
Appears in Proceedings of the 1992 Machine Learning Workshop on Integrated Learning
in Real Domains, Aberdeen, Scotland, July, 1992

Combining Symbolic and Neural Learning

to Revise Probabilistic Theories

J. Je�rey Mahoney

Dept. of Computer Sciences

University of Texas

Austin, TX 78712

mahoney@cs.utexas.edu

Raymond J. Mooney

Dept. of Computer Sciences

University of Texas

Austin, TX 78712

mooney@cs.utexas.edu

Abstract

This paper describes Rapture | a system

for revising probabilistic theories that com-

bines symbolic and neural-network learning

methods. Rapture uses a modi�ed ver-

sion of backpropagation to re�ne the cer-

tainty factors of a Mycin-style rule-base and

it uses ID3's information gain heuristic to

add new rules. Results on two real-world

domains demonstrate that this combined ap-

proach performs as well or better than previ-

ous methods.

1 Introduction

Automatically revising an imperfect knowledge base

to correctly classify a set of training examples (the-

ory re�nement) has proven to be an important task

that lends itself to integrating analytical and empiri-

cal learning methods. Several theory re�nement sys-

tems have been successfully applied to real-world prob-

lems

[

Ginsberg, 1990; Ourston and Mooney, 1990;

Towell et al., 1990

]

. To date, theory re�nement has

largely focused on revising logical Horn-clause theo-

ries. However, many real-world domains require some

form of probabilistic reasoning

[

Shafer and J. Pearl,

1990

]

. The primary advantage of probabilistic meth-

ods is their ability to combine evidence from several

sources and draw a conclusion based on the total

amount of evidence for each possible decision. For in-

stance, knowing a general rule: a ^ b ^ c ^ d ! C

1

for classifying an example into category C

1

, an ex-

pert might still be inclined to conclude C

1

if there was

strong evidence for a^ b^ c even though there was no

evidence for d. This is especially true in cases where

the example does not exactly �t into any prede�ned

category. An automated classi�cation system using

pure Horn-clause logic is not capable of reasoning in

this manner. Once d is found to be false, the rule is

ignored.

Flexible matching methods in inductive rule learn-

ing

[

Michalski and Chilausky, 1980; Michalksi et al.,

1986

]

and theory revision

[

Mooney and Ourston, 1991

]

are one way to deal with this problem. In this ap-

proach, a score is calculated measuring how well an

example matches each symbolic rule and the rule

with the greatest score is invoked. Another approach

is to use N-of-M rules

[

Towell and Shavlik, 1991;

Ginsberg et al., 1988

]

, which �re if at least N of their

M antecedents are satis�ed, e.g. 3 of a; b; c; d ! C

1

.

Unfortunately, this approach does not consider the

relative strengths of each of the antecedents. Neural

networks, on the other hand, use connection weights

to encode relative strengths. By representing the

theory as a neural network, standard backpropaga-

tion

[

Rumelhart et al., 1986

]

can be used to mod-

ify the weights representing rule strengths

[

Fu, 1989;

Towell et al., 1990; Lacher, 1992

]

. Since a unit's

activation-level depends upon a linear sum of all in-

coming activations, this is an e�ective approach to

combining evidence.

In this paper, we describe the Rapture system

(Revising Approximate Probabilistic Theories Using

Repositories of Examples), which combines symbolic

and neural approaches. Rapture takes a Mycin-style

probabilistic theory

[

Shortli�e and Buchanan, 1975

]

and converts it into a network. The certainty factors

on the rules are mapped into weights of connections

between nodes of the network. Unlike standard neural

networks, in which the total input to a node is de-

termined by a linear sum of all incoming activations,

in a Rapture network, the total input is the proba-

bilistic sum of the incoming activations. Unlike stan-

dard neural networks, no thresholding output function

is needed since the probabilistic sum already provides

the needed non-linearity.

