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Abstract

Semantic parsing is the task of mapping

natural language sentences to complete

formal meaning representations. The per-

formance of semantic parsing can be po-

tentially improved by using discrimina-

tive reranking, which explores arbitrary

global features. In this paper, we investi-

gate discriminative reranking upon a base-

line semantic parser, SCISSOR, where the

composition of meaning representations is

guided by syntax. We examine if features

used for syntactic parsing can be adapted

for semantic parsing by creating similar

semantic features based on the mapping

between syntax and semantics. We re-

port experimental results on two real ap-

plications, an interpreter for coaching in-

structions in robotic soccer and a natural-

language database interface. The results

show that reranking can improve the per-

formance on the coaching interpreter, but

not on the database interface.

1 Introduction

A long-standing challenge within natural language

processing has been to understand the meaning of

natural language sentences. In comparison with

shallow semantic analysis tasks, such as word-

sense disambiguation (Ide and Jeanéronis, 1998)

and semantic role labeling (Gildea and Jurafsky,

2002; Carreras and Màrquez, 2005), which only

partially tackle this problem by identifying the

meanings of target words or finding semantic roles

of predicates, semantic parsing (Kate et al., 2005;

Ge and Mooney, 2005; Zettlemoyer and Collins,

2005) pursues a more ambitious goal – mapping

natural language sentences to complete formal

meaning representations (MRs), where the mean-

ing of each part of a sentence is analyzed, includ-

ing noun phrases, verb phrases, negation, quanti-

fiers and so on. Semantic parsing enables logic

reasoning and is critical in many practical tasks,

such as speech understanding (Zue and Glass,

2000), question answering (Lev et al., 2004) and

advice taking (Kuhlmann et al., 2004).

Ge and Mooney (2005) introduced an approach,

SCISSOR, where the composition of meaning rep-

resentations is guided by syntax. First, a statis-

tical parser is used to generate a semantically-

augmented parse tree (SAPT), where each internal

node includes both a syntactic and semantic label.

Once a SAPT is generated, an additional meaning-

composition process guided by the tree structure is

used to translate it into a final formal meaning rep-

resentation.

The performance of semantic parsing can be po-

tentially improved by using discriminative rerank-

ing, which explores arbitrary global features.

While reranking has benefited many tagging and

parsing tasks (Collins, 2000; Collins, 2002c;

Charniak and Johnson, 2005) including semantic

role labeling (Toutanova et al., 2005), it has not

yet been applied to semantic parsing. In this paper,

we investigate the effect of discriminative rerank-

ing to semantic parsing.

We examine if the features used in reranking

syntactic parses can be adapted for semantic pars-

ing, more concretely, for reranking the top SAPTs

from the baseline model SCISSOR. The syntac-

tic features introduced by Collins (2000) for syn-

tactic parsing are extended with similar semantic

features, based on the coupling of syntax and se-

mantics. We present experimental results on two

corpora: an interpreter for coaching instructions



in robotic soccer (CLANG) and a natural-language

database interface (GeoQuery). The best rerank-

ing model significantly improves F-measure on

CLANG from 82.3% to 85.1% (15.8% relative er-

ror reduction), however, it fails to show improve-

ments on GEOQUERY.

2 Background

2.1 Application Domains

2.1.1 CLANG: the RoboCup Coach Language

RoboCup (www.robocup.org) is an inter-

national AI research initiative using robotic soccer

as its primary domain. In the Coach Competition,

teams of agents compete on a simulated soccer

field and receive advice from a team coach in

a formal language called CLANG. In CLANG,

tactics and behaviors are expressed in terms of

if-then rules. As described in Chen et al. (2003),

its grammar consists of 37 non-terminal symbols

and 133 productions. Negation and quantifiers

like all are included in the language. Below is a

sample rule with its English gloss:

((bpos (penalty-area our))

(do (player-except our {4})

(pos (half our))))

“If the ball is in our penalty area, all our players

except player 4 should stay in our half.”

