ed examples), the network is
once again trained via CFBP. This cycle of CFBP fol-
lowed by feature addition continues until either 100%
training accuracy is achieved, or there are no gains in
either classi�cation accuracy or network error. In the
latter case, the algorithm resorts to a modi�ed version
of the UPSTART algorithm (Frean, 1990), a neural-
network technique for adding new hidden units. Be-
neath every output unit that contains incorrectly clas-
si�ed examples, two new hidden units are built. One
of these units is designed to learn the false negative
examples of the output unit, and the other is designed
to learn the false positives. The former is connected
to the output unit with positive weight, and the latter
with negative weight. Assuming the new units can
be successfully trained, all of the examples will be
correctly classi�ed. These new units are recursively

REPEAT

1. Perform CFBP on the network. Use given train-
ing examples, and as many epochs as necessary
until classi�cation accuracy and network mean-
squared error cease to improve.

2. When < 100% training accuracy, use ID3 infor-
mation gain to add new input units. Make one
new rule for each output unit misclassifying posi-
tive examples.

UNTIL classi�cation accuracy and network mean-
squared error cease to improve.
IF < 100% training accuracy, begin UPSTART.

1. For each output unit with mistaken examples,
build two new hidden units.

2. Use Rapture to recursively train one of these
units to learn the false negatives of the output
unit. This unit connects with positive weight to
the output unit.

3. Use Rapture to recursively train the other hid-
den unit to learn the false positives for the output
unit. This unit connects with negative weight to
the output unit.

Figure 1: Overview of the Rapture Algorithm

trained using Rapture.

Once the system has converged on the training data,
the revised rules can be read directly o� the net-
work. In Rapture, the direct correspondence be-
tween weighted links and probabilistic rules removes
any distinction between the symbolic and connection-
ist representations.

3.2 RAPTURE{KBANN

Rapture{Kbann is essentially Kbann using
certainty-factor networks. Given an initial certainty-
factor rule base, a certainty-factor network is built as
described above. Before training this network, all of
the input features are added with low weighted links
(0:1) as in Kbann. In order to fully connect the net-
work, each node must belong to a unique layer of the
network. This is done by assigning to every node the
layer that is equal to the length of the shortest path
from this node to the input layer. The network is then
completed by fully connecting|inserting links (where
not already present) between each node of layer n with
each node of layer n + 1.

Once built, CFBP can be used to train the network
to (hopefully) 100% training accuracy, or to a local

error-minimum. A weight-decay parameter of 0:05 is
included during training to help eliminate inessential
links. There is no need to include Rapture's fea-
ture addition step since all possible features are al-
ready included in the network. However, as in Rap-
ture, nodes and links are eliminated from the network
whenever their weights drop below 0:01.

4 EXPERIMENTAL RESULTS

4.1 DNA PROMOTER-RECOGNITION
RESULTS

A prokaryotic promoter is a short DNA sequence that
precedes the beginnings of genes, and are locations
where the protein RNA polymerase binds to the DNA
structure (Towell et al., 1990). A theory designed to
recognize such strings composed of DNA-nucleotides
was given to Rapture for revision. The data set con-
sists of 106 examples, 53 positive and 53 negative. An
example consists of a sequence of 57 DNA nucleotides,
each of which can take on one of four values|A, C,
G, or T. The original theory for this recognition task,
based on information provided by O'Neill and Chia-
fari (1989), was written as a set of propositional Horn-
clauses. These had to be converted to certainty factor
rules for use by Rapture. The theory was modi�ed
by breaking rules with multiple antecedents into mul-
tiple rules, one for each antecedent. This was done
in order to allow each antecedent the ability to con-
tribute its own evidence towards belief in the conse-
quent. Certainty-factors on the individual rules were
set so that if all of the antecedents of the original Horn
clause were true, the result is a total certainty of 0.9
for the consequent.

Rapture and Rapture{Kbann were run on this
dataset and the results compared with Kbann's re-
sults from Towell (1991). Standard training and test
runs were performed, resulting in the learning curves
shown in Figure 2. For the two Rapture systems, this
graph is a plot of average classi�cation accuracy over
25 independent trials. A single trial consists of provid-
ing each system with an increasing number of training
examples and then testing on the same disjoint test
set. TheKbann results were run independently on the
same dataset, though using di�erent training and test
splits. The results are roughly comparable, although
Rapture is clearly outperforming the other systems.
Comparing Rapture with Rapture{Kbann, a t-
test shows signi�cant di�erences at 60 and 90 training
examples. We do not have the necessary data to run
t-tests with Kbann, although it appears Rapture is
maintaining a slight advantage.

