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1 Introduction

Extracting semantic relationships between entities mentioned in text docu-
ments is an important task in natural language processing. The various types
of relationships that are discovered between mentions of entities can provide
useful structured information to a text mining system [1]. Traditionally, the
task specifies a predefined set of entity types and relation types that are
deemed to be relevant to a potential user and that are likely to occur in a
particular text collection. For example, information extraction from newspa-
per articles is usually concerned with identifying mentions of people, orga-
nizations, locations, and extracting useful relations between them. Relevant
relation types range from social relationships, to roles that people hold inside
an organization, to relations between organizations, to physical locations of
people and organizations. Scientific publications in the biomedical domain of-
fer a type of narrative that is very different from the newspaper discourse.
A significant effort is currently spent on automatically extracting relevant
pieces of information from Medline, an online collection of biomedical ab-
stracts. Proteins, genes and cells are examples of relevant entities in this task,
whereas subcellular localizations and protein-protein interactions are two of
the relation types that have received significant attention recently. The in-
herent difficulty of the relation extraction task is further compounded in the
biomedical domain by the relative scarcity of tools able to analyze the corre-
sponding type of narrative. Most existing natural language processing tools,
such as tokenizers, sentence segmenters, part-of-speech (POS) taggers, shallow
or full parsers are trained on newspaper corpora, and consequently they inccur
a loss in accuracy when applied to biomedical literature. Therefore, informa-
tion extraction systems developed for biological corpora need to be robust to
POS or parsing errors, or to give reasonable performance using shallower but
more reliable information, such as chunking instead of full parsing.
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In this chapter, we present two recent approaches to relation extraction that
differ in terms of the kind of linguistic information they use:

1. In the first method (Section 2), each potential relation is represented im-
plicitly as a vector of features, where each feature corresponds to a word
sequence anchored at the two entities forming the relationship. A rela-
tion extraction system is trained based on the subsequence kernel from
[2]. This kernel is further generalized so that words can be replaced with
word classes, thus enabling the use of information coming from POS tag-
ging, named entity recognition, chunking or Wordnet [3].

2. In the second approach (Section 3), the representation is centered on
the shortest dependency path between the two entities in the depen-
dency graph of the sentence. Because syntactic analysis is essential in this
method, its applicability is limited to domains where syntactic parsing
gives reasonable accuracy.

Entity recognition, a prerequisite for relation extraction, is usually cast as a
sequence tagging problem, in which words are tagged as being either outside
any entity, or inside a particular type of entity. Most approaches to entity
tagging are therefore based on probabilistic models for labeling sequences,
such as Hidden Markov Models [4], Maximum Entropy Markov Models [5], or
Conditional Random Fields [6], and obtain a reasonably high accuracy. In the
two information extraction methods presented in this chapter, we assume that
the entity recognition task was done and focus only on the relation extraction
part.

2 Subsequence Kernels for Relation Extraction

One of the first approaches to extracting interactions between proteins from
biomedical abstracts is that of Blaschke et al., described in [7, 8]. Their system
is based on a set of manually developed rules, where each rule (or frame) is
a sequence of words (or POS tags) and two protein-name tokens. Between
every two adjacent words is a number indicating the maximum number of
intervening words allowed when matching the rule to a sentence. An example
rule is “interaction of (3) <P> (8) with (3) <P>”, where ’<P>’ is used to
denote a protein name. A sentence matches the rule if and only if it satisfies
the word constraints in the given order and respects the respective word gaps.

In [9] the authors described a new method ELCS (Extraction using Longest
Common Subsequences) that automatically learns such rules. ELCS’ rule rep-
resentation is similar to that in [7, 8], except that it currently does not use POS
tags, but allows disjunctions of words. An example rule learned by this sys-
tem is “- (7) interaction (0) [between | of] (5) <P> (9) <P> (17).”. Words
in square brackets separated by ‘|’ indicate disjunctive lexical constraints, i.e.
one of the given words must match the sentence at that position. The numbers
in parentheses between adjacent constraints indicate the maximum number
of unconstrained words allowed between the two.
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2.1 Capturing Relation Patterns with a String Kernel

