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Extra
ting Relations from TextFrom Word Sequen
es to Dependen
y PathsRazvan C. Bunes
u and Raymond J. MooneyDepartment of Computer S
ien
esUniversity of Texas at Austin1 University Station C0500Austin, TX 78712-0233razvan,mooney�
s.utexas.edu1 Introdu
tionExtra
ting semanti
 relationships between entities mentioned in text do
u-ments is an important task in natural language pro
essing. The various typesof relationships that are dis
overed between mentions of entities 
an provideuseful stru
tured information to a text mining system [1℄. Traditionally, thetask spe
i�es a prede�ned set of entity types and relation types that aredeemed to be relevant to a potential user and that are likely to o

ur in aparti
ular text 
olle
tion. For example, information extra
tion from newspa-per arti
les is usually 
on
erned with identifying mentions of people, orga-nizations, lo
ations, and extra
ting useful relations between them. Relevantrelation types range from so
ial relationships, to roles that people hold insidean organization, to relations between organizations, to physi
al lo
ations ofpeople and organizations. S
ienti�
 publi
ations in the biomedi
al domain of-fer a type of narrative that is very di�erent from the newspaper dis
ourse.A signi�
ant e�ort is 
urrently spent on automati
ally extra
ting relevantpie
es of information from Medline, an online 
olle
tion of biomedi
al ab-stra
ts. Proteins, genes and 
ells are examples of relevant entities in this task,whereas sub
ellular lo
alizations and protein-protein intera
tions are two ofthe relation types that have re
eived signi�
ant attention re
ently. The in-herent diÆ
ulty of the relation extra
tion task is further 
ompounded in thebiomedi
al domain by the relative s
ar
ity of tools able to analyze the 
orre-sponding type of narrative. Most existing natural language pro
essing tools,su
h as tokenizers, senten
e segmenters, part-of-spee
h (POS) taggers, shallowor full parsers are trained on newspaper 
orpora, and 
onsequently they in

ura loss in a

ura
y when applied to biomedi
al literature. Therefore, informa-tion extra
tion systems developed for biologi
al 
orpora need to be robust toPOS or parsing errors, or to give reasonable performan
e using shallower butmore reliable information, su
h as 
hunking instead of full parsing.
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u and Raymond J. MooneyIn this 
hapter, we present two re
ent approa
hes to relation extra
tion thatdi�er in terms of the kind of linguisti
 information they use:1. In the �rst method (Se
tion 2), ea
h potential relation is represented im-pli
itly as a ve
tor of features, where ea
h feature 
orresponds to a wordsequen
e an
hored at the two entities forming the relationship. A rela-tion extra
tion system is trained based on the subsequen
e kernel from[2℄. This kernel is further generalized so that words 
an be repla
ed withword 
lasses, thus enabling the use of information 
oming from POS tag-ging, named entity re
ognition, 
hunking or Wordnet [3℄.2. In the se
ond approa
h (Se
tion 3), the representation is 
entered onthe shortest dependen
y path between the two entities in the depen-den
y graph of the senten
e. Be
ause synta
ti
 analysis is essential in thismethod, its appli
ability is limited to domains where synta
ti
 parsinggives reasonable a

ura
y.Entity re
ognition, a prerequisite for relation extra
tion, is usually 
ast as asequen
e tagging problem, in whi
h words are tagged as being either outsideany entity, or inside a parti
ular type of entity. Most approa
hes to entitytagging are therefore based on probabilisti
 models for labeling sequen
es,su
h as Hidden Markov Models [4℄, Maximum Entropy Markov Models [5℄, orConditional Random Fields [6℄, and obtain a reasonably high a

ura
y. In thetwo information extra
tion methods presented in this 
hapter, we assume thatthe entity re
ognition task was done and fo
us only on the relation extra
tionpart.2 Subsequen
e Kernels for Relation Extra
tionOne of the �rst approa
hes to extra
ting intera
tions between proteins frombiomedi
al abstra
ts is that of Blas
hke et al., des
ribed in [7, 8℄. Their systemis based on a set of manually developed rules, where ea
h rule (or frame) isa sequen
e of words (or POS tags) and two protein-name tokens. Betweenevery two adja
ent words is a number indi
ating the maximum number ofintervening words allowed when mat
hing the rule to a senten
e. An examplerule is \intera
tion of (3) <P> (3) with (3) <P>", where '<P>' is used todenote a protein name. A senten
e mat
hes the rule if and only if it satis�esthe word 
onstraints in the given order and respe
ts the respe
tive word gaps.In [9℄ the authors des
ribed a new method ELCS (Extra
tion using LongestCommon Subsequen
es) that automati
ally learns su
h rules. ELCS' rule rep-resentation is similar to that in [7, 8℄, ex
ept that it 
urrently does not use POStags, but allows disjun
tions of words. An example rule learned by this sys-tem is \- (7) intera
tion (0) [between j of ℄ (5) <P> (9) <P> (17) .". Wordsin square bra
kets separated by `j' indi
ate disjun
tive lexi
al 
onstraints, i.e.one of the given words must mat
h the senten
e at that position. The numbersin parentheses between adja
ent 
onstraints indi
ate the maximum numberof un
onstrained words allowed between the two.