Once the network is built, it is modi�ed to properly

classify a repository of training examples. The network

training is performed in two phases. First, a modi�ed

version of backpropagation is used to adjust the cer-

tainty factors on the existing rules. The normal back-

propagation equations are changed to perform gradi-

ent descent for certainty-factor output functions such



as probabilistic-sum, MIN, and MAX. If all examples

can be classi�ed correctly through back-propagation

alone, then the network is considered trained. Oth-

erwise, symbolic methods are used to alter the net-

work architecture. Speci�cally, features are added

that help discriminate examples according to ID3's

information gain criterion

[

Quinlan, 1986

]

and low-

weighted links are deleted. Backpropagation and node

addition/deletion continue in a cycle until all of the

training examples are correctly classi�ed. Once the

network has been trained, the revised rules can be

read directly o� of the network { no retranslation is

necessary. Unlike KBANN

[

Towell and Shavlik, 1991

]

,

the direct correspondence between weighted links and

probabilistic rules removes any distinction between the

symbolic and connectionist representations.

The rest of this paper is organized as follows. Section 2

presents the Rapture algorithm in some detail. Sec-

tion 3 shows some preliminary results on a couple of

real-world data-sets. Section 4 discusses future work,

Section 5 discusses related work, and we conclude in

section 6.

2 The Rapture Approach

Mycin-style rules are of the form: A

0:8

! B, stating that

belief in proposition A gives a 0:8 Measure of Belief

in proposition B. The certainty-factor formalism was

chosen for a variety of reasons. First, it is perhaps the

simplest method that retains the evidence-summing

aspect of probabilistic reasoning. As each rule �res,

it contributes a piece of evidence for its consequent.

All evidence is then probabilistically summed, giving a

total measure of belief in the consequent. Mycin's use

of probabilitic sum (a� b � a+ b� ab) enables many

small pieces of evidence to add up to signi�cant evi-

dence. This is lacking in formalisms that use MIN or

MAX to combine evidence

[

Ling and Valtorta, 1991

]

.

Second, probabilistic sum is a simple, di�erentiable,

non-linear function. This is crucial for implementing

gradient descent using backpropagation. Finally, and

perhaps most signi�cantly, is the popularity of cer-

tainty factors. Numerous knowledge-bases have been

implemented using the Mycin model, which immedi-

ately gives our approach a wide degree of applicability.

2.1 Building the Network

The process of converting a Mycin-style probabilistic

theory into a network is straightforward. The result

will be called a conceptual network, in accordance with

[

Fu, 1989

]

. Building the conceptual network begins

by mapping all identical symbols in the rules to the

same node in the network. Input features (those only

appearing as rule-antecedents) become input nodes,

and are at the bottom of the network. Output sym-

bols (those only appearing as rule-consequents) be-

D

A B C

A

MIN

D G

MIN

B C E F

.5
.7 .1

.8

.5
.2

.7

MIN

IH

.2

.3

(a)

(b)

Figure 1: Building Simple Conceptual Networks

come output nodes, and are placed at the top of the

network. The certainty factors of the rules become

the weights of the links adjoining nodes. Networks

for classi�cation problems contain one output for each

category. When an example is presented, the measure

of belief in each of the categories is computed and the

example is assigned to the category with the highest

value.

Consider a simple example of three rules:

A

:7

! D B

:2

! D C

:5

! D

The network of Figure 1(a) is the conceptual network

for this rule set. These rules state that A,B, and C

all contribute evidence towards D in varying degrees.

Thus to calculate our Measure of Belief in D based

on these rules, we probabilistically sum the input ac-

tivations (A,B,C) multiplied by their corresponding

certainty factors. If, for example, our current belief in

A is 1, B is 0, and C is .6, then our current belief in

D is (1� :7)� (0� :2)� (:5� :6) � :7� 0� :3 = :79.

Note the di�erence between these rules, and the single

rule A^B^C^

x

! D, which states that all of A,B, and

C must be true (to some degree) in order for there to

be any evidence for D. The standard Mycin operator



for handling explicit conjunctions and disjunction are

the MIN andMAX functions, respectively. Figure 1(b)

illustrates the following more complete set of rules.