Both Blaschke and ELCS do relation extraction based on a limited set of
matching rules, where a rule is simply a sparse (gappy) subsequence of
words or POS tags anchored on the two protein-name tokens. Therefore,
the two methods share a common limitation: either through manual selec-
tion (Blaschke), or as a result of a greedy learning procedure (ELCS), they
end up using only a subset of all possible anchored sparse subsequences. Ide-
ally, all such anchored sparse subsequences would be used as features, with
weights reflecting their relative accuracy. However explicitly creating for each
sentence a vector with a position for each such feature is infeasible, due to the
high dimensionality of the feature space. Here, we exploit dual learning al-
gorithms that process examples only via computing their dot-products, such
as in Support Vector Machines (SVMs) [10, 11]. An SVM learner tries to
find a hyperplane that separates positive from negative examples and at the
same time maximizes the separation (margin) between them. This type of
max-margin separator has been shown both theoretically and empirically to
resist overfitting and to provide good generalization performance on unseen
examples.

Computing the dot-product (i.e. the kernel) between the features vectors as-
sociated with two relation examples amounts to calculating the number of
common anchored subsequences between the two sentences. This is done effi-
ciently by modifying the dynamic programming algorithm used in the string
kernel from [2] to account only for common sparse subsequences constrained
to contain the two protein-name tokens. The feature space is further prunned
down by utilizing the following property of natural language statements: when
a sentence asserts a relationship between two entity mentions, it generally does
this using one of the following four patterns:

¢ [FB] Fore-Between: words before and between the two entity mentions
are simultaneously used to express the relationship. Examples: ‘interaction of
(Py) with (Py)‘, ‘activation of (Py) by (Ps)‘.

o [B] Between: only words between the two entities are essential for assert-
ing the relationship. Examples: ‘(P;) interacts with (Ps)¢, ‘(Py) is activated
by (Py)‘.

e [BA] Between—After: words between and after the two entity mentions
are simultaneously used to express the relationship. Examples: ‘(P;) — (P2)
complex‘, ‘(P;) and (P.) interact‘.

e [M] Modifier: the two entity mentions have no words between them. Ex-
amples: U.S. troops (a ROLE:STAFF relation), Serbian general (ROLE: CITIZEN).

While the first three patterns are sufficient to capture most cases of in-
teractions between proteins, the last pattern is needed to account for various
relationships expressed through noun-noun or adjective-noun compounds in
the newspaper corpora.

Another observation is that all these patterns use at most 4 words to
express the relationship (not counting the two entity names). Consequently,
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when computing the relation kernel, we restrict the counting of common an-
chored subsequences only to those having one of the four types described
above, with a maximum word-length of 4. This type of feature selection leads
not only to a faster kernel computation, but also to less overfitting, which
results in increased accuracy.

The patterns enumerated above are completely lexicalized and conse-
quently their performance is limited by data sparsity. This can be alleviated by
categorizing words into classes with varying degrees of generality, and then al-
lowing patterns to use both words and their classes. Examples of word classes
are POS tags and generalizations over POS tags such as Noun, Active Verb
or Passive Verb. The entity type can also be used, if the word is part of a
known named entity. Also, if the sentence is segmented into syntactic chunks
such as noun phrases (NP) or verb phrases (VP), the system may choose to
consider only the head word from each chunk, together with the type of the
chunk as another word class. Content words such as nouns and verbs can also
be related to their synsets via WordNet. Patterns then will consist of sparse
subsequences of words, POS tags, generalized POS tags, entity and chunk
types, or WordNet synsets. For example, ‘Noun of (P;) by (P)‘ is an FB
pattern based on words and general POS tags.

2.2 A Generalized Subsequence Kernel

Let X1, X, ..., Xy be some disjoint feature spaces. Following the example in
Section 2.1, ¥ could be the set of words, X the set of POS tags, etc. Let
Yy = X1 X Xy x ... x X be the set of all possible feature vectors, where a
feature vector would be associated with each position in a sentence. Given two
feature vectors z,y € X, let c(z,y) denote the number of common features
between = and y. The next notation follows that introduced in [2]. Thus, let
s,t be two sequences over the finite set X'y, and let |s| denote the length of
s = s1...55]- The sequence s[i:j] is the contiguous subsequence s;...s; of s. Let
i= (i1,...,4)3) be a sequence of [i| indices in s, in ascending order. We define
the length (i) of the index sequence i in s as i — i1 + 1. Similarly, j is a
sequence of |j| indices in t.