Results on training time are shown in Figure 3. While

45

50

55

60

65

70

75

80

85

90

95

0 10 20 30 40 50 60 70 80 90

P
e
r
c
e
n
t

C
o
r
r
e
c
t

Training Examples

RAPTURE
RAPTURE-KBANN

KBANN

Figure 2: PROMOTER Test Accuracy

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

T
r
a
i
n
i
n
g

T
i
m
e

(
s
e
c
o
n
d
s
)

Training Examples

RAPTURE
RAPTURE-KBANN

Figure 3: PROMOTER Training Time

Rapture trained on 90 examples in an average of 20
seconds, Rapture{Kbann took nearly 5 minutes, or
almost 15 times as long. This is a clear indication
that the addition of all of the extra nodes and links
in the network causes a signi�cant computational in-
crease without improved generalization.

Comparisons were also made with regard to the com-
plexity of the resulting rule-bases. Figure 4 is a plot
of the number of symbols in the rule-bases that re-
sulted from training. It is clear from the graphs that
the addition of all possible features greatly increases
the network size. We have also included graphs of
Rapture{Kbann with and without weight decay for
comparison. Although weight-decay helps, the result-
ing rule base is still overly complex.

40

60

80

100

120

140

160

180

200

220

240

0 10 20 30 40 50 60 70 80 90

#

S
y
m
b
o
l
s

i
n

R
u
l
e

B
a
s
e

Training Examples

RAPTURE
RAPTURE-KBANN-WD

RAPTURE-KBANN

Figure 4: PROMOTER Rule-Base Complexity

4.2 MYCIN RESULTS

Experiments were also run on a version of the
Mycin knowledge-base (Buchanan and Shortli�e,
1984), which was designed to provide consultative ad-
vice on diagnosis and therapy for infectious diseases.
This domain consists of 115 examples of solved cases
(patients) of infectious diseases drawn from the Stan-
ford Medical Center. Ten diseases are included with
this data set. Each example is described with a vec-
tor of 264 features ranging from the patient's sex to
headache duration. Many features for each patient are
missing, and there are a great number of continuously-
valued features.

The rules for the initial theory are provided as part
of the Mycin database, and are in a format accept-
able forRapture (certainty factors). Included are 137
rules for diagnosing the diseases, including a number of
intermediate concepts. One of the diseases (primary
brain-tumor) is given no initial rules. The learning
curves for this data set are shown in Figure 5 and are
averaged over 20 trials. To date, Kbann has not been
run on this dataset, and our comparisons here are be-
tween Rapture and Rapture{Kbann. The results
are again not too far apart, though Rapture does
gain an advantage after it has seen enough examples.
T-tests con�rm that from 60 examples onward, Rap-
ture is performing signi�cantly better.

Results for training time are shown in Figure 6. For
100 examples, Rapture averages just over 31 minutes
compared to Rapture{Kbann which took nearly 4
times as long, or slightly more than 2 hours. This is a
clear indication that with a domain of this complexity
(264 features), including every possible feature in the
network and fully connecting becomes computation-
ally expensive.

55

60

65

70

75

80

0 20 40 60 80 100

P
e
r
c
e
n
t

C
o
r
r
e
c
t

Training Examples

RAPTURE
RAPTURE-KBANN

Figure 5: MYCIN Testing Accuracy

0

20

40

60

80

100

120

140

0 20 40 60 80 100

T
r
a
i
n
i
n
g

T
i
m
e

(
s
e
c
o
n
d
s
)

Training Examples

RAPTURE
RAPTURE-KBANN

Figure 6: MYCIN Training Time

The resulting rule-base complexities are presented in
Figure 7. It is again apparent that with the addition
of every feature in the domain, a much larger rule base
results and that weight decay gives only a marginal im-
provement. Weight decay did, however, provide slight
improvement in training time. This was not plotted
as the improvements were minimal. Further, weight
decay had no e�ect upon generalization accuracy.