Extra
ting Relations from Text 32.1 Capturing Relation Patterns with a String KernelBoth Blas
hke and ELCS do relation extra
tion based on a limited set ofmat
hing rules, where a rule is simply a sparse (gappy) subsequen
e ofwords or POS tags an
hored on the two protein-name tokens. Therefore,the two methods share a 
ommon limitation: either through manual sele
-tion (Blas
hke), or as a result of a greedy learning pro
edure (ELCS), theyend up using only a subset of all possible an
hored sparse subsequen
es. Ide-ally, all su
h an
hored sparse subsequen
es would be used as features, withweights re
e
ting their relative a

ura
y. However expli
itly 
reating for ea
hsenten
e a ve
tor with a position for ea
h su
h feature is infeasible, due to thehigh dimensionality of the feature spa
e. Here, we exploit dual learning al-gorithms that pro
ess examples only via 
omputing their dot-produ
ts, su
has in Support Ve
tor Ma
hines (SVMs) [10, 11℄. An SVM learner tries to�nd a hyperplane that separates positive from negative examples and at thesame time maximizes the separation (margin) between them. This type ofmax-margin separator has been shown both theoreti
ally and empiri
ally toresist over�tting and to provide good generalization performan
e on unseenexamples.Computing the dot-produ
t (i.e. the kernel) between the features ve
tors as-so
iated with two relation examples amounts to 
al
ulating the number of
ommon an
hored subsequen
es between the two senten
es. This is done eÆ-
iently by modifying the dynami
 programming algorithm used in the stringkernel from [2℄ to a

ount only for 
ommon sparse subsequen
es 
onstrainedto 
ontain the two protein-name tokens. The feature spa
e is further prunneddown by utilizing the following property of natural language statements: whena senten
e asserts a relationship between two entity mentions, it generally doesthis using one of the following four patterns:� [FB℄ Fore{Between: words before and between the two entity mentionsare simultaneously used to express the relationship. Examples: `intera
tion ofhP1i with hP2i`, `a
tivation of hP1i by hP2i`.� [B℄ Between: only words between the two entities are essential for assert-ing the relationship. Examples: `hP1i intera
ts with hP2i`, `hP1i is a
tivatedby hP2i`.� [BA℄ Between{After: words between and after the two entity mentionsare simultaneously used to express the relationship. Examples: `hP1i { hP2i
omplex`, `hP1i and hP2i intera
t`.� [M℄ Modi�er: the two entity mentions have no words between them. Ex-amples:U.S. troops (aRole:Staff relation), Serbian general (Role:Citizen).While the �rst three patterns are suÆ
ient to 
apture most 
ases of in-tera
tions between proteins, the last pattern is needed to a

ount for variousrelationships expressed through noun-noun or adje
tive-noun 
ompounds inthe newspaper 
orpora.Another observation is that all these patterns use at most 4 words toexpress the relationship (not 
ounting the two entity names). Consequently,
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u and Raymond J. Mooneywhen 
omputing the relation kernel, we restri
t the 
ounting of 
ommon an-
hored subsequen
es only to those having one of the four types des
ribedabove, with a maximum word-length of 4. This type of feature sele
tion leadsnot only to a faster kernel 
omputation, but also to less over�tting, whi
hresults in in
reased a

ura
y.The patterns enumerated above are 
ompletely lexi
alized and 
onse-quently their performan
e is limited by data sparsity. This 
an be alleviated by
ategorizing words into 
lasses with varying degrees of generality, and then al-lowing patterns to use both words and their 
lasses. Examples of word 
lassesare POS tags and generalizations over POS tags su
h as Noun, A
tive Verbor Passive Verb. The entity type 
an also be used, if the word is part of aknown named entity. Also, if the senten
e is segmented into synta
ti
 