Let XYy = X, U Xy U...U Xy be the set of all possible features. We say
that the sequence u € X is a (sparse) subsequence of s if there is a sequence
of |u| indices i such that uy € s;,, for all k = 1, ..., |u|. Equivalently, we write
u < s[i] as a shorthand for the component-wise ‘c‘ relationship between u
and sli].

Finally, let K, (s,t,A) (Equation 1) be the number of weighted sparse
subsequences u of length n common to s and ¢ (i.e. u < s[i], u < t[j]), where
the weight of u is XX®+0) | for some X < 1.

Ko(s,t, )= Y > 3 No#HO (1)

wE XY i:u=<s[i] j:u<t[j]
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Let i and j be two index sequences of length n. By definition, for every k
between 1 and n, c(s;,,t;,) returns the number of common features between
s and t at positions i and jg. If c(s;,,t;,) = 0 for some k, there are no
common feature sequences of length n between s[i] and ¢[j]. On the other
hand, if c(s;,,t;,) = 0 is greater than 1, this means that there is more than
one common feature that can be used at position k to obtain a common feature
sequence of length n. Consequently, the number of common feature sequences
of length n between s[i] and t[j], i.e. the size of the set {u € X|u < s[i],u <
t[j]}, is given by [];_; c(s4,, t;, ). Therefore, K, (s,t,\) can be rewritten as in
Equation 2:

(s,t, A\) Z Z Hc Siy, i )N DT (2)

=nj:|j|=n k=1

We use A as a decaying factor that penalizes longer subsequences. For
sparse subsequences, this means that wider gaps will be penalized more, which
is exactly the desired behavior for our patterns. Through them, we try to cap-
ture head-modifier dependencies that are important for relation extraction;
for lack of reliable dependency information, the larger the word gap is be-
tween two words, the less confident we are in the existence of a head-modifier
relationship between them.

To enable an efficient computation of K,,, we use the auxiliary function
K;z with a similar definition as K,,, the only difference being that it counts
the length from the beginning of the particular subsequence u to the end of
the strings s and ¢, as illustrated in Equation 3:

S t /\ Z Z Z /\|s\+|t\—i1—j1+2 (3)

wEX iiu<s[i] jiu<t[j]

An equivalent formula for K|, (s, t, \) is obtained by changing the exponent of
A from Equation 2 to |s| + |t| — i1 — j1 + 2.

Based on all definitions above, K,, is computed in O(kn|s||t|) time, by
modifying the recursive computation from [2] with the new factor ¢(z,y), as
shown in Figure 1. In this figure, the sequence sz is the result of appending
z to s (with ty defined in a similar way). To avoid clutter, the parameter A
is not shown in the argument list of K and K', unless it is instantiated to a
specific constant.

2.3 Computing the Relation Kernel

As described at the beginning of Section 2, the input consists of a set of
sentences, where each sentence contains exactly two entities (protein names
in the case of interaction extraction). In Figure 2 we show the segments that
will be used for computing the relation kernel between two example sentences
s and ¢. In sentence s for instance, z; and zo are the two entities, s is the
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Ko(s,t) 1, for all s,t
K; (sx,tw = \K; (s2,t) + XK (s, ) - (2, )
(9:, ) = AK, (s t)+K (sa: t)
Kn(s,t) =0, if min(|s, [t|) <n
Ku(sz,t) = Ku(s,t) +Z)\ K,y (s,t[1:§ — 1)) - e, t[4])

Fig. 1. Computation of subsequence kernel.

sentence segment before z;, s, is the segment between z; and zs, and s, is
the sentence segment after zo. For convenience, we also include the auxiliary
segment sb = z15pT2, whose span is computed as l(sb) = I(sp) + 2 (in all
length computations, we consider z; and z> as contributing one unit only).

S¢ S S
1 — I—
§ = — — — — — X, — — — — Xy — —
| |
S
tf tb ta
1 — I—
t= —— — — — Vi — — — — Ys — — —
| |
th

Fig. 2. Sentence segments.