5 RELATED WORK

Although most research in theory re�nement has fo-
cussed on revising logical theories, there have been
several other projects on revising uncertain knowledge
bases. This section reviews these and other related
projects.

100

200

300

400

500

600

700

0 20 40 60 80 100

#

S
y
m
b
o
l
s

i
n

R
u
l
e

B
a
s
e

Training Examples

RAPTURE
RAPTURE-KBANN-WD

RAPTURE-KBANN

Figure 7: MYCIN Rule-Base Complexity

Seek2 (Ginsberg et al., 1988) revises rule bases con-
taining M-of-N rules, also known as choice-component
rules. It uses speci�c heuristics to revise the threshold,
M, of individual rules in order to improve performance
on the training data. UnlikeRapture, Seek2 can not
modify real-valued weights and contains no means for
adding new rules.

Ma and Wilkins (Ma and Wilkins, 1991) have de-
veloped methods for improving the accuracy of a
certainty-factor knowledge base by deleting rules.
They report only modest improvements in the accu-
racy of the same Mycin rule base used in our ex-
periments, increasing accuracy from 26:8% to 36:0%.
Rapture has the advantage of being able to adjust
certainty factors and add rules in addition to deleting
rules.

Fu (Fu, 1989) and Lacher (Lacher, 1992) have also used
backpropagation techniques to revise certainty factors.
Unlike Rapture, Fu's method does not implement
complete CFBP, but rather uses it only on every other
layer of the network, and uses a di�erent hill-climbing
method on the alternate layers. Fu claims he chose
this approach because the MIN and MAX functions
are not di�erentiable. In Rapture, this is not a prob-
lem since although these functions are not everywhere
di�erentiable, they are trivially so almost everywhere.
The problem of having two non-zero activation levels
that are exactly the same and that are the minimum
values into another node has yet to occur in practice.
Lacher apparently concurs with this assessment, and
has independently implemented a complete version of
CFBP. However, the current publications on these two
projects do not address the problem of altering the
network architecture (i.e. adding new rules) and do
not present results on revising actual expert knowl-

edge bases.

Schwalb (Schwalb, 1993) has shown how the parame-
ters of Bayesian networks can also be re�ned by map-
ping them into neural networks and performing back-
propagation. However, his method creates a neural
network whose size is exponential in the fan-in of the
Bayesian network, does not address the issue of adding
new features or hidden units, and was not tested on
revising actual knowledge bases.

PTR (Feldman, 1993) revises a theory expressed as
a collection of Horn-clause rules including numerical
parameters representing the expert's con�dence in the
accuracy of the rule. Unlike certainty factors in Rap-
ture, these values do not represent the strength, or
amount of evidence suggested by the rule, but rather
the user's con�dence that the rule is correct.

TopGen (Opitz and Shavlik, 1993) is a method for
adding new hidden units to a Kbann-network. By
keeping track of of the false negative and false posi-
tives for which each node is responsible, the algorithm
locates areas of the network requiring additional units.
However, when TopGen adds a new hidden unit, it
adopts the Kbann approach of fully connecting it to
the input layer. By contrast, Rapture uses informa-
tion gain to add new input features only as needed.

There has been a number of methods for growing
neural-network architectures su�cient to classify a
set of training examples, e.g. cascade correlation
(Fahlman and Lebiere, 1989), the upstart algorithm
(Frean, 1990), and the tiling algorithm (Mezard and
Nadal, 1989). However, these methods also employ
full-connectivity to all input features.

6 FUTURE WORK

We are currently in the process of comparing Rap-
ture, Rapture{Kbann, and other inductive learn-
ing and theory re�nement algorithms on additional
tasks such as soybean disease diagnosis (Michalski
and Chilausky, 1980) and recognizing DNA splice-
junctions (Noordewier et al., 1991) in order to de-
termine Rapture's relative performance in these do-
mains.

Unfortunately, in the existing experiments, hidden-
unit addition has not proven particularly useful since
Rapture is generally able to reach convergence us-
ing only backpropagation and feature addition. We
are also currently exploring criteria for adding hid-
den units earlier in the training process in order to
reduce the number of new input features that need
to be added. The early results on this approach are
encouraging.