hunkssu
h as noun phrases (NP) or verb phrases (VP), the system may 
hoose to
onsider only the head word from ea
h 
hunk, together with the type of the
hunk as another word 
lass. Content words su
h as nouns and verbs 
an alsobe related to their synsets via WordNet. Patterns then will 
onsist of sparsesubsequen
es of words, POS tags, generalized POS tags, entity and 
hunktypes, or WordNet synsets. For example, `Noun of hP1i by hP2i` is an FBpattern based on words and general POS tags.2.2 A Generalized Subsequen
e KernelLet �1; �2; :::; �k be some disjoint feature spa
es. Following the example inSe
tion 2.1, �1 
ould be the set of words, �2 the set of POS tags, et
. Let�� = �1 � �2 � ::: � �k be the set of all possible feature ve
tors, where afeature ve
tor would be asso
iated with ea
h position in a senten
e. Given twofeature ve
tors x; y 2 ��, let 
(x; y) denote the number of 
ommon featuresbetween x and y. The next notation follows that introdu
ed in [2℄. Thus, lets; t be two sequen
es over the �nite set ��, and let jsj denote the length ofs = s1:::sjsj. The sequen
e s[i:j℄ is the 
ontiguous subsequen
e si:::sj of s. Leti = (i1; :::; ijij) be a sequen
e of jij indi
es in s, in as
ending order. We de�nethe length l(i) of the index sequen
e i in s as ijij � i1 + 1. Similarly, j is asequen
e of jjj indi
es in t.Let �[ = �1 [ �2 [ ::: [ �k be the set of all possible features. We saythat the sequen
e u 2 ��[ is a (sparse) subsequen
e of s if there is a sequen
eof juj indi
es i su
h that uk 2 sik , for all k = 1; :::; juj. Equivalently, we writeu � s[i℄ as a shorthand for the 
omponent-wise `2` relationship between uand s[i℄.Finally, let Kn(s; t; �) (Equation 1) be the number of weighted sparsesubsequen
es u of length n 
ommon to s and t (i.e. u � s[i℄, u � t[j℄), wherethe weight of u is �l(i)+l(j), for some � � 1.Kn(s; t; �) = Xu2�n[ Xi:u�s[i℄ Xj:u�t[j℄�l(i)+l(j) (1)



Extra
ting Relations from Text 5Let i and j be two index sequen
es of length n. By de�nition, for every kbetween 1 and n, 
(sik ; tjk ) returns the number of 
ommon features betweens and t at positions ik and jk. If 
(sik ; tjk ) = 0 for some k, there are no
ommon feature sequen
es of length n between s[i℄ and t[j℄. On the otherhand, if 
(sik ; tjk) = 0 is greater than 1, this means that there is more thanone 
ommon feature that 
an be used at position k to obtain a 
ommon featuresequen
e of length n. Consequently, the number of 
ommon feature sequen
esof length n between s[i℄ and t[j℄, i.e. the size of the set fu 2 �n[ju � s[i℄; u �t[j℄g, is given by Qnk=1 
(sik ; tjk ). Therefore, Kn(s; t; �) 
an be rewritten as inEquation 2: Kn(s; t; �) = Xi:jij=n Xj:jjj=n nYk=1 
(sik ; tjk )�l(i)+l(j) (2)We use � as a de
aying fa
tor that penalizes longer subsequen
es. Forsparse subsequen
es, this means that wider gaps will be penalized more, whi
his exa
tly the desired behavior for our patterns. Through them, we try to 
ap-ture head-modi�er dependen
ies that are important for relation extra
tion;for la
k of reliable dependen
y information, the larger the word gap is be-tween two words, the less 
on�dent we are in the existen
e of a head-modi�errelationship between them.To enable an eÆ
ient 
omputation of Kn, we use the auxiliary fun
tionK 0n with a similar de�nition as Kn, the only di�eren
e being that it 
ountsthe length from the beginning of the parti
ular subsequen
e u to the end ofthe strings s and t, as illustrated in Equation 3:K 0n(s; t; �) = Xu2�n[ Xi:u�s[i℄ Xj:u�t[j℄�jsj+jtj�i1�j1+2 (3)An equivalent formula for K 0n(s; t; �) is obtained by 
hanging the exponent of� from Equation 2 to jsj+ jtj � i1 � j1 + 2.Based on all de�nitions above, Kn is 
omputed in O(knjsjjtj) time, bymodifying the re
ursive 
omputation from [2℄ with the new fa
tor 
(x; y), asshown in Figure 1. In this �gure, the sequen
e sx is the result of appendingx to s (with ty de�ned in a similar way). To avoid 
lutter, the parameter �is not shown in the argument list of K and K 0, unless it is instantiated to aspe
i�
 
onstant.2.3 Computing the Relation KernelAs des
ribed at the beginning of Se
tion 2, the input 
onsists of a set ofsenten
es, where ea
h senten
e 
ontains exa
tly two entities (protein namesin the 
ase of intera
tion extra
tion). In Figure 2 we show the segments thatwill be used for 
omputing the relation kernel between two example senten
ess and t. In senten
e s for instan
e, x1 and x2 are the two entities, sf is the
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u and Raymond J. MooneyK00(s; t) = 1; for all s; tK00i (sx; ty) = �K00i (sx; t) + �2K0i�1(s; t) � 
(x; y)K0i (sx; t) = �K0i (s; t) +K00i (sx; t)Kn(s; t) = 0; if min(jsj; jtj) < nKn(sx; t) = Kn(s; t) +Xj �2K0n�1(s; t[1 : j � 1℄) � 
(x; t[j℄)Fig. 1. Computation of subsequen
e kernel.senten
e segment before x1, sb is the segment between x1 and x2, and sa isthe senten
e segment after x2. For 
onvenien
e, we also in
lude the auxiliarysegment s0b = x1sbx2, whose span is 
omputed as l(s0b) = l(sb) + 2 (in alllength 
omputations, we 
onsider x1 and x2 as 
ontributing one unit only).
sf