The relation kernel computes the number of common patterns between
two sentences s and ¢, where the set of patterns is restricted to the four
types introduced in Section 2.1. Therefore, the kernel rK (s, t) is expressed as
the sum of four sub-kernels: fbK (s,t) counting the number of common fore—
between patterns, bK (s,t) for between patterns, baK (s,t) for between—after
patterns, and mK (s, t) for modifier patterns, as in Figure 3. The symbol 1 is
used there as a shorthand for the indicator function, which is 1 if the argument
is true, and 0 otherwise.

The first three sub-kernels include in their computation the counting of
common subsequences between s;, and t;). In order to speed up the compu-
tation, all these common counts are calculated separately in bK;, Which is
defined as the number of common subsequences of length i between sb and tb,
anchored at 1 /25 and y; /y2 respectively (i.e. constrained to start at z; in sb
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rK(s,t) = fbK(s,t) + bK(s,t) + baK(s,t) + mK(s,t)
bK( S, ) = K'(Sbvtbv 1) ' (1'1vy1) : (wz,yz) ' Al(sb)-‘rl(tb)
FbE (s, t ZbK s,t) - K;(spotg), 1<i, 1<j, i+] < uas

Zstt 1<i< bmax
baK (s, t) Zstt (sarta)y 1<, 1<), i+]j < bamas

mK(s,t) = Jl(Sb =0)-1(to = 0) - c(e1,y1) - ez, y2) - A7,

Fig. 3. Computation of relation kernel.

and y; in t;,, and to end at z2 in s;) and y» in t;,) Then fbK simply counts
the number of subsequences that match j positions before the first entity and
¢ positions between the entities, constrained to have length less than a con-
stant fb;,q.. To obtain a similar formula for ba K we simply use the reversed
(mirror) version of segments s, and ¢, (e.g. s; and t;). In Section 2.1 we
observed that all three subsequence patterns use at most 4 words to express a
relation, therefore the constants fbez, bmaz and ba,,q, are set to 4. Kernels
K and K are computed using the procedure described in Section 2.2.

3 A Dependency-Path Kernel for Relation Extraction

The pattern examples from Section 2.1 show the two entity mentions, together
with the set of words that are relevant for their relationship. A closer analysis
of these examples reveals that all relevant words form a shortest path between
the two entities in a graph structure where edges correspond to relations be-
tween a word (head) and its dependents. For example, Figure 4 shows the full
dependency graphs for two sentences from the ACE (Automated Content Ex-
traction) newspaper corpus [12], in which words are represented as nodes and
word-word dependencies are represented as directed edges. A subset of these
word-word dependencies capture the predicate-argument relations present in
the sentence. Arguments are connected to their target predicates either di-
rectly through an arc pointing to the predicate (troops — raided’), or indi-
rectly through a preposition or infinitive particle ("warning < to < stop’).
Other types of word-word dependencies account for modifier-head relation-
ships present in adjective-noun compounds (’several — stations’), noun-noun
compounds (’pumping — stations’), or adverb-verb constructions ('recently
— raided’).



8 Razvan C. Bunescu and Raymond J. Mooney

L N

S1 = Protesters seized several pumping stations , holding 127 Shell workers hostage .

N
T NN\

S2 = Troops recently have raided churches , warning ministers to stop preaching .
v ) g

Fig. 4. Sentences as dependency graphs.

Table 1. Shortest Path representation of relations.

|Relati0n Instance |Sh0rtest Path in Undirected Dependency Graph

Si:protesters AT stations|protesters — seized + stations

S1:workers AT stations |workers — holding ¢ protesters — seized < stations
Sa:troops AT churches |troops — raided < churches

Sa:ministers AT churches|ministers — warning ¢ troops — raided <— churches

Word-word dependencies are typically categorized in two classes as follows:

¢ [Local Dependencies] These correspond to local predicate-argument (or
head-modifier) constructions such as 'troops — raided’, or ’'pumping —
stations’ in Figure 4.

e [Non-local Dependencies] Long-distance dependencies arise due to var-
ious linguistic constructions such as coordination, extraction, raising and
control. In Figure 4, among non-local dependencies are ’troops — warn-
ing’, or 'ministers — preaching’.