We are also planning experiments directly comparing
CFBP and backpropagation for purely inductive learn-
ing. The standard neural-network method of training
a �xed network initialized with random weights is also
easily applied to certainty-factor networks. We hope
to discover the relative advantages and disadvantages
of probabilistic sum as a combination function com-
pared to the normal linear-threshold.

Although they have proven quite useful in practice,
certainty factors have frequently been criticized as ad
hoc and restrictive (Shafer and J. Pearl, 1990). Actu-
ally, certainty factors have been shown to have a clear
probabilistic semantics, but only under very restric-
tive independence assumptions (Heckerman, 1986).
Nevertheless, the basic revision framework in Rap-

ture should be applicable to other uncertain rea-
soning formalisms such as Bayesian networks (Pearl,
1988), Dempster-Shafer theory (Shafer, 1976), or fuzzy
logic (Zadeh, 1965). Although Schwalb's approach to
revising Bayesian networks is intractable in the general
case (Schwalb, 1993), it may be useful for networks
with limited fan-in; and perhaps similar, more e�-
cient, heuristic methods could be developed for more
complex networks. In addition, techniques for induc-
ing Bayesian networks from data (Cooper and Her-
skovits, 1992) could potentially be used to re�ne the
underlying causal structure as well. Finally, there has
also been some recent work on combining symbolic
and neural-network methods to revise fuzzy-logic con-
trollers (Berenji, 1990).

7 CONCLUSIONS

This paper has demonstrated some advantages to com-
bining symbolic and neural-network methods for re-
�ning uncertain knowledge bases. Speci�cally, a sym-
bolic method for adding new rules to a certainty-factor
knowledge base was compared to a neural-network
method based on Kbann. Instead of making every
feature immediately available to the network, we have
shown that by judiciously selecting key features as nec-
essary, training time can be greatly reduced and a
simpler and slightly more accurate rule base can be
created. This is particularly true when there are a
large number of input features that can be recruited
by backpropagation but are not strictly necessary for
correct classi�cation.

The certainty-factor networks used in Rapture blur
the distinction between connectionist and symbolic
representations. They can be viewed either as con-
nectionist networks or symbolic rule bases. Rapture
demonstrates the utility of applying neural-network
learning methods to \symbolic" knowledge bases and
employing symbolic methods to modify \neural" net-

works. Hopefully these results will encourage others
to explore similar opportunities for cross-fertilization
of ideas between neural and symbolic learning.

Acknowledgements

This research was supported by the National Science
Foundation under grant IRI-9102926 and the Texas
Advanced Research Program under grant 003658114.
We wish to thank M. Noordewier, G.G. Towell, and
J.W. Shavlik for supplying the the Kbann results and
promoter theory and data, and Yong Ma for providing
the Mycin data.

References

Berenji, H. (1990). Re�nement of approxi-
mate reasoning-based controllers by reinforce-
ment learning. In Proceedings of the Eighth In-
ternational Workshop on Machine Learning, 475{
479. Evanston, IL.

Buchanan, G., and Shortli�e, E., editors (1984). Rule-
Based Expert Systems:The MYCIN Experiments
of the Stanford Heuristic Programming Project.
Reading, MA: Addison-Wesley Publishing Co.

Cooper, G. G., and Herskovits, E. (1992). A Bayesian
method for the induction of probabilistic networks
from data. Machine Learning, 9:309{347.

Fahlman, S., and Lebiere, C. (1989). The cascade-
correlation learning architecture. In Advances in
Neural Information Processing Systems 2, 524{
532. Denver, CO.

Feldman, R. (1993). Probabilistic Revision of Logi-
cal Domain Theories. PhD thesis, Department
of Computer Science, Cornell University, Ithaca,
NY.

Frean, M. (1990). The upstart algorithm: A method
for constructing and training feedforward neural
networks. Neural Computation, 2:198{209.

Fu, L.-M. (1989). Integration of neural heuristics into
knowledge-based inference. Connection Science,
1(3):325{339.

Ginsberg, A., Weiss, S. M., and Politakis, P. (1988).
Automatic knowledge based re�nement for clas-
si�cation systems. Arti�cial Intelligence, 35:197{
226.

Heckerman, D. (1986). Probabilistic interpretations
for Mycin's certainty factors. In Kanal, L. N.,
and Lemmer, J. F., editors, Uncertainty in Ar-
ti�cial Intelligence, 167{196. Amsterdam: North
Holland.

