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Abstract as named entity extraction [14, 3] and reference match-
ing [16, 18]. Key advantages of these methods stem
Several problems central to information integration, sugbm their ability to incorporate large numbers of ar-
as ontology mapping and object matching, can be viewg#ary features in a principled framework trained with
asalignment tasks where the goal is to find an optimaldiscriminative methods, with the possibility of inducing
correspondence between two structured objects anch&y informative features dynamically [15]. As a resullt,
compute the associated similarity score. The diversyRFs and RMNs outperform techniques based on gen-
of data sources and domains in the Semantic Web &ative models with strong independence assumptions,
quires solutions to these problems to be highly adagizch as Naive Bayes or Hidden Markov Models.
tive, which can be achieved by employing probabilistic |n this work, we introduce Alignment Conditional
machine learning approaches. We present one suchRandom Fields (ACRFs), an undirected graphical model
proach, Alignment Conditional Random Fields (ACRFg) thesequence alignment problem, which is the task of
a new framework for constructing and scoring sequenigding a correspondence between two sequences (e.g.
alignments using undirected graphical models. ACREgings) with an associated similarity score. Edit dis-
allow incorporating arbitrary features into string edgance algorithms [11] solve exactly this problem; our
distance computation, yielding a learnable string siniipproach results in kearnable edit distance algorithm
larity function for use in tasks where approximate strin@at can utilize a large number of arbitrarily defined pa-
matching is needed. We outline possible applicationsi@imeters whose weights are learned from training data.
ACREFs in information integration tasks and describe dihe flexibility in the choice of parameters is particu-

rections for future work. larly relevant for information integration tasks, where
) similarity between strings may depend on a variety of
1 Introduction domain-dependent features, e.g. spelling variations or

In recent years, the vision of the Semantic Web mov&@Previations-related features. _

towards reality with the spreading popularity of early ACRFS have applications in integration tasks for the
standards (e.g. XML and SOAP), improved standar mantic Web where similarity between strings or se-
coming up to replace them (e.g. OWL), and availabiliu€Nces is estimated. Accurate string distance compu-
of Web applications that integrate heterogeneous se fion is essential for object matching meth_ods as well
structured data from multiple sources (e.g. CiteSeer &l Other problems such as ontology mapping and data
Froogle). To perform well, these applications need fleaning vyhere ac_curate string comparisons are requTred.I
extract information from text, learn and map schemd&€ following sections, we describe the model and its
and perform data cleaning tasks such as duplicate def&€vance to Semantic Web applications, as well as pos-
tion (object matching). Solving these problems acciible extensions to other |nf0rmat|on integration prob-
rately requires accounting for the lexical and structur@ms that we hope to address in future work.

variations across data sources and domains. To deal . ) .

with this challenge, recent work on information inted ~Alignmentsin Information

gratlon ta_sks has succg_ssfully employ_ed_ machine learn- | ntegr ation

ing techniques that utilize labeled training data, user-

provided constraints, and auxiliary knowledge to adajft0!09y mapping and object matching are two prob-

algorithms to specific domains [1, 7, 10, 14, 5, 24, 2]_I$ams central to successful integration of d_ata from mul-
One group of such learning algorithms are metholB!€ sources. The two problems have different goals:
based on undirected graphical models such as Corfit0/09y mapping attempts to reconcitta-data for
tional Random Fields (CRFs) [14] and Relational Marl&f\‘f_:h |nf_ormat|0n source, while the object matching seeks
Networks [23]. Approaches based on these models hQddentify data instances that represent the same un-
performed well on such information integration task&erying entity. The two tasks are similar, however, in



that both are concerned with finding a correspondenCenditional Random Field (ACRRy = (v, E), where
between pairs of structured objects and computing sistates?’ = {Vi j }i—o.|«|,j—0.|y| r€ located in the nodes
ilarity between them. Additionally, both tasks involvefa (||+1) x (|y|+1) lattice, connected by edges in set
computing string similarity between textual attribute®. Each state; ; corresponds to an unobserved discrete
describing either categories in the ontology, or the olandom variable; j that encodes thkabel in which the
jects’ string attribute values. alignment of prefixes 15 andy;.j ends. A three-label