A Context Free Grammar (CFG) parser can be used to extract local de-
pendencies, which for each sentence form a dependency tree. Mildly context
sensitive formalisms such as Combinatory Categorial Grammar (CCG) [13]
model word-word dependencies more directly and can be used to extract both
local and long-distance dependencies, giving rise to a directed acyclic graph,
as illustrated in Figure 4.

3.1 The Shortest Path Hypothesis

If e; and es are two entities mentioned in the same sentence such that they
are observed to be in a relationship R, then the contribution of the sentence
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dependency graph to establishing the relationship R(ej,e2) is almost exclu-
sively concentrated in the shortest path between e; and es in the undirected
version of the dependency graph.

If entities e; and e, are arguments of the same predicate, then the shortest
path between them will pass through the predicate, which may be connected
directly to the two entities, or indirectly through prepositions. If e; and e;
belong to different predicate-argument structures that share a common argu-
ment, then the shortest path will pass through this argument. This is the case
with the shortest path between ’stations’ and ’workers’ in Figure 4, passing
through ’protesters’, which is an argument common to both predicates ’hold-
ing’ and ’seized’. In Table 1, we show the paths corresponding to the four
relation instances encoded in the ACE corpus for the two sentences from Fig-
ure 4. All these paths support the LOCATED relationship. For the first path, it
is reasonable to infer that if a PERSON entity (e.g. 'protesters’) is doing some
action (e.g. 'seized’) to a FACILITY entity (e.g. ’station’), then the PERSON
entity is LOCATED at that FACILITY entity. The second path captures the
fact that the same PERSON entity (e.g. 'protesters’) is doing two actions (e.g.
’holding’ and ’seized’) , one action to a PERSON entity (e.g. 'workers’), and
the other action to a FACILITY entity (e.g. ’station’). A reasonable inference
in this case is that the 'workers’ are LOCATED at the ’station’.

In Figure 5, we show three more examples of the LOCATED (AT) rela-
tionship as dependency paths created from one or two predicate-argument
structures. The second example is an interesting case, as it illustrates how
annotation decisions are accommodated in our approach. Using a reasoning
similar with that from the previous paragraph, it is reasonable to infer that
"troops’ are LOCATED in ’vans’, and that ’vans’ are LOCATED in ’city’. How-
ever, because ’vans’ is not an ACE markable, it cannot participate in an
annotated relationship. Therefore, 'troops’ is annotated as being LOCATED
in ’city’, which makes sense due to the transitivity of the relation LOCATED.
In our approach, this leads to shortest paths that pass through two or more
predicate-argument structures.

The last relation example is a case where there exist multiple shortest paths
in the dependency graph between the same two entities — there are actually
two different paths, with each path replicated into three similar paths due to
coordination. Our current approach considers only one of the shortest paths,
nevertheless it seems reasonable to investigate using all of them as multiple
sources of evidence for relation extraction.

There may be cases where e; and e; belong to predicate-argument struc-
tures that have no argument in common. However, because the dependency
graph is always connected, we are guaranteed to find a shortest path between
the two entities. In general, we shall find a shortest sequence of predicate-
argument structures with target predicates P, P, ..., P, such that e; is an
argument of P, ey is an argument of P,, and any two consecutive predicates
P; and P;;; share a common argument (where by “argument” we mean both
arguments and complements).
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(1) He had no regrets for his actions in Brcko.
his — actions < in < Brcko

(2) U.S. troops today acted for the first time to capture an alleged
Bosnian war criminal, rushing from unmarked vans parked in the
northern Serb-dominated city of Bijeljina.

troops — rushing < from < vans — parked ¢ in + city

(3) Jelisic created an atmosphere of terror at the camp by killing,
abusing and threatening the detainees.

detainees — killing + Jelisic — created < at <~ camp
detainees — abusing < Jelisic — created < at < camp
detainees — threatning < Jelisic — created < at < camp
detainees — killing — by — created < at < camp
detainees — abusing — by — created < at <— camp
detainees — threatening — by — created <+ at < camp

Fig. 5. Relation examples.

3.2 Learning with Dependency Paths

The shortest path between two entities in a dependency graph offers a very
condensed representation of the information needed to assess their relation-
ship. A dependency path is represented as a sequence of words interspersed
with arrows that indicate the orientation of each dependency, as illustrated
in Table 1. These paths however are completely lexicalized and consequently
their performance will be limited by data sparsity. The solution is to allow
paths to use both words and their word classes, similar with the approach
taken for the subsequence patterns in Section 2.1.