2.1.2 GEOQUERY: a DB Query Language

GEOQUERY is a logical query language for

a small database of U.S. geography containing

about 800 facts. The GEOQUERY language

consists of Prolog queries augmented with several

meta-predicates (Zelle and Mooney, 1996). Nega-

tion and quantifiers like all and each are included

in the language. Below is a sample query with its

English gloss:

answer(A,count(B,(city(B),loc(B,C),

const(C,countryid(usa))),A))

“How many cities are there in the US?”

2.2 SCISSOR: the Baseline Model

SCISSOR is based on a fairly standard approach

to compositional semantics (Jurafsky and Martin,

2000). First, a statistical parser is used to con-

struct a semantically-augmented parse tree that

captures the semantic interpretation of individual

NP-PLAYER

PRP$-TEAM

our

NN-PLAYER

player

CD-UNUM

2

Figure 1: A SAPT for describing a simple CLANG

concept PLAYER .

words and the basic predicate-argument structure

of a sentence. Next, a recursive deterministic pro-

cedure is used to compose the MR of a parent

node from the MR of its children following the

tree structure.

Figure 1 shows the SAPT for a simple natural

language phrase describing the concept PLAYER

in CLANG. We can see that each internal node

in the parse tree is annotated with a semantic la-

bel (shown after dashes) representing concepts in

an application domain; when a node is semanti-

cally vacuous in the application domain, it is as-

signed with the semantic label NULL. The seman-

tic labels on words and non-terminal nodes repre-

sent the meanings of these words and constituents

respectively. For example, the word our repre-

sents a TEAM concept in CLANG with the value

our, whereas the constituent OUR PLAYER 2 rep-

resents a PLAYER concept. Some type concepts

do not take arguments, like team and unum (uni-

form number), while some concepts, which we

refer to as predicates, take an ordered list of ar-

guments, like player which requires both a TEAM

and a UNUM as its arguments.

SAPTs are given to a meaning composition

process to compose meaning, guided by both

tree structures and domain predicate-argument re-

quirements. In figure 1, the MR of our and 2

would fill the arguments of PLAYER to generate

the MR of the whole constituent PLAYER(OUR,2)

using this process.

SCISSOR is implemented by augmenting

Collins’ (1997) head-driven parsing model II to

incorporate the generation of semantic labels on

internal nodes. In a head-driven parsing model,

a tree can be seen as generated by expanding

non-terminals with grammar rules recursively.

To deal with the sparse data problem, the expan-

sion of a non-terminal (parent) is decomposed

into primitive steps: a child is chosen as the

head and is generated first, and then the other

children (modifiers) are generated independently



BACK-OFFLEVEL PL1(Li|...)

1 P,H,w,t,∆,LC

2 P,H,t,∆,LC

3 P,H,∆,LC

4 P,H

5 P

Table 1: Extended back-off levels for the semantic

parameter PL1(Li|...), using the same notation as

in Ge and Mooney (2005). The symbols P , H and

Li are the semantic label of the parent , head, and

the ith left child, w is the head word of the parent,

t is the semantic label of the head word, δ is the

distance between the head and the modifier, and

LC is the left semantic subcat.

constrained by the head. Here, we only describe

changes made to SCISSOR for reranking, for a

full description of SCISSOR see Ge and Mooney

(2005).

In SCISSOR, the generation of semantic labels

on modifiers are constrained by semantic subcat-

egorization frames, for which data can be very

sparse. An example of a semantic subcat in Fig-

ure 1 is that the head PLAYER associated with NN

requires a TEAM as its modifier. Although this

constraint improves SCISSOR’s precision, which

is important for semantic parsing, it also limits

its recall. To generate plenty of candidate SAPTs

for reranking, we extended the back-off levels for

the parameters generating semantic labels of mod-

ifiers. The new set is shown in Table 1 using the

parameters for the generation of the left-side mod-

ifiers as an example. The back-off levels 4 and 5

are newly added by removing the constraints from

the semantic subcat. Although the best SAPTs

found by the model may not be as precise as be-

fore, we expect that reranking can improve the re-

sults and rank correct SAPTs higher.

