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Abstract

Several problems central to information integration, such
as ontology mapping and object matching, can be viewed
asalignment tasks where the goal is to find an optimal
correspondence between two structured objects and to
compute the associated similarity score. The diversity
of data sources and domains in the Semantic Web re-
quires solutions to these problems to be highly adap-
tive, which can be achieved by employing probabilistic
machine learning approaches. We present one such ap-
proach, Alignment Conditional Random Fields (ACRFs),
a new framework for constructing and scoring sequence
alignments using undirected graphical models. ACRFs
allow incorporating arbitrary features into string edit
distance computation, yielding a learnable string simi-
larity function for use in tasks where approximate string
matching is needed. We outline possible applications of
ACRFs in information integration tasks and describe di-
rections for future work.

1 Introduction
In recent years, the vision of the Semantic Web moved
towards reality with the spreading popularity of early
standards (e.g. XML and SOAP), improved standards
coming up to replace them (e.g. OWL), and availability
of Web applications that integrate heterogeneous semi-
structured data from multiple sources (e.g. CiteSeer and
Froogle). To perform well, these applications need to
extract information from text, learn and map schemas,
and perform data cleaning tasks such as duplicate detec-
tion (object matching). Solving these problems accu-
rately requires accounting for the lexical and structural
variations across data sources and domains. To deal
with this challenge, recent work on information inte-
gration tasks has successfully employed machine learn-
ing techniques that utilize labeled training data, user-
provided constraints, and auxiliary knowledge to adapt
algorithms to specific domains [1, 7, 10, 14, 5, 24, 2].

One group of such learning algorithms are methods
based on undirected graphical models such as Condi-
tional Random Fields (CRFs) [14] and Relational Markov
Networks [23]. Approaches based on these models have
performed well on such information integration tasks

as named entity extraction [14, 3] and reference match-
ing [16, 18]. Key advantages of these methods stem
from their ability to incorporate large numbers of ar-
bitrary features in a principled framework trained with
discriminative methods, with the possibility of inducing
new informative features dynamically [15]. As a result,
CRFs and RMNs outperform techniques based on gen-
erative models with strong independence assumptions,
such as Naive Bayes or Hidden Markov Models.

In this work, we introduce Alignment Conditional
Random Fields (ACRFs), an undirected graphical model
for thesequence alignment problem, which is the task of
finding a correspondence between two sequences (e.g.
strings) with an associated similarity score. Edit dis-
tance algorithms [11] solve exactly this problem; our
approach results in alearnable edit distance algorithm
that can utilize a large number of arbitrarily defined pa-
rameters whose weights are learned from training data.
The flexibility in the choice of parameters is particu-
larly relevant for information integration tasks, where
similarity between strings may depend on a variety of
domain-dependent features, e.g. spelling variations or
abbreviations-related features.

ACRFs have applications in integration tasks for the
Semantic Web where similarity between strings or se-
quences is estimated. Accurate string distance compu-
tation is essential for object matching methods as well
as other problems such as ontology mapping and data
cleaning where accurate string comparisons are required.In
the following sections, we describe the model and its
relevance to Semantic Web applications, as well as pos-
sible extensions to other information integration prob-
lems that we hope to address in future work.

2 Alignments in Information
Integration

Ontology mapping and object matching are two prob-
lems central to successful integration of data from mul-
tiple sources. The two problems have different goals:
ontology mapping attempts to reconcilemeta-data for
each information source, while the object matching seeks
to identify data instances that represent the same un-
derlying entity. The two tasks are similar, however, in



that both are concerned with finding a correspondence
between pairs of structured objects and computing sim-
ilarity between them. Additionally, both tasks involve
computing string similarity between textual attributes
describing either categories in the ontology, or the ob-
jects’ string attribute values.

Ontology Mapping as Alignment. In previous work,
two types of mappings were considered: (1)one-to-
one mapping, where an attribute in one schema may be
matched to one attribute from another schema [20], and
(2) complex mapping, where combinations of attributes
may be matched between schemas [6]. Both of these
mapping types can be represented as alignments where
for one-to-one mapping individual attributes from two
schemas are linked, while for complex mapping corre-
spondences may link groups of multiple attributes.

String Matching as Alignment. String edit distance
computation is often used when matching objects de-
scribed by textual attributes or when string similarity es-
timates are needed for data cleaning and ontology map-
ping tasks [17, 2, 4, 8]. Since edit distance computation
is equivalent to finding the optimal alignment between
two strings, accurately computing alignment scores be-
tween sequences is an essential step for robust informa-
tion integration approaches.

Alignments are typically constructed using dynamic
programming algorithms that compute the optimal cor-
respondence of structures (e.g. strings or trees) along
with a distance score [11, 13]. Score computation de-
pends on per-elementtransformation costs representing
the relative importance of mismatches in the alignment.
The costs are commonly set manually, and are difficult
to tune when the number of parameters is large.