The set of features can then be defined as a Cartesian product over words
and word classes, as illustrated in Figure 6 for the dependency path between
'protesters’ and ’station’ in sentence S;. In this representation, sparse or con-
tiguous subsequences of nodes along the lexicalized dependency path (i.e. path
fragments) are included as features simply by replacing the rest of the nodes
with their corresponding generalizations.

Examples of features generated by Figure 6 are “protesters — seized <
stations”, “Noun — Verb < Noun”, “PERSON — seized < FACILITY”, or
“PERSON — Verb < FAcCILITY”. The total number of features generated by
this dependency pathis 4 x 1 x 3 x 1 x 4.

For verbs and nouns (and their respective word classes) occurring along a
dependency path we also use an additional suffix ’(-)’ to indicate a negative
polarity item. In the case of verbs, this suffix is used when the verb (or an
attached auxiliary) is modified by a negative polarity adverb such as 'not’ or
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protesters seized stations
NNS x[=] x| VBD | x [+] x NNS
Noun Verb Noun

PERSON FAcILITY

Fig. 6. Feature generation from dependency path.

'never’. Nouns get the negative suffix whenever they are modified by negative
determiners such as 'no’, 'neither’ or 'nor’. For example, the phrase “He never
went to Paris” is associated with the dependency path “He — went(-) « to
+ Paris”.

As in Section 2, we use kernel SVMs in order to avoid working explicitely
with high-dimensional dependency path feature vectors. Computing the dot-
product (i.e. kernel) between two relation examples amounts to calculating
the number of common features (i.e. paths) between the two examples. If x
= T1T2...Ty and Yy = y1y2...y, are two relation examples, where x; denotes
the set of word classes corresponding to position i (as in Figure 6), then the
number of common features between & and y is computed as in Equation 4.

n
K(x,y) = 1(m =n) - ][ e(wi, %) (4)
i=1
where c(z;,y;) = |z; N y;| is the number of common word classes between z;
and Yi-

This is a simple kernel, whose computation takes O(n) time. If the two
paths have different lengths, they correspond to different ways of expressing
a relationship — for instance, they may pass through a different number of
predicate argument structures. Consequently, the kernel is defined to be 0 in
this case. Otherwise, it is the product of the number of common word classes
at each position in the two paths. As an example, let us consider two instances
of the LOCATED relationship, and their corresponding dependency paths:

1. ’his actions in Brcko’ (his — actions < in < Brcko).
2. ’his arrival in Beijing’ (his — arrival + in < Beijing).

Their representation as a sequence of sets of word classes is given by:

1. @ = [z1 @2 x3 T4 ©5 6 7], where z; = {his, PRP, PERSON}, 22 = {—},
zg = {actions, NNS, Noun}, z4 = {<}, 25 = {in, IN}, 26 = {<}, z7 =
{Brcko, NNP, Noun, LocaTiON}

2. ¥y = [y1 Y2 Y3 Ya Y5 Yo y7|, where y; = {his, PRP, PERSON}, y2 = {1},
ys = {arrival, NN, Noun}, y4 = {<}, y5 = {in, IN}, y¢ = {<}, yr =
{Beijing, NNP, Noun, LOCATION}

Based on the formula from Equation 4, the kernel is computed as K(z,y) =
3x1x1x1x2x1x3=18.
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4 Experimental Evaluation

The two relation kernels described above are evaluated on the task of extract-
ing relations from two corpora with different types of narrative, which are
described in more detail in the following sections. In both cases, we assume
that the entities and their labels are known. All preprocessing steps — sentence
segmentation, tokenization, POS tagging and chunking — were performed us-
ing the OpenNLP! package. If a sentence contains n entities (n > 2), it is
replicated into (g) sentences, each containing only two entities. If the two en-
tities are known to be in a relationship, then the replicated sentence is added
to the set of corresponding positive sentences, otherwise it is added to the set
of negative sentences. During testing, a sentence having n entities (n > 2) is
again replicated into (};) sentences in a similar way.