2.3 The Averaged Perceptron Reranking

Model

Averaged perceptron (Collins, 2002a) has been

successfully applied to several tagging and parsing

reranking tasks (Collins, 2002c; Collins, 2002a),

and in this paper, we employed it in reranking

semantic parses generated by the base semantic

parser SCISSOR. The model is composed of three

parts (Collins, 2002a): a set of candidate SAPTs

GEN , which is the top n SAPTs of a sentence

from SCISSOR; a function Φ that maps a sentence

Inputs: A set of training examples (xi, y
∗

i ), i = 1...n, where xi

is a sentence, and y∗

i is a candidate SAPT that has the highest
similarity score with the gold-standard SAPT

Initialization: Set W̄ = 0
Algorithm:

For t = 1...T, i = 1...n

Calculate yi = arg maxy∈GEN(xi) Φ(xi, y) · W̄

If (yi 6= y∗

i ) then W̄ = W̄ + Φ(xi, y
∗

i ) − Φ(xi, yi)
Output: The parameter vector W̄

Figure 2: The perceptron training algorithm.

x and its SAPT y into a feature vector Φ(x, y) ∈
R

d; and a weight vector W̄ associated with the set

of features. Each feature in a feature vector is a

function on a SAPT that maps the SAPT to a real

value. The SAPT with the highest score under a

parameter vector W̄ is outputted, where the score

is calculated as:

score(x, y) = Φ(x, y) · W̄ (1)

The perceptron training algorithm for estimat-

ing the parameter vector W̄ is shown in Fig-

ure 2. For a full description of the algorithm,

see (Collins, 2002a). The averaged perceptron, a

variant of the perceptron algorithm is often used in

testing to decrease generalization errors on unseen

test examples, where the parameter vectors used

in testing is the average of each parameter vector

generated during the training process.

3 Features for Reranking SAPTs

In our setting, reranking models discriminate be-

tween SAPTs that can lead to correct MRs and

those that can not. Intuitively, both syntactic and

semantic features describing the syntactic and se-

mantic substructures of a SAPT would be good in-

dicators of the SAPT’s correctness.

The syntactic features introduced by Collins

(2000) for reranking syntactic parse trees have

been proven successfully in both English and

Spanish (Cowan and Collins, 2005). We exam-

ine if these syntactic features can be adapted for

semantic parsing by creating similar semantic fea-

tures. In the following section, we first briefly de-

scribe the syntactic features introduced by Collins

(2000), and then introduce two adapted semantic

feature sets. A SAPT in CLANG is shown in Fig-

ure 3 for illustrating the features throughout this

section.
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Figure 3: A SAPT for illustrating the reranking features, where the syntactic label “,” is replaced by

COMMA for a clearer description of features, and the NULL semantic labels are not shown. The head

of the rule “PRN-POINT→ -LRB–POINT NP-NUM1 COMMA NP-NUM2 -RRB-” is -LRB–POINT. The

semantic labels NUM1 and NUM2 are meta concepts in CLANG specifying the semantic role filled since

NUM can fill multiple semantic roles in the predicate POINT.

3.1 Syntactic Features

All syntactic features introduced by Collins (2000)

are included for reranking SAPTs. While the full

description of all the features is beyond the scope

of this paper, we still introduce several feature

types here for the convenience of introducing se-

mantic features later.

1. Rules. These are the counts of unique syntac-

tic context-free rules in a SAPT. The example

in Figure 3 has the feature f (PRN→ -LRB- NP

COMMA NP -RRB-)=1.

2. Bigrams. These are the counts of unique

bigrams of syntactic labels in a constituent.

They are also featured with the syntactic la-

bel of the constituent, and the bigram’s rel-

ative direction (left, right) to the head of the

constituent. The example in Figure 3 has the

feature f (NP COMMA, right, PRN)=1.

3. Grandparent Rules. These are the same as

Rules, but also include the syntactic label

above a rule. The example in Figure 3 has

the feature f ([PRN→ -LRB- NP COMMA NP

-RRB-], NP)=1, where NP is the syntactic la-

bel above the rule “PRN→ -LRB- NP COMMA

NP -RRB-”.