ft ta

sa

1 2y y

t

t’

b

b

1 2x x

s

s’b

b

s  =

t  = Fig. 2. Senten
e segments.The relation kernel 
omputes the number of 
ommon patterns betweentwo senten
es s and t, where the set of patterns is restri
ted to the fourtypes introdu
ed in Se
tion 2.1. Therefore, the kernel rK(s; t) is expressed asthe sum of four sub-kernels: fbK(s; t) 
ounting the number of 
ommon fore{between patterns, bK(s; t) for between patterns, baK(s; t) for between{afterpatterns, and mK(s; t) for modi�er patterns, as in Figure 3. The symbol 1 isused there as a shorthand for the indi
ator fun
tion, whi
h is 1 if the argumentis true, and 0 otherwise.The �rst three sub-kernels in
lude in their 
omputation the 
ounting of
ommon subsequen
es between s0b and t0b. In order to speed up the 
ompu-tation, all these 
ommon 
ounts are 
al
ulated separately in bKi, whi
h isde�ned as the number of 
ommon subsequen
es of length i between s0b and t0b,an
hored at x1/x2 and y1/y2 respe
tively (i.e. 
onstrained to start at x1 in s0b



Extra
ting Relations from Text 7rK(s; t) = fbK(s; t) + bK(s; t) + baK(s; t) +mK(s; t)bKi(s; t) = Ki(sb; tb; 1) � 
(x1; y1) � 
(x2; y2) � �l(s0b)+l(t0b)fbK(s; t) =Xi;j bKi(s; t) �K0j(sf ; tf); 1 � i; 1 � j; i + j < fbmaxbK(s; t) =Xi bKi(s; t); 1 � i � bmaxbaK(s; t) =Xi;j bKi(s; t) �K0j(s�a ; t�a ); 1 � i; 1 � j; i + j < bamaxmK(s; t) = 1(sb = ;) � 1(tb = ;) � 
(x1; y1) � 
(x2; y2) � �2+2;Fig. 3. Computation of relation kernel.and y1 in t0b, and to end at x2 in s0b and y2 in t0b). Then fbK simply 
ountsthe number of subsequen
es that mat
h j positions before the �rst entity andi positions between the entities, 
onstrained to have length less than a 
on-stant fbmax. To obtain a similar formula for baK we simply use the reversed(mirror) version of segments sa and ta (e.g. s�a and t�a ). In Se
tion 2.1 weobserved that all three subsequen
e patterns use at most 4 words to express arelation, therefore the 
onstants fbmax, bmax and bamax are set to 4. KernelsK and K 0 are 
omputed using the pro
edure des
ribed in Se
tion 2.2.3 A Dependen
y-Path Kernel for Relation Extra
tionThe pattern examples from Se
tion 2.1 show the two entity mentions, togetherwith the set of words that are relevant for their relationship. A 
loser analysisof these examples reveals that all relevant words form a shortest path betweenthe two entities in a graph stru
ture where edges 
orrespond to relations be-tween a word (head) and its dependents. For example, Figure 4 shows the fulldependen
y graphs for two senten
es from the ACE (Automated Content Ex-tra
tion) newspaper 
orpus [12℄, in whi
h words are represented as nodes andword-word dependen
ies are represented as dire
ted edges. A subset of theseword-word dependen
ies 
apture the predi
ate-argument relations present inthe senten
e. Arguments are 
onne
ted to their target predi
ates either di-re
tly through an ar
 pointing to the predi
ate ('troops ! raided'), or indi-re
tly through a preposition or in�nitive parti
le ('warning  to  stop').Other types of word-word dependen
ies a

ount for modi�er-head relation-ships present in adje
tive-noun 
ompounds ('several! stations'), noun-noun
ompounds ('pumping ! stations'), or adverb-verb 
onstru
tions ('re
ently! raided').
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S1 =

=S2

Protesters stations workers

Troops churches ministers

seized   several   pumping , holding   127   Shell hostage .

recently   have   raided , warning to   stop   preaching .Fig. 4. Senten
es as dependen
y graphs.Table 1. Shortest Path representation of relations.Relation Instan
e Shortest Path in Undire
ted Dependen
y GraphS1:protesters AT stations protesters ! seized  stationsS1:workers AT stations workers ! holding  protesters ! seized  stationsS2:troops AT 
hur
hes troops ! raided  
hur
hesS2:ministers AT 
hur
hes ministers ! warning  troops ! raided  
hur
hesWord-word dependen
ies are typi
ally 
ategorized in two 
lasses as follows:� [Lo
al Dependen
ies℄ These 
orrespond to lo
al predi
ate-argument (orhead-modi�er) 
onstru
tions su
h as 'troops ! raided', or 'pumping !stations' in Figure 4.� [Non-lo
al Dependen
ies℄ Long-distan
e dependen
ies arise due to var-ious linguisti
 