The dependency graph that is input to the shortest path dependecy kernel

is obtained from two different parsers:

e The CCG parser introduced in [14]> outputs a list of functor-argument
dependencies, from which head-modifier dependencies are obtained using
a straightforward procedure (for more details, see [15]).

e Head-modifier dependencies can be easily extracted from the full parse
output of Collins’ CFG parser [16], in which every non-terminal node is
annotated with head information.

The relation kernels are used in conjunction with SVM learning in order to
find a decision hyperplane that best separates the positive examples from neg-
ative examples. We modified the LibSVM? package by plugging in the kernels
described above. The factor A in the subsequence kernel is set to 0.75. The
performance is measured using precision (percentage of correctly extracted
relations out of the total number of relations extracted), recall (percentage of
correctly extracted relations out of the total number of relations annotated in
the corpus), and F-measure (the harmonic mean of precision and recall).

4.1 Interaction Extraction from AIMed

We did comparative experiments on the AIMed corpus, which has been pre-
viously used for training the protein interaction extraction systems in [9]. It
consists of 225 Medline abstracts, of which 200 are known to describe in-
teractions between human proteins, while the other 25 do not refer to any
interaction. There are 4084 protein references and around 1000 tagged inter-
actions in this dataset.

The following systems are evaluated on the task of retrieving protein in-
teractions from AIMed (assuming gold standard proteins):

! URL: http://opennlp.sourceforge.net
? URL:http://www.ircs.upenn.edu/"juliahr/Parser/
3 URL:http://www.csie.ntu.edu.tw/"cjlin/libsvm/
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e [Manual]: We report the performance of the rule-based system of [7, 8].

e [ELCS]: We report the 10-fold cross-validated results from [9] as a
Precision-Recall (PR) graph.

¢ [SSK]: The subseqeuence kernel is trained and tested on the same splits
as ELCS. In order to have a fair comparison with the other two systems, which
use only lexical information, we do not use any word classes here.

e [SPK]: This is the shortest path dependency kernel, using the head-
modifier dependencies extracted by Collins’ syntactic parser. The kernel is
trained and tested on the same 10 splits as ELCS and SSK.

The Precision-Recall curves that show the trade-off between these metrics
are obtained by varying a threshold on the minimum acceptable extraction
confidence, based on the probability estimates from LibSVM. The results,
summarized in Figure 7(a), show that the subsequence kernel outperforms
the other three systems, with a substantial gain. The syntactic parser, which
is originally trained on a newspaper corpus, builds less accurate dependency
structures for the biomedical text. This is reflected in a significantly reduced
accuracy for the dependency kernel.
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Fig. 7. Precision-Recall curves for protein interaction extractors.
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4.2 Relation Extraction from ACE

The two kernels are also evaluated on the task of extracting top-level relations
from the ACE corpus [12], the version used for the September 2002 evaluation.
The training part of this dataset consists of 422 documents, with a separate set
of 97 documents reserved for testing. This version of the ACE corpus contains
three types of annotations: coreference, named entities and relations. There
are five types of entities — PERSON, ORGANIZATION, FACILITY, LOCATION,
and GEO-PoLITICAL ENTITY — which can participate in five general, top-
level relations: ROLE, PART, LOCATED, NEAR, and SOCIAL. In total, there
are 7,646 intra-sentential relations, of which 6,156 are in the training data
and 1,490 in the test data.

A recent approach to extracting relations is described in [17]. The authors
use a generalized version of the tree kernel from [18] to compute a kernel
over relation examples, where a relation example consists of the smallest de-
pendency tree containing the two entities of the relation. Precision and recall
values are reported for the task of extracting the 5 top-level relations in the
ACE corpus under two different scenarios:

— [S1] This is the classic setting: one multi-class SVM is learned to dis-
criminate among the 5 top-level classes, plus one more class for the no-relation
cases.

— [S2] One binary SVM is trained for relation detection, meaning that
all positive relation instances are combined into one class. The thresholded
output of this binary classifier is used as training data for a second multi-class
SVM, trained for relation classification.