ABC

:5

! D E

:7

! D C

:1

! G

EF

:8

! G HI

:3

! C I

:2

! E

As shown in the network, conjuncts must �rst pass

through a MIN node before any activation reaches the

consequent node. Therefore, in the �rst rule, only one

of the activations from among A,B, and C (the one

with the minimum value) will multiply by the :5 cer-

tainty factor, giving evidence for D. Note that each

of the conjuncts is directly connected (i.e., has weight

1) to the corresponding MIN mode. This link is non-

adjustable, and simply passes the full activation value

to the input of the MIN node. MAX nodes are used

analogously to represent antecedent disjunction. Thus

a rule of the form A _B _ C

x

! D would require that

each of A,B, and C's activations pass through a MAX

node before being multiplied by the certainty factor.

This construction shows how easily a neural-network

can model a Mycin rule-base. In fact, they are iso-

morphic! Each representation can be converted into

the other, without any loss of information. They are

two equivalent representations of the same rule-base.

2.2 Certainty Factor Back-Propagation

Using the constructed conceptual network, we desire

to minimize the overall error at each of the output

nodes with respect to the training examples. By cyl-

cing through the examples and for each one slightly

adjusting all of the network weights in a direction that

will minimize the output error, we can hill-climb un-

til the overall output error reaches a local minimum.

This is the idea behind gradient descent, which is most

commonly implemented using backpropagation.

2.2.1 Backpropagation

Backpropagation (also referred to as the generalized

delta rule) is the standard algorithm for approximat-

ing gradient descent in a multi-layer network, i.e. a

network with hidden units that are neither inputs nor

outputs. It replaced the earlier perceptron learning al-

gorithm

[

Rosenblatt, 1962

]

) which performed the same

function on single-layer networks (perceptrons). With

no hidden units, gradient descent is guaranteed to �nd

a solution, if one exists. Unfortunately, no such claim

is possible for multi-layer networks.

For each example, the normal backpropagation for-

mula for adjusting the weight linking node i to node j

(w

ji

) after seeing pattern p is

�

p

w

ji

= ��

pj

o

pi

(1)

where � is the user-de�ned learning rate, o

pi

is the

output of unit i for input pattern p, and �

pj

is the

output error of unit j for pattern p. In a normal neural

network, the output of a node j is f(net

pj

) where the

net input net

pj

=

P

w

ji

o

pi

for all input connections i,

and where f is a nondecreasing, di�erentiable function

(usually a thresholding function). The value of �

pj

is

determined by the type of unit. If j is an output unit,

then

�

pj

= (t

pj

� o

pj

)f

0

j

(net

pj

): (2)

where t

pj

is the correct output value for unit j. If j is

not an output unit, then

�

pj

= f

0

j

(net

pj

)

X

k

�

pk

w

kj

: (3)

2.2.2 Using Certainty Factors

We cannot, however, use these standard back-

propagation formulas for our system, since we are try-

ing to model Mycin's summation of evidence. In order

to achieve gradient descent on this network, it is nec-

essary to �rst derive the corresponding formulas for

Certainty Factor Back-Propagation (CFBP).

The main distinction is the manner in which inputs to

a node combine to give the total net input (net

pj

). A

conceptual network uses probabilistic sum instead of

normal addition to determine the net input. First,

all positive inputs (w

ji

o

pi

� 0) are combined with

P

� w

ji

o

pi

(where

P

� represents a probabilistic sum:

a� b � a+ b� ab). This results in a number between

0 and 1. Similarly, all negative inputs are combined,

where probabilistic sum states a � b � a � b � ab.

This results in a number between -1 and 0. These two

numbers correspond to Shortli�e's Measures of Belief

(MB) and Disbelief (MD)

[

Shortli�e and Buchanan,

1975

]

. The net input is calculated as MB+MD, which

represents the certainty factor of the symbol (node)

concluded from the combination of input rules, and

can take on values between -1 and +1 inclusive. As

this value is passed directly on as the nodes output,

we are de�ning o

pj

= net

pj

, hence the output function

is identity. In order to perform back-propagation on

a network such as this, the following equations must

be utilized. For the derivation of these equations, see

[

Mahoney, 1992

]

.