onstru
tions su
h as 
oordination, extra
tion, raising and
ontrol. In Figure 4, among non-lo
al dependen
ies are 'troops ! warn-ing', or 'ministers! prea
hing'.A Context Free Grammar (CFG) parser 
an be used to extra
t lo
al de-penden
ies, whi
h for ea
h senten
e form a dependen
y tree. Mildly 
ontextsensitive formalisms su
h as Combinatory Categorial Grammar (CCG) [13℄model word-word dependen
ies more dire
tly and 
an be used to extra
t bothlo
al and long-distan
e dependen
ies, giving rise to a dire
ted a
y
li
 graph,as illustrated in Figure 4.3.1 The Shortest Path HypothesisIf e1 and e2 are two entities mentioned in the same senten
e su
h that theyare observed to be in a relationship R, then the 
ontribution of the senten
e
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ting Relations from Text 9dependen
y graph to establishing the relationship R(e1; e2) is almost ex
lu-sively 
on
entrated in the shortest path between e1 and e2 in the undire
tedversion of the dependen
y graph.If entities e1 and e2 are arguments of the same predi
ate, then the shortestpath between them will pass through the predi
ate, whi
h may be 
onne
teddire
tly to the two entities, or indire
tly through prepositions. If e1 and e2belong to di�erent predi
ate-argument stru
tures that share a 
ommon argu-ment, then the shortest path will pass through this argument. This is the 
asewith the shortest path between 'stations' and 'workers' in Figure 4, passingthrough 'protesters', whi
h is an argument 
ommon to both predi
ates 'hold-ing' and 'seized'. In Table 1, we show the paths 
orresponding to the fourrelation instan
es en
oded in the ACE 
orpus for the two senten
es from Fig-ure 4. All these paths support the Lo
ated relationship. For the �rst path, itis reasonable to infer that if a Person entity (e.g. 'protesters') is doing somea
tion (e.g. 'seized') to a Fa
ility entity (e.g. 'station'), then the Personentity is Lo
ated at that Fa
ility entity. The se
ond path 
aptures thefa
t that the same Person entity (e.g. 'protesters') is doing two a
tions (e.g.'holding' and 'seized') , one a
tion to a Person entity (e.g. 'workers'), andthe other a
tion to a Fa
ility entity (e.g. 'station'). A reasonable inferen
ein this 
ase is that the 'workers' are Lo
ated at the 'station'.In Figure 5, we show three more examples of the Lo
ated (At) rela-tionship as dependen
y paths 
reated from one or two predi
ate-argumentstru
tures. The se
ond example is an interesting 
ase, as it illustrates howannotation de
isions are a

ommodated in our approa
h. Using a reasoningsimilar with that from the previous paragraph, it is reasonable to infer that'troops' are Lo
ated in 'vans', and that 'vans' are Lo
ated in '
ity'. How-ever, be
ause 'vans' is not an ACE markable, it 
annot parti
ipate in anannotated relationship. Therefore, 'troops' is annotated as being Lo
atedin '
ity', whi
h makes sense due to the transitivity of the relation Lo
ated.In our approa
h, this leads to shortest paths that pass through two or morepredi
ate-argument stru
tures.The last relation example is a 
ase where there exist multiple shortest pathsin the dependen
y graph between the same two entities { there are a
tuallytwo di�erent paths, with ea
h path repli
ated into three similar paths due to
oordination. Our 
urrent approa
h 
onsiders only one of the shortest paths,nevertheless it seems reasonable to investigate using all of them as multiplesour
es of eviden
e for relation extra
tion.There may be 
ases where e1 and e2 belong to predi
ate-argument stru
-tures that have no argument in 
ommon. However, be
ause the dependen
ygraph is always 
onne
ted, we are guaranteed to �nd a shortest path betweenthe two entities. In general, we shall �nd a shortest sequen
e of predi
ate-argument stru
tures with target predi
ates P1; P2; :::; Pn su
h that e1 is anargument of P1, e2 is an argument of Pn, and any two 
onse
utive predi
atesPi and Pi+1 share a 
ommon argument (where by \argument" we mean botharguments and 
omplements).
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u and Raymond J. Mooney(1) He had no regrets for his a
tions in Br
ko.his ! a
tions  in  Br
ko(2) U.S. troops today a
ted for the �rst time to 
apture an allegedBosnian war 
riminal, rushing from unmarked vans parked in thenorthern Serb-dominated 
ity of Bijeljina.troops ! rushing  from  vans ! parked  in  
ity(3) Jelisi
 