4. Grandparent Bigrams. These are the same

as Bigrams, but also include the syntactic

label above the constituent containing a bi-

gram. The example in Figure 3 has the

feature f ([NP COMMA, right, PRN], NP)=1,

where NP is the syntactic label above the con-

stituent PRN.

3.2 Semantic Features

3.2.1 Semantic Feature Set I

A similar semantic feature type is introduced for

each syntactic feature type used by Collins (2000)

by replacing syntactic labels with semantic ones

(with the semantic label NULL not included). The

corresponding semantic feature types for the fea-

tures in Section 3.1 are:

1. Rules. The example in Figure 3 has the fea-

ture f (POINT→ POINT NUM1 NUM2)=1.

2. Bigrams. The example in Figure 3 has the

feature f (NUM1 NUM2, right, POINT)=1,

where the bigram “NUM1 NUM2”appears to

the right of the head POINT.

3. Grandparent Rules. The example in Figure 3

has the feature f ([POINT→ POINT NUM1

NUM2], POINT)=1, where the last POINT is
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Figure 4: The tree generated by removing purely-

syntactic nodes from the SAPT in Figure 3 (with

syntactic labels omitted.)

the semantic label above the semantic rule

“POINT→ POINT NUM1 NUM2”.

4. Grandparent Bigrams. The example in Fig-

ure 3 has the feature f ([NUM1 NUM2, right,

POINT], POINT)=1, where the last POINT is

the semantic label above the POINT associ-

ated with PRN.

3.2.2 Semantic Feature Set II

Purely-syntactic structures in SAPTs exist with

no meaning composition involved, such as the ex-

pansions from NP to PRN, and from PP to “TO NP”

in Figure 3. One possible drawback of the seman-

tic features derived directly from SAPTs as in Sec-

tion 3.2.1 is that they could include features with

no meaning composition involved, which are in-

tuitively not very useful. For example, the nodes

with purely-syntactic expansions mentioned above

would trigger a semantic rule feature with mean-

ing unchanged (from POINT to POINT). Another

possible drawback of these features is that the fea-

tures covering broader context could potentially

fail to capture the real high-level meaning compo-

sition information. For example, the Grandparent

Rule example in Section 3.2.1 has POINT as the

semantic grandparent of a POINT composition, but

not the real one ACTION.PASS.

To address these problems, another semantic

feature set is introduced by deriving semantic fea-

tures from trees where purely-syntactic nodes of

SAPTs are removed (the resulting tree for the

SAPT in Figure 3 is shown in Figure 4). In this

tree representation, the example in Figure 4 would

have the Grandparent Rule feature f ([POINT→
POINT NUM1 NUM2], ACTION.PASS)=1, with the

correct semantic grandparent ACTION.PASS in-

cluded.

4 Experimental Evaluation

4.1 Experimental Methodology

Two corpora of natural language sentences paired

with MRs were used in the reranking experiments.

For CLANG, 300 pieces of coaching advice were

randomly selected from the log files of the 2003

RoboCup Coach Competition. Each formal in-

struction was translated into English by one of

four annotators (Kate et al., 2005). The average

length of an natural language sentence in this cor-

pus is 22.52 words. For GEOQUERY, 250 ques-

tions were collected by asking undergraduate stu-

dents to generate English queries for the given

database. Queries were then manually translated

into logical form (Zelle and Mooney, 1996). The

average length of a natural language sentence in

this corpus is 6.87 words.

We adopted standard 10-fold cross validation

for evaluation: 9/10 of the whole dataset was used

for training (training set), and 1/10 for testing (test

set). To train a reranking model on a training set,

a separate “internal” 10-fold cross validation over

the training set was employed to generate n-best

SAPTs for each training example using a base-

line learner, where each training set was again

separated into 10 folds with 9/10 for training the

baseline learner, and 1/10 for producing the n-

best SAPTs for training the reranker. Reranking

models trained in this way ensure that the n-best

SAPTs for each training example are not gener-

ated by a baseline model that has already seen that

example. To test a reranking model on a test set, a

baseline model trained on a whole training set was

used to generate n-best SAPTs for each test ex-

ample, and then the reranking model trained with

the above method was used to choose a best SAPT

from the candidate SAPTs.