�

p

w

ji

= ��

pj

(1�

X

k 6=i


 w

jk

o

pk

) (4)

If u

j

is an output unit

�

pj

= (t

pj

� o

pj

) (5)

If u

j

is not an output unit

�

pj

=

X

k

min

�

pk

w

kj

(1�

X

i6=k


 w

jk

o

pk

) (6)

The � notation is shorthand for two separate cases. If

w

ji

o

pi

� 0, then + is used, otherwise � is used. The



k

min

subscript refers to the fact that we do not per-

form this summation for every unit k (as in standard

backpropagation), but only those units that received

some contribution from unit j. Since a unit j may be

required to pass through a min-node before reaching

the next layer (k), it is possible that its value may not

reach k.

Using these equations, CFBP performs gradient de-

scent on conceptual networks exactly as standard

backpropagation does for neural networks. This ad-

justs all of the certainty factors to locally minimize

the mean-squared error over all training examples.

Since the target output value is 1 for the correct cate-

gory and 0 for all other categories, it is virtually impos-

sible to achieve an overall mean-squared error of zero.

When combining evidence using probabilistic sum, an

output of 1 is only achieved when there is a rule with

a certainty factor of 1 whose antecedents all have a

certainty factor of 1. Such cases are rare in probabilis-

tic classi�cation problems. Because of this, Rapture

deems a classi�cation correct when the output value

for the correct category is greater than any other cat-

egory. No error propagation takes place in this case

(�pj = 0).

One remaining issue is when to stop adjusting weights.

The easiest stopping criteria would be when all exam-

ples are classi�ed correctly, but this criteria is not used

for two reasons. First, backpropogation is not guaran-

teed to converge to 100% training accuracy | it may

reach a local minimum. Further, just because all of the

examples are classi�ed correctly does not mean that

further weight adjustment is useless. Perhaps further

adjustments will minimize the error to an even greater

extent. Correct classi�cation does not mean 0 error. A

better criteria is to stop weight adjustment when the

error has bottomed out. Rapture checks the total

mean-squared error every 10 epochs, and if the error

ever decreases by less than � (.001), CFBP halts.

2.3 Changing the Network Architecture

Whenever training accuracy fails to reach 100%

through CFBP, it is possibly a sign that the network

architecture is insu�cient for the classi�cation task

at hand. To date, we have implemented two ways of

changing the architecture. First, whenever the weight

of a link goes to zero or changes sign, it is removed from

the network and all lower nodes that become detached

from the rest of the network are also removed. Deletion

is performed dynamically during CFBP, where links

are checked for deletion after every 10 epochs. If a

link weight goes to zero, then any node beneath this

link cannot contribute to the output except through

another path. Further, if the weight actually crosses

zero, then a rule which was proposed by the expert as

positive (negative) evidence is now being used as neg-

ative (positive) evidence, indicating that something is

terribly wrong with the rule.

Rapture also has a method for adding new nodes to

the network. Speci�c nodes are added in an attempt

to get more of the training examples classi�ed cor-

rectly. The problems are deciding which node to add,

and where to insert it in the network. Since we want

new evidence that will make one or more output nodes

classify a group of examples di�erently, it makes sense

to add new input nodes that connect directly, either

positively or negatively to one or more output nodes.

These new nodes should be designed to help the net-

work distinguish between the training examples that

are being misclassi�ed.

Let us de�ne C as the set of all possible categories into

which an example may be classi�ed. We de�ne S

i

to

be the set of false negative examples for category C

i

.

These are those examples whose target category is C

i

,

yet the network classi�ed as C

j 6=i

. In fact, the network

may have given a higher certainty factor to several C

j

for any given example in S

i

. We can de�ne L

i

as the

set of all C

j 6=i

such that for some example in S

i

, C

j

had a higher certainty factor than C

i

. Finally, de�ne

T

i

as the set of all examples whose target category is

in L

i

.