Ontology Mapping asAlignment.  In previous work, @lPhabetds = {S1y,12} is typically used for text appli-

two types of mappings were considered: (fjp-to- Cations. LabeEdenotes a substitution (including exact
one mapping, where an attribute in one schema may B@tchmg),l_l den_otes_ insertion into the _f|rst string, and
matched to one attribute from another schema [20], alaglenotes insertion into the second string. Larger Iapel
(2) complex mapping, where combinations of attribute@!Phabets can be used to represent more complex align-
may be matched between schemas [6]. Both of thé8§nt models. . .

mapping types can be represented as alignments where! N €dge structur is determined by the label al-
for one-to-one mapping individual attributes from tw@habeta. Each edge represents a conditional depen-
schemas are linked, while for complex mapping corrdéncy between two state variables. For the three-label

spondences may link groups of multiple attributes. alphabet4s, three types of edges are instantiated, which
intuitively correspond to the three types of edit oper-

tation is oft d wh iohi biect tions. A vertical edge is created between every pair
computation 1S often used when matching Objects states(vi_1,j,Vi,j) that represents a possible insertion

scribed by textual attributes or when string similarity gz 1,ai-th symbol into the first string (corresponding to

timates are needed for data cleaning and ontology mglpj- — I,): a horizontal edge connects every pair of states

ping tasks [17, 2, 4, 8]. Since edit distance computatig
|

String Matching as Alignment.  String edit distance

: valent to finding the optimal ali ¢ betw i.i-1,Vi,j) representing a possible insertion of tjxh
IS equivaient fo finding the optimai alignment beWee 5| intg the second string @ ; = |»); a diagonal
two strings, accurately computing alignment scores b ’

N . tial sten f bust inf dge connecting states 1 ;1 andv;; corresponds to
Ween Sequences IS an essential step for robust Intoriag it tion of for y; (corresponding t@; ; = S).
tion integration approaches.

Al icall dusing d . Asample ACRF is shown on Fig.1. The figure omits
|gnm§nts ?re tiﬁ) ca t?]/ ctonstructte trl;lsmgt' yn?m'&vo non-shaded observed states that encapsulate the two
programming aigorithms that compute the optima Coéfrings and are connected to to every shaded, non-observed

re_spond_ence of structures (e.g. sirings or tre‘*?) al%ﬁte in the lattice, representing the dependency of each
with a distance score [11, 13]. Score computation qﬁbel assignment on the actual strings
pends on per-elemetransformation costs representing ’

the relative importance of mismatches in the alignment. Q WA T E R
The costs are commonly set manually, and are difficult '
to tune when the number of parameters is large.

Classic approaches to alignment scoring such as vari-
ants of edit distance computation can be represented by
finite-state automata which encode possible alignments
via emissions resulting from state transitions [11]. In
the last decade, probabilistic analogs of these algorithms
were developed based on Hidden Markov Models [21,

9, 2]. These appro_aches gllow Igarn_lng stnng _edlt dis- LetO = {01 j}io. a|.jo.= deNOte the complete as-
tance parameters via maximume-likelihood training on%z

W
|
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Figure 1: A sample alignment CRF

: , ment of labels to the random variablesgncor-
corpus of matching sequences. However, Hidden Mar,

. onding to an alignment of stringsandy. The
Models cannot account for arbitrary features or Iong—milarity of = andy is then equivalent to the condi-

range dependencies in the alignment since it is mags,, probability of a label assignment® and can be

e_Ied as a generative process unde-r the Markov asSURorized as follows by the Hammersley-Clifford theo-
tion. We attempt to overcome the limitations of HMM§,ern [12]:

by proposing a learnable framework for sequence align-

ment based on an undirected graphical model. PA(Olz,y) = ﬁ [ ®(oc,zy)
AMT,Y) cee
3 The ACRF Model — ;expz Afloc,z,y) (1)

We view the task of computing similarity between strings D@y

through a probabilistic framework, where similarity isvhere( is the clique set of7, o is the subset oD cor-
equivalent to the conditional probability of the most likeksponding to vertices in clique ®(oc, x,y) is a clique
alignment of the strings. All possible alignments of twpotential function represented by an exponentiated sum
stringsx andy can be represented by an Alignmertf binary clique features (oc,x,y) = {fk(oc,xz,y)}



weighted by a vector of real weigh¥s ®(oc,z,y) =
expAf(oc,,y). Zx(x,y) is the normalization factor
over all possible label assignments:

Zx(x,Y) = 3o Neec Ploc, x,y). We describe possible
features in detail in Section 3.3.