reated an atmosphere of terror at the 
amp by killing,abusing and threatening the detainees.detainees ! killing  Jelisi
 ! 
reated  at  
ampdetainees ! abusing  Jelisi
 ! 
reated  at  
ampdetainees ! threatning  Jelisi
 ! 
reated  at  
ampdetainees ! killing ! by ! 
reated  at  
ampdetainees ! abusing ! by ! 
reated  at  
ampdetainees ! threatening ! by ! 
reated  at  
ampFig. 5. Relation examples.3.2 Learning with Dependen
y PathsThe shortest path between two entities in a dependen
y graph o�ers a very
ondensed representation of the information needed to assess their relation-ship. A dependen
y path is represented as a sequen
e of words interspersedwith arrows that indi
ate the orientation of ea
h dependen
y, as illustratedin Table 1. These paths however are 
ompletely lexi
alized and 
onsequentlytheir performan
e will be limited by data sparsity. The solution is to allowpaths to use both words and their word 
lasses, similar with the approa
htaken for the subsequen
e patterns in Se
tion 2.1.The set of features 
an then be de�ned as a Cartesian produ
t over wordsand word 
lasses, as illustrated in Figure 6 for the dependen
y path between'protesters' and 'station' in senten
e S1. In this representation, sparse or 
on-tiguous subsequen
es of nodes along the lexi
alized dependen
y path (i.e. pathfragments) are in
luded as features simply by repla
ing the rest of the nodeswith their 
orresponding generalizations.Examples of features generated by Figure 6 are \protesters ! seized  stations", \Noun ! Verb  Noun", \Person ! seized  Fa
ility", or\Person ! Verb  Fa
ility". The total number of features generated bythis dependen
y path is 4� 1� 3� 1� 4.For verbs and nouns (and their respe
tive word 
lasses) o

urring along adependen
y path we also use an additional suÆx '(-)' to indi
ate a negativepolarity item. In the 
ase of verbs, this suÆx is used when the verb (or anatta
hed auxiliary) is modi�ed by a negative polarity adverb su
h as 'not' or
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ting Relations from Text 11264 protestersNNSNounPerson 375� [!℄� " seizedVBDVerb #� [ ℄� 264 stationsNNSNounFa
ility375Fig. 6. Feature generation from dependen
y path.'never'. Nouns get the negative suÆx whenever they are modi�ed by negativedeterminers su
h as 'no', 'neither' or 'nor'. For example, the phrase \He neverwent to Paris" is asso
iated with the dependen
y path \He ! went(-)  to Paris".As in Se
tion 2, we use kernel SVMs in order to avoid working expli
itelywith high-dimensional dependen
y path feature ve
tors. Computing the dot-produ
t (i.e. kernel) between two relation examples amounts to 
al
ulatingthe number of 
ommon features (i.e. paths) between the two examples. If x= x1x2:::xm and y = y1y2:::yn are two relation examples, where xi denotesthe set of word 
lasses 
orresponding to position i (as in Figure 6), then thenumber of 
ommon features between x and y is 
omputed as in Equation 4.K(x;y) = 1(m = n) � nYi=1 
(xi; yi) (4)where 
(xi; yi) = jxi \ yij is the number of 
ommon word 
lasses between xiand yi.This is a simple kernel, whose 
omputation takes O(n) time. If the twopaths have di�erent lengths, they 
orrespond to di�erent ways of expressinga relationship { for instan
e, they may pass through a di�erent number ofpredi
ate argument stru
tures. Consequently, the kernel is de�ned to be 0 inthis 
ase. Otherwise, it is the produ
t of the number of 
ommon word 
lassesat ea
h position in the two paths. As an example, let us 
onsider two instan
esof the Lo
ated relationship, and their 
orresponding dependen
y paths:1. 'his a
tions in Br
ko' (his ! a
tions  in  Br
ko).2. 'his arrival in Beijing' (his ! arrival in  Beijing).Their representation as a sequen
e of sets of word 
lasses is given by:1. x = [x1 x2 x3 x4 x5 x6 x7℄, where x1 = fhis, PRP, Persong, x2 = f!g,x3 = fa
tions, NNS, Noung, x4 = f g, x5 = fin, INg, x6 = f g, x7 =fBr
ko, NNP, Noun, Lo
ationg2. y = [y1 y2 y3 y4 y5 y6 y7℄, where y1 = fhis, PRP, Persong, y2 = f!g,y3 = farrival, NN, Noung, y4 = f g, y5 = fin, INg, y6 = f g, y7 =fBeijing, NNP, Noun, Lo
ationgBased on the formula from Equation 4, the kernel is 
omputed as K(x;y) =3� 1� 1� 1� 2� 1� 3 = 18.