Classic approaches to alignment scoring such as vari-
ants of edit distance computation can be represented by
finite-state automata which encode possible alignments
via emissions resulting from state transitions [11]. In
the last decade, probabilistic analogs of these algorithms
were developed based on Hidden Markov Models [21,
9, 2]. These approaches allow learning string edit dis-
tance parameters via maximum-likelihood training on a
corpus of matching sequences. However, Hidden Markov
Models cannot account for arbitrary features or long-
range dependencies in the alignment since it is mod-
eled as a generative process under the Markov assump-
tion. We attempt to overcome the limitations of HMMs
by proposing a learnable framework for sequence align-
ment based on an undirected graphical model.

3 The ACRF Model
We view the task of computing similarity between strings
through a probabilistic framework, where similarity is
equivalent to the conditional probability of the most likely
alignment of the strings. All possible alignments of two
stringsx and y can be represented by an Alignment

Conditional Random Field (ACRF)G = (V ,E), where
statesV = {vi, j}i=0..|x|, j=0..|y| are located in the nodes
of a(|x|+1)×(|y|+1) lattice, connected by edges in set
E . Each statevi, j corresponds to an unobserved discrete
random variableoi, j that encodes thelabel in which the
alignment of prefixesx[1:i] andy[1: j] ends. A three-label
alphabetA3 = {S, I1, I2} is typically used for text appli-
cations. LabelS denotes a substitution (including exact
matching),I1 denotes insertion into the first string, and
I2 denotes insertion into the second string. Larger label
alphabets can be used to represent more complex align-
ment models.

The edge structureE is determined by the label al-
phabetA . Each edge represents a conditional depen-
dency between two state variables. For the three-label
alphabetA3, three types of edges are instantiated, which
intuitively correspond to the three types of edit oper-
ations. A vertical edge is created between every pair
of states(vi−1, j,vi, j) that represents a possible insertion
of the i-th symbol into the first string (corresponding to
oi, j = I1); a horizontal edge connects every pair of states
(vi, j−1,vi, j) representing a possible insertion of thej-th
symbol into the second string (ifoi, j = I2); a diagonal
edge connecting statesvi−1, j−1 and vi, j corresponds to
substitution ofxi for y j (corresponding tooi, j = S).

A sample ACRF is shown on Fig.1. The figure omits
two non-shaded observed states that encapsulate the two
strings and are connected to to every shaded, non-observed
state in the lattice, representing the dependency of each
label assignment on the actual strings.
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Figure 1: A sample alignment CRF

Let O = {oi, j}i=0..|x|, j=0..|x| denote the complete as-
signment of labels to the random variables inG cor-
responding to an alignment of stringsx and y. The
similarity of x andy is then equivalent to the condi-
tional probability of a label assignment toO, and can be
factorized as follows by the Hammersley-Clifford theo-
rem [12]:

pλ(O|x,y) =
1

Zλ(x,y) ∏
c∈C

Φ(oc,x,y)

=
1

Zλ(x,y)
exp∑

c∈C

λf (oc,x,y) (1)

whereC is the clique set ofG , oc is the subset ofO cor-
responding to vertices in cliquec, Φ(oc,x,y) is a clique
potential function represented by an exponentiated sum
of binary clique featuresf(oc,x,y) = { fk(oc,x,y)}



weighted by a vector of real weightsλ: Φ(oc,x,y) =
expλf(oc,x,y). Zλ(x,y) is the normalization factor
over all possible label assignments:
Zλ(x,y) = ∑O ∏c∈C Φ(oc,x,y). We describe possible
features in detail in Section 3.3.

3.1 Computing Edit Distance with ACRFs
SinceG contains 2(|x|+1)(|y|+1) triangular cliques,
exact inference for the general factorization in Eqn.(1)
is computationally prohibitive. However, the semantics
of edge structure result in constraints that allow a dif-
ferent factorization of the model, which permits exact
inference via the Viterbi algorithm. If edge potentials
are defined to be non-zero only when the label on the
end state corresponds to that edge type, it can be proved
that the non-zero potential edges form a tree rooted at
vertex vo,o. With this constraint, it is possible to use
exact inference to estimate the distributionpλ(O|x,y).
Fig.2 below demonstrates an example of a possible la-
bel assignment to the ACRF with the non-zero potential
edges highlighted and the corresponding alignment be-
low.
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Figure 2: A possible label assignment with the corre-
sponding alignment

Then, we can factorizepλ(O|x,y) as follows:

pλ(O|x,y) =

1
Zλ(x,y)

exp
|x|

∑
i=0

|y|

∑
j=0

λf (oi, j,π(oi, j),x,y, i, j) (2)

whereπ(oi, j) = oi′, j′ such thate = (vi′, j′ ,vi, j) is the edge
with a non-zero potential corresponding to the value of
oi, j. Zλ(x,y) is the normalization factor:Zλ(x,y) =

∑O expλF (x,y,O), whereF (x,y,O) is theglobal fea-

ture vector:F (x,y,O)= ∑|x|
i=0 ∑|y|

j=0f(oi, j,π(oi, j),x,y, i, j).
Given the factorization in Eqn.(2), the forward, back-

ward, and Viterbi algorithms in alignment CRFs are anal-
ogous to those in pairwise HMMs [9]. We describe the
forward algorithm in detail.