Now we have two disjoint groups of examples. S

i

|

the false negatives for C

i

, and T

i

|the true positives

for all categories that are being confused with C

i

. How

can we better discriminate between these two sets of

examples? By utilizing Quinlan's ID3 metric

[

Quin-

lan, 1986

]

, we can �nd the best feature-value combina-

tion of the examples that discriminate these examples.

Once we have this, add it into the network.

Information gain, as calculated by ID3, works by look-

ing at features in the domain of examples, and deter-

mines how well this feature separates the examples in

accordance with expert classi�cation. It then selects

the feature that best discriminates the examples. This

works well for building a decision-tree, but is not ex-

actly what is needed for our conceptual network. What

we have is two sets of examples, and we need to dis-

cover a feature that is highly prominent in one of the

sets, yet lacking in the other. ID3 information gain

can easily handle this, if we consider every possible

feature-value pair in the domain of the examples as a

binary feature. By labelling each example from S

i

as

negative, and those from T

i

as positive, then for every

feature-value pair, we can determine the percentage of

examples from each of the two sets that do and do not

have this feature-value pair. Information gain is then

calculated for each of these pairs, and the one with

maximal gain is selected. Ties are broken at random.

Once this feature-value has been selected, we build a

new node to use it as positive evidence for C

i

. It may

be the case that the feature-value selected is negative

evidence for C

i

, meaning that it is highly prominent in

T

i

yet lacking in S

i

. In this case, we invert the value of



Loop until 100% training accuracy is achieved.

1. Perform CFBP on the network. Use given train-

ing examples, and as many epochs as necessary

until mean-squared error decreases by < �. Delete

any links whose weights change sign.

2. If not 100% training accuracy, use ID3 informa-

tion gain to add new input units. Make one new

rule for each output unit misclassifying positive

examples.

Figure 2: Overview of the Rapture Algorithm

the feature. Placing a small positive weight on the rule

gives us a rule of the form COLOR = RED

:1

! C

i

, or

COLOR 6= RED

:1

! C

i

which serves as new positive

evidence for C

i

. We build similar rules (using the same

feature-value pair) for each of the categories in set L

i

with small negative weights. This gives new negative

evidence for all of these categories. The examples in

S

i

will now be more likely to be classi�ed in category

C

i

.

This is performed for each C

i

2 C. Note that for

some C

i

, the false negative list will be empty, as every

example will be classi�ed correctly. This produces no

new nodes in the network. We do not worry about false

positives. These are examples that are not supposed

to be classi�ed as C

i

, but are nonetheless. These will

turn up as false negatives for another C

i

.

With these new nodes in place, we can now return to

CFBP, where hopefully more training examples will be

successfully classi�ed. This entire process (CFBP fol-

lowed by adding new nodes) repeats until all training

examples are correctly classi�ed. Once this has oc-

curred, the network is considered trained, and testing

may begin.

3 Current Experimental Results

So far, the Rapture system has been tested on two

real-world domains. The �rst uses a theory for diag-

nosing soybean diseases. The second is a domain for

recognizing DNA-promoter sequences from strings of

nucleotides. These datasets are discussed in more de-

tail in the following sections.

3.1 SOYBEAN Results

The Soybean Data comes from

[

Michalski and Chi-

lausky, 1980

]

and is a dataset of 562 examples of dis-

eased soybeans. Examples were described by a string

of 35 features including the condition of the stem, the

roots, the seeds, as well as information such as the

time of year, temperature, and features of the soil. An

expert classi�ed each example into one of 15 soybean

diseases. This dataset has been used as a benchmark

Number of Training Examples

RAPTURE

ID3

EITHER

C
or

re
ct

ne
ss

 o
n 

T
es

t D
at

a

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 3: Learning Curves for Soybean Data

for a number of learning systems. Figure 2 is a learning

curve on this data comparing Rapture, EITHER,

and ID3. As is clear from the graph, Rapture is

given a considerable headstart with its initial theory

that was provided by the experts. The theory used by

Rapture was a certainty factor version of the expert

theory given in

[

Michalski and Chilausky, 1980

]

. In-

stead of using Horn clauses, each conjunct in a rule's

antecedent was used as separate evidence for its dis-

ease. The original theory contains both rules labelled

as signi�cant, that highly indicate a particular disease,

and others labelled con�rmatory, which only corrob-

orated other evidence. Initial certainty factors were

assigned to re
ect this. Pieces of evidence from sig-

ni�cant rules were given certainty factors high enough

to give a .9 degree of belief if each of the conjuncts

from the original rule were true. For the con�rmatory

pieces of evidence, this value was .1.