12 Razvan C. Bunes
u and Raymond J. Mooney4 Experimental EvaluationThe two relation kernels des
ribed above are evaluated on the task of extra
t-ing relations from two 
orpora with di�erent types of narrative, whi
h aredes
ribed in more detail in the following se
tions. In both 
ases, we assumethat the entities and their labels are known. All prepro
essing steps { senten
esegmentation, tokenization, POS tagging and 
hunking { were performed us-ing the OpenNLP1 pa
kage. If a senten
e 
ontains n entities (n � 2), it isrepli
ated into �n2� senten
es, ea
h 
ontaining only two entities. If the two en-tities are known to be in a relationship, then the repli
ated senten
e is addedto the set of 
orresponding positive senten
es, otherwise it is added to the setof negative senten
es. During testing, a senten
e having n entities (n � 2) isagain repli
ated into �n2� senten
es in a similar way.The dependen
y graph that is input to the shortest path depende
y kernelis obtained from two di�erent parsers:� The CCG parser introdu
ed in [14℄2 outputs a list of fun
tor-argumentdependen
ies, from whi
h head-modi�er dependen
ies are obtained usinga straightforward pro
edure (for more details, see [15℄).� Head-modi�er dependen
ies 
an be easily extra
ted from the full parseoutput of Collins' CFG parser [16℄, in whi
h every non-terminal node isannotated with head information.The relation kernels are used in 
onjun
tion with SVM learning in order to�nd a de
ision hyperplane that best separates the positive examples from neg-ative examples. We modi�ed the LibSVM3 pa
kage by plugging in the kernelsdes
ribed above. The fa
tor � in the subsequen
e kernel is set to 0:75. Theperforman
e is measured using pre
ision (per
entage of 
orre
tly extra
tedrelations out of the total number of relations extra
ted), re
all (per
entage of
orre
tly extra
ted relations out of the total number of relations annotated inthe 
orpus), and F-measure (the harmoni
 mean of pre
ision and re
all).4.1 Intera
tion Extra
tion from AIMedWe did 
omparative experiments on the AIMed 
orpus, whi
h has been pre-viously used for training the protein intera
tion extra
tion systems in [9℄. It
onsists of 225 Medline abstra
ts, of whi
h 200 are known to des
ribe in-tera
tions between human proteins, while the other 25 do not refer to anyintera
tion. There are 4084 protein referen
es and around 1000 tagged inter-a
tions in this dataset.The following systems are evaluated on the task of retrieving protein in-tera
tions from AIMed (assuming gold standard proteins):1 URL: http://opennlp.sour
eforge.net2 URL:http://www.ir
s.upenn.edu/~juliahr/Parser/3 URL:http://www.
sie.ntu.edu.tw/~
jlin/libsvm/
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ting Relations from Text 13� [Manual℄: We report the performan
e of the rule-based system of [7, 8℄.� [ELCS℄: We report the 10-fold 
ross-validated results from [9℄ as aPre
ision-Re
all (PR) graph.� [SSK℄: The subseqeuen
e kernel is trained and tested on the same splitsas ELCS. In order to have a fair 
omparison with the other two systems, whi
huse only lexi
al information, we do not use any word 
lasses here.� [SPK℄: This is the shortest path dependen
y kernel, using the head-modi�er dependen
ies extra
ted by Collins' synta
ti
 parser. The kernel istrained and tested on the same 10 splits as ELCS and SSK.The Pre
ision-Re
all 
urves that show the trade-o� between these metri
sare obtained by varying a threshold on the minimum a

eptable extra
tion
on�den
e, based on the probability estimates from LibSVM. The results,summarized in Figure 7(a), show that the subsequen
e kernel outperformsthe other three systems, with a substantial gain. The synta
ti
 parser, whi
his originally trained on a newspaper 
orpus, builds less a

urate dependen
ystru
tures for the biomedi
al text. This is re
e
ted in a signi�
antly redu
eda