Given stringsx andy, an 3×3 transition matrixMi j

is computed for each statevi, j as follows, where entry
Mi j(a,a′) encodes the forward value foroi, j = a after
the transition from previous state with labela′:

Mi j(a,a′) = expλf (a,a′,x,y, i, j) (3)

Three(|x|+1)× (|y|+1) forward matricesAS, AI1,
and AI2 are created, where each entryAa(i, j) corre-
sponds to the probability of the alignment of substrings
x[1:i] andy[1: j] ending with labela. Each matrixAa is
computed using dynamic programming as follows:

Aa(i, j) =

{

1, i = 0, j = 0

∑a′∈A3
Aa′(ip, jp)Mi j(a,a′) otherwise

(4)

whereip and jp are determined by the edge correspond-
ing to labela (vertical fora = I1, horizontal fora = I2,
diagonal fora = S).

The forward matrix also provides the normalization
factor value:Zλ(x,y)= ∑a∈A3

Aa(|x|, |y|). Actual string
similarity score is obtained by running the Viterbi al-
gorithm. The overall computational complexity of for-
ward, backward, and Viterbi algorithms isO(|x|, |y|),
same as for classic edit distance.

3.2 Learning in ACRFs
Given a training corpus ofN pairs of matching strings
D = {(xk ∼ yk)}

N
k=1, the goal is to maximize the con-

ditional log-likelihood of observing the alignments:

L(λ) = ∑
k

logpλ(xk ∼ yk|xk,yk)

= ∑
k

(

λF (xk,yk)− logZλ(xk,yk)
)

(5)

To find λ that maximizesL(λ) we can follow the
L-BFGS method previously introduced for linear CRFs
by Sha and Pereira [22]. Overfitting can be controlled
by introducing a priorp(λ) over the weight vector and
maximizingL(λ)+ logp(λ).

3.3 Features in ACRFs
The principal advantage of the proposed model comes
from the ability to incorporate a variety of representa-
tive and possibly overlapping features. Following are
some of the features that can be employed for compar-
ing textual strings:

• Base features that encode symbol-specific poten-
tials, such as costs of edit operations for particular
characters. E.g., featuref (oi, j,π(oi, j),x,y, i, j)=
1 iff oi, j = S, xi = ’ ’, y j = ’,’ corresponds to
the cost of substituting a space with a comma.

• Next-symbol and previous-symbol potentials, e.g.,
feature f (oi, j,π(oi, j),x,y, i, j) = 1 iff oi, j = I1

andxi+1 = ’.’ encodes insertions before a dot,
representing possible abbreviations.

• Local features specific to natural language that
capture such artifacts as capitalization, common
suffixes and typographic errors, and abbreviations,
e.g. a feature that encodes whether a sequence of
characters being inserted is’Inc.’.



• Domain-specific features for common domains such
as postal addresses, proper names, or titles, e.g.,
feature f (oi, j,π(oi, j),x,y, i, j) = 1 iff oi, j = I2,
y j ∈ Digits represents costs of inserting digits.

Along with the base features, it is possible to incor-
porate conjunction features induced automatically using
the method previously used for linear-chain CRFs [15].
Overall, ACRFs provide a flexible method for edit dis-
tance estimation that can be tuned to individual domains.

4 Future Work and Conclusions
We described alignment conditional random fields, a
probabilistic framework for sequence alignment and sim-
ilarity computation. The model allows using a variety
of informative features whose weights are learned. This
capacity is particularly important for information inte-
gration tasks since it provides a way to adapt string sim-
ilarity computation to the domain at hand. We are cur-
rently working on experimental evaluation of the frame-
work and comparing it to prior approaches to learnable
string similarity.

In future work, we would like to extend our frame-
work to represent alignments of trees, yielding a prob-
abilistic approach to ontology mapping. Since com-
putational complexity of such algorithms is typically
at least quadratic in structure size, developing approxi-
mate methods is an important issue. Since a number of
integration tasks emloys string similarity computations
(e.g. data cleaning, ontology mapping), incorporating
ACRFs as a component of these tasks is another area
for future research.

Information extraction, object matching, and ontol-
ogy mapping tasks are related since they represent a
continuum of information integration tasks. Developing
joint methods for these problems is an important chal-
lenge for future research, since such approaches could
leverage uncertainty between the tasks. Advantages of
a integrated approach to information extraction and co-
reference resolution have been shown in recent work [19,
25], and extending the continuum of joint models to on-
tology mapping may provide further improvements in
dealing with heterogeneous, semi-structure data from
multiple sources.
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