The performance of semantic parsing was mea-

sured in terms of precision (the percentage of com-

pleted MRs that were correct), recall (the percent-

age of all sentences whose MRs were correctly

generated) and F-measure (the harmonic mean of

precision and recall). Since even a single mistake

in an MR could totally change the meaning of an

example (e.g. having OUR in an MR instead of OP-

PONENT in CLANG), no partial credit was given

for examples with partially-correct SAPTs.

Averaged perceptron (Collins, 2002a), which

has been successfully applied to several tag-

ging and parsing reranking tasks (Collins, 2002c;

Collins, 2002a), was employed for training rerank-



CLANG GEOQUERY

P R F P R F

SCISSOR 89.5 73.7 80.8 98.5 74.4 84.8

SCISSOR+ 87.0 78.0 82.3 95.5 77.2 85.4

Table 2: The performance of the baseline model SCISSOR+ compared with SCISSOR (with the best result in

bold), where P = precision, R = recall, and F = F-measure.

n 1 2 5 10 20 50

CLANG 78.0 81.3 83.0 84.0 85.0 85.3

GEOQUERY 77.2 77.6 80.0 81.2 81.6 81.6

Table 3: Oracle recalls on CLANG and GEOQUERY as a function of number n of n-best SAPTs.

ing models. To choose the correct SAPT of a

training example required for training the aver-

aged perceptron, we selected a SAPT that results

in the correct MR; if multiple such SAPTs exist,

the one with the highest baseline score was cho-

sen. Since no partial credit was awarded in evalua-

tion, a training example was discarded if it had no

correct SAPT. Rerankers were trained on the 50-

best SAPTs provided by SCISSOR, and the num-

ber of perceptron iterations over the training exam-

ples was limited to 10. Typically, in order to avoid

over-fitting, reranking features are filtered by re-

moving those occurring in less than some mini-

mal number of training examples. We only re-

moved features that never occurred in the training

data since experiments with higher cut-offs failed

to show any improvements.

4.2 Results

4.2.1 Baseline Results

Table 2 shows the results comparing the base-

line learner SCISSOR using both the back-off pa-

rameters in Ge and Mooney (2005) (SCISSOR) and

the revised parameters in Section 2.2 (SCISSOR+).

As we expected, SCISSOR+ has better recall and

worse precision than SCISSOR on both corpora

due to the additional levels of back-off. SCISSOR+

is used as the baseline model for all reranking ex-

periments in the next section.

Table 3 gives oracle recalls for CLANG and

GEOQUERY where an oracle picks the correct

parse from the n-best SAPTs if any of them are

correct. Results are shown for increasing values

of n. The trends for CLANG and GEOQUERY are

different: small values of n show significant im-

provements for CLANG, while a larger n is needed

to improve results for GEOQUERY.

4.2.2 Reranking Results

In this section, we describe the experiments

with reranking models utilizing different feature

sets. All models include the score assigned to a

SAPT by the baseline model as a special feature.

Table 4 shows results using different feature sets

derived directly from SAPTs. In general, rerank-

ing improves the performance of semantic parsing

on CLANG, but not on GEOQUERY. This could

be explained by the different oracle recall trends of

CLANG and GEOQUERY. We can see that in Ta-

ble 3, even a small n can increase the oracle score

on CLANG significantly, but not on GEOQUERY.

With the baseline score included as a feature, cor-

rect SAPTs closer to the top are more likely to

be reranked to the top than the ones in the back,

thus CLANG is more likely to have more sentences

reranked correct than GEOQUERY. On CLANG,

using the semantic feature set alone achieves the

best improvements over the baseline with 2.8%

absolute improvement in F-measure (15.8% rel-

ative error reduction), which is significant at the

95% confidence level using a paired Student’s t-

test. Nevertheless, the difference between SEM1

and SYN+SEM1 is very small (only one example).