Training proceeded slowly, as CFBP by itself usually

peaked out at 90% training accuracy, and three or four

rounds of node addition were common. Training 100

examples commonly took 4 hours of computation time.

It was interesting to see that the same two or three dis-

eases were constantly being confused, and Rapture

focused much of its time getting these correct. About

2/3 of the diseases had all or their examples correctly

classi�ed after the �rst application of CFBP.

Rapture maintains its headstart throughout testing.

Through 60 examples, a t-test shows that Rapture

is performing signi�cantly better than ID3 (at the .05

level of signi�cance), and continues to hold a slight

lead through 100 examples. As this data was the aver-

age over only 10 trials, the last two points on the plot

(80 and 100 examples) show no signi�cant di�erence

between Rapture and ID3, though it is suspected



Number of Training Examples

RAPTURE

EITHER

ID3

C
or

re
ct

ne
ss

 o
n 

T
es

t D
at

a

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 4: Learning Curves for DNA Data

that more trials would reveal a signi�cant di�erence.

Either was also tested on this dataset, though it

was run using di�erent training and testing sets. Its

performance is clearly worse than Rapture's. This

was a result of many examples not being classi�ed

into any category. By resorting to a partial-matching

technique, and all examples were assigned to the cate-

gory that was most nearly �red, Either's performance

matches that of Rapture, almost identically

[

Mooney

and Ourston, 1991

]

.

3.2 DNA Results

The DNA theory is designed to recognize prokaryotic

promoters in strings composed of nucleotides. A pro-

moter is a short DNA sequence that precedes the be-

ginnings of genes, and are locations where the protein

RNA polymerase binds to the DNA structure

[

Towell

et al., 1990

]

. This is a dataset of 106 examples, for

which 53 are examples of promoters, and 53 are not.

Each example consists of a sequence of 57 DNA nu-

cleotides. The original theory for this recognition task

comes from

[

O'Neill and Chiafari, 1989

]

, and is de-

scribed as an N-of-M theory, which should be bene�-

cial for a probabilistic system such as Rapture. Once

again, this theory was modi�ed for Rapture so that

if every conjunct of a rule �red, this would lead to a .9

certainty factor. Figure 3 provides a learning curve for

this data against Either. This graph clearly demon-

strates the advantages of an evidence summing sys-

tem over a pure Horn-clause system such as Either.

Though they both start near 50% accuracy, Rapture

very rapidly is up over the 90% mark. ID3 has sim-

ilar di�culty in learning this N-of-M type of theory.

This data has also been run on K-BANN, and al-

though the training and test sets are di�erent compar-

isons,K-BANN runs about 1-percentage point higher.

Whereas Rapture's accuracy is at 93.8% after 90

training examples,K-BANN is slightly over 95%

[

Tow-

ell and Shavlik, 1991

]

. It is not known whether or not

this di�erence is statistically signi�cant.

Interestingly, Rapture found this data very easy to

classify. CFBP alone did all of the training, as the

node addition module was never called. Generally

training completed in the order of 20 to 30 epochs,

and usually took less than a minute.

4 Future Work to be Done

At this point, we are quite pleased with the CFBP

stage of the algorithm. We feel that given the correct

network architecture, CFBP will properly adjust the

weights in a manner that will generalize well to unseen

examples. This was con�rmed by the DNA results.

Much remaining work is yet to be done, however, on

restructuring the network architecture.