Hinton, G., and Sejnowski, T. (1986). Learning and
relearning in boltzmann machines. In Rumelhart,
D. E., and McClelland, J. L., editors, Parallel Dis-
tributed Processing, Vol. I, 282{317. Cambridge,
MA: MIT Press.

Koppel, M., Feldman, R., and Segre, A. M. (1994).
Bias-driven revision of logical domain theories.
Journal of Arti�cial Intelligence Research, 1:1{50.

Lacher, R. (1992). Node error assignment in expert
networks. In Kandel, A., and Langholz, G., edi-
tors, Hybrid Architectures for Intelligent Systems,
29{48. Boca Raton, FL: CRC Press, Inc.

Ma, Y., and Wilkins, D. C. (1991). Improving the
performance of inconsistent knowledge bases via
combined optimization method. In Proceedings
of the Eighth International Workshop on Machine
Learning, 23{27. Evanston, IL.

Mahoney, J. J., and Mooney, R. J. (1993). Combin-
ing connectionist and symbolic learning to re�ne
certainty-factor rule-bases. Connection Science,
5(3-4):339{364.

Mezard, M., and Nadal, J. (1989). Learning in feed-
forward layered networks: The tiling algorithm.
Journal of Physics, A22(12):2191{2203.

Michalski, R. S., and Chilausky, S. (1980). Learning
by being told and learning from examples: An
experimental comparison of the two methods of
knowledge acquisition in the context of develop-
ing an expert system for soybean disease diagno-
sis. Journal of Policy Analysis and Information
Systems, 4(2):126{161.

Noordewier, M. O., Towell, G. G., and Shavlik, J. W.
(1991). Training knowledge-based neural net-
works to recognize genes in DNA sequences. In
Advances in Neural Information Processing Sys-
tems, vol. 3. San Mateo, CA: Morgan Kaufman.

O'Neill, M., and Chiafari, F. (1989). Escherichia
coli promoters. Journal of Biological Chemistry,
264:5531{5534.

Opitz, D. W., and Shavlik, J. W. (1993). Heuris-
tically expanding knowledge-based neural net-
works. In Proceedings of the Thirteenth Interna-
tional Joint Conference on Arti�cial intelligence,
512{517. Chamberry, France.

Ourston, D., and Mooney, R. (1990). Changing the
rules: A comprehensive approach to theory re�ne-
ment. In Proceedings of the Eighth National Con-
ference on Arti�cial Intelligence, 815{820. De-
troit, MI.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San
Mateo,CA: Morgan Kaufmann, Inc.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1(1):81{106.

Rumelhart, D. E., Hinton, G. E., and Williams, J. R.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E., and McClel-
land, J. L., editors, Parallel Distributed Process-
ing, Vol. I, 318{362. Cambridge, MA: MIT Press.

Schwalb, E. (1993). Compiling Bayesian networks
into neural networks. In Proceedings of the Tenth
International Conference on Machine Learning,
291{297. Amherst, MA.

Shafer, G. (1976). A Mathematical Theory of Evi-
dence. Princeton, NJ: Princeton University Press.

Shafer, G., and J. Pearl, e. (1990). Readings in Un-
certain Reasoning. San Mateo,CA: Morgan Kauf-
mann, Inc.

Towell, G., and Shavlik, J. (1993). Extracting re�ned
rules from knowledge-based neural networks. Ma-
chine Learning, 13(1):71{102.

Towell, G. G. (1991). Symbolic Knowledge and Neu-
ral Networks: Insertion, Re�nement, and Extrac-
tion. PhD thesis, University of Wisconsin, Madi-
son, WI.

Towell, G. G., Shavlik, J. W., and Noordewier, M. O.
(1990). Re�nement of approximate domain theo-
ries by knowledge-based arti�cial neural networks.
In Proceedings of the Eighth National Conference
on Arti�cial Intelligence, 861{866. Boston, MA.

Wogulis, J., and Pazzani, M. (1993). A methodology
for evaluating theory revision systems: Results
with Audrey II. In Proceedings of the Thirteenth
International Joint Conference on Arti�cial intel-
ligence, 1128{1134. Chambery, France.

Zadeh, L. (1965). Fuzzy sets. Information and Control,
8:338{353.