The subsequence kernel (SSK) is trained under the first scenario, to rec-
ognize the same 5 top-level relation types. While for protein interaction ex-
traction only the lexicalized version of the kernel was used, here we utilize
more features, corresponding to the following feature spaces: X is the word
vocabulary, X5 is the set of POS tags, X3 is the set of generic POS tags, and
Y4 contains the 5 entity types. Chunking information is used as follows: all
(sparse) subsequences are created exclusively from the chunk heads, where a
head is defined as the last word in a chunk. The same criterion is used for
computing the length of a subsequence — all words other than head words are
ignored. This is based on the observation that in general words other than the
chunk head do not contribute to establishing a relationship between two enti-
ties outside of that chunk. One exception is when both entities in the example
sentence are contained in the same chunk. This happens very often due to
noun-noun ('U.S. troops’) or adjective-noun (’Serbian general’) compounds.
In these cases, the chunk is allowed to contribute both entity heads.

The shortest-path dependency kernel (SPK) is trained under both scenar-
ios. The dependencies are extracted using either Hockenmaier’s CCG parser
(SPK-CCGQG) [14], or Collins’ CFG parser (SPK-CFG) [16].

Table 2 summarizes the performance of the two relation kernels on the
ACE corpus. For comparison, we also show the results presented in [17] for
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their best performing kernel K4 (a sum between a bag-of-words kernel and a
tree dependency kernel) under both scenarios.

Table 2. Extraction Performance on ACE.

Scenario) Method|Precision|Recall|F—measure|

(

(S1) K 70.3 26.3 [38.0
(S1) SSK 73.9 35.2 |47.7
(S1) SPK-CCG _ [67.5 37.2 |48.0
(S1) SPK-CFG _ |71.1 __ |39.2 |50.5
(S2) K 67.1 35.0 [45.8
(S2) SPK CCG  [63.7 414 [50.2
(S2) SPK-CFG _ |65.5  |43.8 |52.5

The shortest-path dependency kernels outperform the dependency kernel
from [17] in both scenarios, with a more substantial gain for SP-CFG. An
error analysis revealed that Collins’ parser was better at capturing local de-
pendencies, hence the increased accuracy of SP-CFG. Another advantage of
shortest-path dependency kernels is that their training and testing are very
fast — this is due to representing the sentence as a chain of dependencies on
which a fast kernel can be computed. All the four SP kernels from Table 2 take
between 2 and 3 hours to train and test on a 2.6GHz Pentium IV machine.

As expected, the newspaper articles from ACE are less prone to parsing
errors than the biomedical articles from AIMed. Consequently, the extracted
dependency structures are more accurate, leading to an improved accuracy
for the dependency kernel.

To avoid numerical problems, the dependency paths are constrained to
pass through at most 10 words (as observed in the training data) by setting
the kernel to 0 for longer paths. The alternative solution of normalizing the
kernel leads to a slight decrease in accuracy. The fact that longer paths have
larger kernel scores in the unnormalized version does not pose a problem
because, by definition, paths of different lengths correspond to disjoint sets
of features. Consequently, the SVM algorithm will induce lower weights for
features occurring in longer paths, resulting in a linear separator that works
irrespective of the size of the dependency paths.

5 Future Work

There are cases when words that do not belong to the shortest dependency
path do influence the extraction decision. In Section 3.2, we showed how neg-
ative polarity items are integrated in the model through annotations of words
along the dependency paths. Modality is another phenomenon that is in-
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fluencing relation extraction, and we plan to incorporate it using the same
annotation approach.

The two relation extraction methods are very similar: the subsequence pat-
terns in one kernel correspond to dependency paths in the second kernel. More
exactly, pairs of words from a subsequence pattern correspond to pairs of con-
secutive words (i.e. edges) on the dependency path. The lack of dependency
information in the subsequence kernel leads to allowing gaps between words,
with the corresponding exponential penalty factor A\. Given the observed sim-
ilarity between the two methods, it seems reasonable to use them both in
an integrated model. This model would use high-confidence head-modifier de-
pendencies, falling back on pairs of words with gaps, when the dependency
information is unreliable.

6 Conclusion

Mining knowledge from text documents can benefit from using the struc-
tured information that comes from entity recognition and relation extraction.
However, accurately extracting relationships between relevant entities is de-
pendent on the granularity and reliability of the required linguistic analysis.
In this chapter, we presented two relation extraction kernels that differ in
terms of the amount of linguistic information they use. Experimental evalua-
tions on two corpora with different types of discourse show that they compare
favorably to previous extraction approaches.
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