We have begun looking into new ways to add new

nodes into the network to better classify troublesome

examples. Currently Cascade-Correlation

[

Fahlman

and Lebiere, 1989

]

and the Tiling algorithm

[

Mezard

and Nadal, 1989

]

seem to hold promise.

Of further interest is in how conceptual networks per-

form on standard neural network problems. Compar-

ison studies will be done to see if gradient descent on

a neural network performs comparably to CFBP on

a conceptual network. We also hope to see how well

Rapture performs when starting with a K-bann net-

work, where all available features are already in the

network with low weights.

Other than running Rapture on a number of other

domains, we will explore the limitations of this

symbolic-connectionist problem-solving technique. We

hope to show that this idea is extendible to other prob-

abilistic formalisms such as Bayes-Nets, Dempster-

Shafer, or fuzzy logic.

5 Related Work

Much work has already been done in revising prob-

abilistic knowledge bases. Ginsberg

[

Ginsberg et al.,

1988

]

was among the �rst to explore the idea of us-

ing N-OF-M rules, and his seek algorithms devised

various ways of adjusting N and M.

Valtorta

[

Ling and Valtorta, 1991

]

has looked into rules

with varying strengths, and building networks out of

these rules. Most of his work has been in proving that

the problem of �nding a correct set of strengths to

exactly match the expert is NP-Hard.

Closer to this project, Gallant

[

Gallant, 1988

]

has ex-

plored using a connectionist network as an expert sys-



tem for solving diagnosis problems. Towell

[

Towell

and Shavlik, 1991

]

has built neural networks out of

symbolic rules, where all features of the examples are

present in small weighted links. Symbolic rules are

then extracted in an N-OF-M manner. Fu

[

Fu, 1989

]

and Lacher

[

Lacher, 1992

]

have both designed algo-

rithms for creating conceptual networks out of Mycin-

style rules. Fu only performs a partial back-prop, then

resorts to a hill-climbing on classi�cation accuracy.

Lacher has done nothing in the area of node addition,

and presents no results.

6 Conclusions

The ability to revise probabilistic theories is critical to

applying theory revision to many real-world problems.

This paper has described and evaluated an approach

to revising certainty-factor rule bases that integrates

neural and symbolic learning methods. This approach

is implemented in a system called Rapture, which

uses a revised backpropagation algorithm to modify

certainty factors and ID3's information gain criteria

to determine new rules to add to the network. In

other words, connectionist methods are used to adjust

parameters and symbolic methods are used to make

structural changes to the theory.

Initial results in two real-world domains indicate that

Rapture performs better than a standard inductive

system (ID3) and a logic-based theory revision system

(Either), and performs as well as a more traditional

neural network approach (Kbann) and a logic-based

system (Either) enhanced with partial matching.

7 Acknowledgements

This research was supported by the National Sci-

ence Foundation under grant IRI-9102926, the NASA

Ames Research Center under grant NCC 2-629, and

the Texas Advanced Research Program under grant

003658114. We also wish to thank M. Noordewier,

G.G. Towell, and J.W. Shavlik for supplying the DNA

data.

References

[

Fahlman and Lebiere, 1989

]

S.E.

Fahlman and C. Lebiere. The cascade-correlation

learning architecture. In Advances in Neural Infor-

mation Processing Systems 2, pages 524{532, Den-

ver, CO, November 1989.

[

Fu, 1989

]

Li-Min Fu. Integration of neural heuris-

tics into knowledge-based inference. Connection Sci-

ence, 1(3):325{339, 1989.

[

Gallant, 1988

]

S.I. Gallant. Connectionist expert sys-

tems. Communications of the Association for Com-

puting Machinery, 31:152{169, 1988.

[

Ginsberg et al., 1988

]

A. Ginsberg, S. M. Weiss, and

P. Politakis. Automatic knowledge based re�ne-

ment for classi�cation systems. Arti�cial Intelli-

gence, 35:197{226, 1988.

[

Ginsberg, 1990

]

A. Ginsberg. Theory reduction, the-

ory revision, and retranslation. In Proceedings of

the Eighth National Conference on Arti�cial Intel-

ligence, pages 777{782, Detroit, MI, July 1990.