ura
y for the dependen
y kernel.
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14 Razvan C. Bunes
u and Raymond J. Mooney4.2 Relation Extra
tion from ACEThe two kernels are also evaluated on the task of extra
ting top-level relationsfrom the ACE 
orpus [12℄, the version used for the September 2002 evaluation.The training part of this dataset 
onsists of 422 do
uments, with a separate setof 97 do
uments reserved for testing. This version of the ACE 
orpus 
ontainsthree types of annotations: 
oreferen
e, named entities and relations. Thereare �ve types of entities { Person, Organization, Fa
ility, Lo
ation,and Geo-Politi
al Entity { whi
h 
an parti
ipate in �ve general, top-level relations: Role, Part, Lo
ated, Near, and So
ial. In total, thereare 7,646 intra-sentential relations, of whi
h 6,156 are in the training dataand 1,490 in the test data.A re
ent approa
h to extra
ting relations is des
ribed in [17℄. The authorsuse a generalized version of the tree kernel from [18℄ to 
ompute a kernelover relation examples, where a relation example 
onsists of the smallest de-penden
y tree 
ontaining the two entities of the relation. Pre
ision and re
allvalues are reported for the task of extra
ting the 5 top-level relations in theACE 
orpus under two di�erent s
enarios:{ [S1℄ This is the 
lassi
 setting: one multi-
lass SVM is learned to dis-
riminate among the 5 top-level 
lasses, plus one more 
lass for the no-relation
ases.{ [S2℄ One binary SVM is trained for relation dete
tion, meaning thatall positive relation instan
es are 
ombined into one 
lass. The thresholdedoutput of this binary 
lassi�er is used as training data for a se
ond multi-
lassSVM, trained for relation 
lassi�
ation.The subsequen
e kernel (SSK) is trained under the �rst s
enario, to re
-ognize the same 5 top-level relation types. While for protein intera
tion ex-tra
tion only the lexi
alized version of the kernel was used, here we utilizemore features, 
orresponding to the following feature spa
es: �1 is the wordvo
abulary, �2 is the set of POS tags, �3 is the set of generi
 POS tags, and�4 
ontains the 5 entity types. Chunking information is used as follows: all(sparse) subsequen
es are 
reated ex
lusively from the 
hunk heads, where ahead is de�ned as the last word in a 
hunk. The same 
riterion is used for
omputing the length of a subsequen
e { all words other than head words areignored. This is based on the observation that in general words other than the
hunk head do not 
ontribute to establishing a relationship between two enti-ties outside of that 
hunk. One ex
eption is when both entities in the examplesenten
e are 
ontained in the same 
hunk. This happens very often due tonoun-noun ('U.S. troops') or adje
tive-noun ('Serbian general') 
ompounds.In these 
ases, the 
hunk is allowed to 
ontribute both entity heads.The shortest-path dependen
y kernel (SPK) is trained under both s
enar-ios. The dependen
ies are extra
ted using either Ho
kenmaier's CCG parser(SPK-CCG) [14℄, or Collins' CFG parser (SPK-CFG) [16℄.Table 2 summarizes the performan
e of the two relation kernels on theACE 
orpus. For 
omparison, we also show the results presented in [17℄ for
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ting Relations from Text 15their best performing kernel K4 (a sum between a bag-of-words kernel and atree dependen
y kernel) under both s
enarios.Table 2. Extra
tion Performan
e on ACE.(S
enario) Method Pre
ision Re
all F-measure(S1) K4 70.3 26.3 38.0(S1) SSK 73.9 35.2 47.7(S1) SPK-CCG 67.5 37.2 48.0(S1) SPK-CFG 71.1 39.2 50.5(S2) K4 67.1 35.0 45.8(S2) SPK-CCG 63.7 41.4 50.2(S2) SPK-CFG 65.5 43.8 52.5The shortest-path dependen
y kernels outperform the dependen
y kernelfrom [17℄ in both s
enarios, with a more substantial gain for SP-CFG. Anerror analysis revealed that Collins' parser was better at 
apturing lo
al de-penden
ies, hen
e the in
reased a

ura
y of SP-CFG. Another advantage ofshortest-path dependen
y kernels is that their training and testing are veryfast { this is due to representing the senten
e as a 
hain of dependen
ies onwhi
h a fast kernel 
an be 
omputed. All the four SP kernels from Table 2 takebetween 2 and 3 hours to train and test on a 2.6GHz Pentium IV ma
hine.As expe
ted, the newspaper arti
les from ACE are less prone to parsingerrors than the biomedi
al arti
les from AIMed. Consequently, the extra
teddependen
y stru
tures are more a

urate, leading to an improved a

ura
yfor the dependen
y kernel.To avoid numeri
al problems, the dependen
y paths are 
onstrained topass through at most 10 words (as observed in the training data) by settingthe kernel to 0 for longer paths. The alternative solution of normalizing thekernel leads to a slight de
rease in a

ura
y. The fa
t that longer paths havelarger kernel s
ores in the unnormalized version does not pose a problembe
ause, by de�nition, paths of di�erent lengths 
orrespond to disjoint setsof features. Consequently, the SVM algorithm will indu
e lower weights forfeatures o

urring in longer paths, resulting in a linear separator that worksirrespe
tive of the size of the dependen
y paths.5 Future WorkThere are 
ases when words that do not belong to the shortest dependen
ypath do in
uen
e the extra
tion de
ision. In Se
tion 3.2, we showed how neg-ative polarity items are integrated in the model through annotations of wordsalong the dependen
y paths. Modality is another phenomenon that is in-
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uen
ing relation extra
tion, and we plan to in
orporate it using the sameannotation approa
h.The two relation extra
tion methods are very similar: the subsequen
e pat-terns in one kernel 
orrespond to dependen
y paths in the se
ond kernel. Moreexa
tly, pairs of words from a subsequen
e pattern 
orrespond to pairs of 
on-se
utive words (i.e. edges) on the dependen
y path. The la
k of dependen
yinformation in the subsequen
e kernel leads to allowing gaps between words,with the 
orresponding exponential penalty fa
tor �. Given the observed sim-ilarity between the two methods, it seems reasonable to use them both inan integrated model. This model would use high-
on�den
e head-modi�er de-penden
ies, falling ba
k on pairs of words with gaps, when the dependen
yinformation is unreliable.6 Con
lusionMining knowledge from text do
uments 
an bene�t from using the stru
-tured information that 
omes from entity re
ognition and relation extra
tion.However, a

urately extra
ting relationships between relevant entities is de-pendent on the granularity and reliability of the required linguisti
 analysis.In this 
hapter, we presented two relation extra
tion kernels that di�er interms of the amount of linguisti
 information they use. Experimental evalua-tions on two 
orpora with di�erent types of dis
ourse show that they 
omparefavorably to previous extra
tion approa
hes.7 A
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