Three(|z|+1) x (|y|+1) forward matriceds, Aj,,
and A, are created, where each enty(i, j) corre-
sponds to the probability of the alignment of substrings
x (15 andy(y;j ending with label. Each matrixA, is
computed using dynamic programming as follows:

3.1 Computing Edit Distancewith ACRFs 1, i—0.j=0
Since_g contains 2|x|+1)(|y|+1) triapgu[ar gliques, Aa(i.]) = {Za’eﬂ3Aa’(ip~, jp)Mij(a,a) otherwise

exact inference for the general factorization in Eqn.(1)

is computationally prohibitive. However, the semantic¥hereip andjp are determined by the edge correspond-
of edge structure result in constraints that allow a difg to labela (vertical fora = 11, horizontal fora = Iz,
ferent factorization of the model, which permits exagiagonal fora=9). . o
inference via the Viterbi algorithm. If edge potentials ~The forward matrix also provides the normalization
are defined to be non-zero only when the label on tREtOr valueZx (z,y) = 5 ac 2, Aa(|z[, |y|). Actual string
end state corresponds to that edge type, it can be pro§gailarity score is obtained by running the Viterbi al-
that the non-zero potential edges form a tree rootedd@ithm. The overall computational complexity of for-
vertexvoo. With this constraint, it is possible to usévard, backward, and Viterbi algorithms &(|z|, [y]),
exact inference to estimate the distributiog(O|z,y). Same as for classic edit distance.

Fig.2 below demonstrates an example of a possible la- Lo

bel assignment to the ACRF with the non-zero potenti 12 Learning in ACRFs

edges highlighted and the corresponding alignment Kalven a training corpus di pairs of matching strings
low. D = {(zk ~ y«) }}_;, the goal is to maximize the con-

ditional log-likelihood of observing the alignments:

W ATER
LA) = Z'ngx(wk~yk|wk,yk)

- Z()\F(wk,yk)—|OQZA(CBk7yk)) ®)

)~ To find A that maximizesZ(\) we can follow the
R L-BFGS method previously introduced for linear CRFs

WAT
W1l N L by Sha and Pereira [22]. Overfitting can be controlled

by introducing a priop(\) over the weight vector and
Figure 2: A possible label assignment with the corr&aximizingL(A) +logp(A).

sponding alignment 33 Featuresin ACRFs

The principal advantage of the proposed model comes
from the ability to incorporate a variety of representa-
tive and possibly overlapping features. Following are
some of the features that can be employed for compar-
ing textual strings:

e Base features that encode symbol-specific poten-

Then, we can factorizpy (O|x,y) as follows:

PA(Olw,y) =
|| |yl

1 ..
mexpi;j;Af(oiJ7T[(Oi.j)7x7y7|7J) 2

whereri(o; ) = oy j such thae= (v j;,vi j) is the edge tials, such as costs of edit operations for particular
with a non-zero potential corresponding to the value of ~ characters. E.g., featuféo; j, (01 j), z, y,i,]) =

0,j. Zx(z,y) is the normalization factorZ, (z,y) = liffoj=Sx="",y;="," corresponds to

S 0€XpAF (z,y,0), whereF (z, y,O) is theglobal fea- the cost of substituting a space with a comma.
ture vector:F'(z, y,0) = i‘i‘oZ‘jyzlof(Oi,j7T[(Oi,j)»wyyai7 i) e Next-symbol and previous-symbol potentials, e.g.,

feature f(0; j,(0;j), z,y,i,j) = 1 iff 0j =11
andx1 ='." encodes insertions before a dot,
representing possible abbreviations.

e Local features specific to natural language that
capture such artifacts as capitalization, common
suffixes and typographic errors, and abbreviations,
e.g. a feature that encodes whether a sequence of
characters being inserted’ibnc. ' .

Given the factorization in Eqn.(2), the forward, back-
ward, and Viterbi algorithms in alignment CRFs are anal-
ogous to those in pairwise HMMs [9]. We describe the
forward algorithm in detail.

Given stringse andy, an 3x 3 transition matrixvj
is computed for each statg; as follows, where entry
M;jj(a,&) encodes the forward value foy; = a after
the transition from previous state with lalzé!