[

Lacher, 1992

]

R.C. Lacher. Expert networks:

Paradigmatic con
ict, technological rapprochement.

Neuroprose FTP Archive, pages 1{24, 1992.

[

Ling and Valtorta, 1991

]

X. Ling and M. Valtorta.

Revision of reduced theories. In Proceedings of the

Eighth International Workshop on Machine Learn-

ing, pages 519{523, Evanston, IL, June 1991.

[

Mahoney, 1992

]

J. Mahoney. Combining symbolic

and neural learning for theory revision. Disserta-

tion Proposal{To be completed, 1992.

[

Mezard and Nadal, 1989

]

M. Mezard and J. Nadal. Learning in feedforward

layered networks: The tiling algorithm. Journal of

Physiology, A22(12):2191{2203, 1989.

[

Michalksi et al., 1986

]

R.S. Michalksi, I. Mozetic,

J. Hong, and N. Lavrac. The multi-purpose incre-

mental learning system AQ15 and its testing ap-

plication to three medical domains. In Proceedings

of the Fifth National Conference on Arti�cial In-

telligence, pages 1041{1045, Philadelphia, PA, Aug

1986.

[

Michalski and Chilausky, 1980

]

R. S. Michalski and

S. Chilausky. Learning by being told and learning

from examples: An experimental comparison of the

two methods of knowledge acquisition in the context

of developing an expert system for soybean disease

diagnosis. Journal of Policy Analysis and Informa-

tion Systems, 4(2):126{161, 1980.

[

Mooney and Ourston, 1991

]

R. J. Mooney and D. Ourston. A multistrategy ap-

proach to theory re�nement. In Proceedings of the

International Workshop on Multistrategy Learning,

pages 115{130, Harper's Ferry, W.Va., Nov. 1991.



[

O'Neill and Chiafari, 1989

]

M.C. O'Neill and F. Chi-

afari. Escherichia coli promoters. Journal of Biolog-

ical Chemistry, 264:5531{5534, 1989.

[

Ourston and Mooney, 1990

]

D. Ourston and R. Mooney. Changing the rules:

a comprehensive approach to theory re�nement. In

Proceedings of the Eighth National Conference on

Arti�cial Intelligence, pages 815{820, Detroit, MI,

July 1990.

[

Quinlan, 1986

]

J. R. Quinlan. Induction of decision

trees. Machine Learning, 1(1):81{106, 1986.

[

Rosenblatt, 1962

]

F. Rosenblatt. Principles of Neu-

rodynamics. Spartan, New York, 1962.

[

Rumelhart et al., 1986

]

D. E. Rumelhart, G. E. Hin-

ton, and J. R. Williams. Learning internal represen-

tations by error propagation. In D. E. Rumelhart

and J. L. McClelland, editors, Parallel Distributed

Processing, Vol. I, pages 318{362. MIT Press, Cam-

bridge, MA, 1986.

[

Shafer and J. Pearl, 1990

]

G. Shafer

and eds. J. Pearl. Readings in Uncertain Reason-

ing. Morgan Kaufmann, Inc., San Mateo:CA, 1990.

[

Shortli�e and Buchanan, 1975

]

E.H. Shortli�e and

B.G. Buchanan. A model of inexact reasoning in

medicine. Mathematical Biosciences, 23:351{379,

1975.

[

Towell and Shavlik, 1991

]

G. Towell and J. Shavlik.

Re�ning symbolic knowledge using neural networks.

In Proceedings of the International Workshop on

Multistrategy Learning, pages 257{272, Harper's

Ferry, W.Va., Nov. 1991.

[

Towell et al., 1990

]

G. G. Towell, J. W. Shavlik, and

Michiel O. Noordewier. Re�nement of approximate

domain theories by knowledge-based arti�cial neu-

ral networks. In Proceedings of the Eighth National

Conference on Arti�cial Intelligence, pages 861{866,

Boston, MA, July 1990.