Using syntactic features alone only slightly im-

proves the results because the syntactic features

do not directly discriminate between correct and

incorrect meaning representations. To put this

in perspective, Charniak and Johnson (2005) re-

ported that reranking improves the F-measure of

syntactic parsing from 89.7% to 91.0% with a 50-

best oracle F-measure score of 96.8%.

Table 5 compares results using semantic fea-

tures directly derived from SAPTs (SEM1), and

from trees with purely-syntactic nodes removed

(SEM2). It compares reranking models using these



CLANG GEOQUERY

P R F P R F

SCISSOR+ 87.0 78.0 82.3 95.5 77.2 85.4

SYN 87.7 78.7 83.0 95.5 77.2 85.4

SEM1 90.0(23.1) 80.7(12.3) 85.1(15.8) 95.5 76.8 85.1

SYN+SEM1 89.6 80.3 84.7 95.5 76.4 84.9

Table 4: Reranking results on CLANG and GEOQUERY using different feature sets derived directly from

SAPTs (with the best results in bold and relative error reduction in parentheses). The reranking model

SYN uses the syntactic feature set in Section 3.1, SEM1 uses the semantic feature set in Section 3.2.1, and

SYN+SEM1 uses both.

CLANG GEOQUERY

P R F P R F

SEM1 90.0 80.7 85.1 95.5 76.8 85.1

SEM2 88.1 79.0 83.3 96.0 77.2 85.6

SEM1+SEM2 88.5 79.3 83.7 95.5 76.4 84.9

SYN+SEM1 89.6 80.3 84.7 95.5 76.4 84.9

SYN+SEM2 88.1 79.0 83.3 95.5 76.8 85.1

SYN+SEM1+SEM2 88.9 79.7 84.0 95.5 76.4 84.9

Table 5: Reranking results on CLANG and GEOQUERY comparing semantic features derived directly from

SAPTs, and semantic features from trees with purely-syntactic nodes removed. The symbol SEM1 and SEM2

refer to the semantic feature sets in Section 3.2.1 and 3.2.1 respectively, and SYN refers to the syntactic

feature set in Section 3.1.

feature sets alone and together, and using them

along with the syntactic feature set (SYN) alone

and together. Overall, SEM1 provides better results

than SEM2 on CLANG and slightly worse results

on GEOQUERY (only in one sentence), regard-

less of whether or not syntactic features are in-

cluded. Using both semantic feature sets does not

improve the results over just using SEM1. On one

hand, the better performance of SEM1 on CLANG

contradicts our expectation because of the reasons

discussed in Section 3.2.2; the reason behind this

needs to be investigated. On the other hand, how-

ever, it also suggests that the semantic features de-

rived directly from SAPTs can provide good evi-

dence for semantic correctness, even with redun-

dant purely syntactically motivated features.

We have also informally experimented with

smoothed semantic features utilizing domain on-

tology given by CLANG, which did not show im-

provements over reranking models not using these

features.

5 Conclusion

We have applied discriminative reranking to se-

mantic parsing, where reranking features are de-

veloped from features for reranking syntactic

parses based on the coupling of syntax and se-

mantics. The best reranking model significantly

improves F-measure on a Robocup coaching task

(CLANG) from 82.3% to 85.1%, while it fails to

improve the performance on a geography database

query task (GEOQUERY).

Future work includes further investigation of

the reasons behind the different utility of rerank-

ing for the CLANG and GEOQUERY tasks. We

also plan to explore other types of reranking

features, such as the features used in semantic

role labeling (SRL) (Gildea and Jurafsky, 2002;

Carreras and Màrquez, 2005), like the path be-

tween a target predicate and its argument, and

kernel methods (Collins, 2002b). Experimenting

with other effective reranking algorithms, such as

SVMs (Joachims, 2002) and MaxEnt (Charniak

and Johnson, 2005), is also a direction of our fu-

ture research.
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