Mij(a,a) = expAf(a,a,z,y.i,j) 3)



e Domain-specific features for common domains s{@hw. W. Cohen and J. Richman. Learning to match and

as postal addresses, proper names, or titles, e.g.,

featuref(oi,j7n(0i.])aw7y7i7j) =1iff Oi7j = |21

cluster large high-dimensional data sets for data integra-
tion. InProc. of SGKDD-2002.

R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. iMap: Discovering complex seman-

y; € Di gi t s represents costs of inserting digits. [6]

Along with the base features, it is possible to incor- "
porate conjunction features induced automatically using i matches between database schemas. Proe. of
the method previously used for linear-chain CRFs [15]. S GMOD-2004. _ o

Overall, ACRFs provide a flexible method for edit dis-[/] A- Doan, P. Domingos, and A. Halevy. Reconciling

. . L . schemas of disparate data sources: A machine-learning
tance estimation that can be tuned to individual domains. approach. IfProc. of SIGMOD-2001.

[8] A.Doan, Y. Lu, Y. Lee, and J. Han. Object matching for
information integration: A profiler-based approach. In
Proc. of IJCAI 11\Web-2003 Workshop.

R. Durbin, S. Eddy, A. Krogh, and G. MitchisorBio-
logical Sequence Analysis: Probabilistic Models of Pro-
teins and Nucleic Acids. Cambridge University Press,
1998.

4 FutureWork and Conclusions

We described alignment conditional random fields, a
probabilistic framework for sequence alignment and sirf#]
ilarity computation. The model allows using a variety
of informative features whose weights are learned. This
capacity is particularly important for information inte- ) ) _
gration tasks since it provides a way to adapt string sit}9] D- Freitag and N. Kushmerick. Boosted wrapper induc-
ilarity computation to the domain at hand. We are cur- _ 1°n: I Proc. of AAAI-2000. _

rently working on experimental evaluation of the framdtt] D- Gusfield.  Algorithms on Sirings, Trees and Se-

work and comparing it to prior approaches to learnable quences. Cambridge Umversfty Press, 1997', _
string similarity. [12] J. M. Hammersley and P. Clifford. Markov fields on fi-

In future work, we would like to extend our frame- nite graphs and lattices. Unpublished manuscript, 1971.

work to represent alignments of trees, yielding a ro[:)l—B] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an
e P 9 L y . gap alternative to tree editTheoretical Computer Science,
abilistic approach to ontology mapping. Since com-

. . . : . 143:137-148, 1995.
putational complexity of such algorithms is typ'c"’lll)flA] J. Lafferty, A. McCallum, and F. Pereira. Conditional

at least quadratic in structure size, developing approxi-" 1anqom fields: Probabilistic models for segmenting and

mate methods is an important issue. Since a number of |aheling sequence data. Rioc. of ICML-2001.

integration tasks emloys string similarity computationgs) . mccCallum. Efficiently inducing features of condi-

(e.g. data cleaning, ontology mapping), incorporating  tional random fields. IProc. of UAI-2003.

ACRFs as a component of these tasks is another afgg A. McCallum and B. Wellner. Conditional models of

for future research. identity uncertainty with application to noun corefer-
Information extraction, object matching, and ontol-  ence. InNIPS 17, 2005.

ogy mapping tasks are related since they represeriiZl A. E. Monge and C. Elkan. The field matching problem:

continuum of information integration tasks. Developing  Algorithms and applications. IRroc. of SGKDD-1996.

joint methods for these problems is an important chal18] Parag and P. Domingos. Multi-relational record linkage.

lenge for future research, since such approaches could In Proc. of SGKDD MRDM-2004 Workshop.

leverage uncertainty between the tasks. Advantageq4i®i H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Sh-

a integrated approach to information extraction and co- pitser. Identity uncertainty and citation matching. In

reference resolution have been shown in recent work [19, NIPS15, 2003.

25], and extending the continuum of joint models to of¢0] E. Rahm and P. A. Bernstein. On matching schemas

tology mapping may provide further improvements in automatically.VLDB Journal, 10(4):334-350, 2001.

dealing with heterogeneous, semi-structure data fréd] E- S-Ristad and P. N. Yianilos. Learning string edit dis-
multiple sources. tance. InProc. of ICML-1997.

F. Sha and F. Pereira. Shallow parsing with conditional
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