In Proceedings of the 19th International FLAIRS Conference (FLAIRS-2006). pp. 580-585, Melbourne Beach, FL, May 2006.

Using Active Relocation to Aid Reinforcement Learning

Lilyana Mihalkova and Raymond Mooney
University of Texas, Department of Computer Sciences,
1 University Station, C0500,

Austin, TX 78712
{lilyanam,mooney } @cs.utexas.edu

Abstract

We propose a new framework for aiding a reinforcement
learner by allowing it to relocate, or move, to a state it se-
lects so as to decrease the number of steps it needs to take in
order to develop an effective policy. The framework requires
a minimal amount of human involvement or expertise and as-
sumes a cost for each relocation. Several methods for taking
advantage of the ability to relocate are proposed, and their
effectiveness is tested in two commonly-used domains.

Introduction

Reinforcement learning (RL) comprises a set of machine
learning methods designed to address a particular learning
task in which an agent is placed in an unknown environment
and is allowed to take actions that bring it delayed numeric
rewards and can change its state in the environment. The
agent’s goal is to learn a policy that tells it what action to
take in each state so that it maximizes the amount of reward
it obtains from its interaction with the environment.

Traditional RL methods such as @-learning (Watkins
1989), require no human intervention. The agent is sim-
ply placed in the unknown environment and allowed to ex-
plore it independently in order to determine an effective
policy. One potential problem with this approach is that a
large amount of environment interaction may be necessary
to learn a good policy. To alleviate this problem, several ap-
proaches for guiding the agent have been developed. For
example, guidance may be provided in the form of rules
suggesting actions to take in particular situations (Maclin &
Shavlik 1996) or as trajectories of successful runs through
the environment (Driessens & DZeroski 2004).

Naturally, guidance allows the agent to find good policies
faster. Sometimes, however, the required amount of human
interaction may not be available. We introduce a framework
that addresses this case by providing the agent with a much
weaker form of assistance that does not require a large de-
gree of human involvement or expertise. More specifically,
at any time during training the agent can request to be placed
in any state of the environment. We will use the term relo-
cation to refer to such change of state. Relocation is par-
ticularly useful in cases in which changing the agent’s state

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

is easy and inexpensive such as when a simulator of the en-
vironment is available. Our framework assumes a cost for
each relocation and seeks to limit the number of relocations.
This contrasts with work such as (Kearns, Mansour, & Ng
2000) and (Lagoudakis & Parr 2003) that exploits the as-
sumption that an available generative model, or simulator,
of the environment can be freely used.

As an intuitive example, consider a person learning to
play a strategy game. Some stages of the game are easy
and the player needs little experience to become proficient
at them. However, the player may not have developed a re-
liable strategy for overcoming the preceding hurdles. Thus,
rather than continuing in an easy part of the game where
she is already confident, the player prefers to save time by
skipping back and practicing the challenging situations. In
addition, if, while trying new approaches, the player makes
a silly mistake that would inevitably end the game, she can
save time by relocating back to a more favorable position.

This example suggests two ways in which an RL agent
can take advantage of an ability to relocate—by skipping
parts of the environment it is already familiar with, and
by extricating itself from states it entered by mistake. In
the remainder of the paper we contribute methods that ex-
ploit this capability and allow the agent to develop effec-
tive policies by taking a smaller number of steps in the en-
vironment. Empirical results in two domains—Maze and
Bicycle—demonstrate the utility of the methods.

Background

An RL task is defined by a set 8 of states, a set A of actions
and two functions—71" : 8§ x A — Pr(8), which returns the
probability that each state in 8 results from taking a given
action ¢ from a given state s, and R : 8§ x A — R, which
gives the reward obtained by taking a from s. 7" and R are
not given but their effects can be observed through interac-
tions with the environment at discrete time-steps. The agent
looks for a policy m : § — A that determines what action
to take in each state so that at each time-step ¢ the expected
discounted return given by the quantity ZZ';O Ve gy is
maximized (Sutton & Barto 1998). Here, 0 < v < 1 is the
discount factor and r, is the reward obtained at step k.
Q-learning (Watkins 1989) is a popular RL algorithm that
uses the function @ : § x A — R, which computes for each
(s,a) pair the expected return obtained by taking action a

in state s and following the optimal policy thereafter. Sup-
posing that the learner transitioned to state s’ and obtained
reward r after taking action a from state s, (J-learning per-
forms the following update (also called a back-up):

Q(Sva) = Q(s,a) ta (r + ’YQ(S,,O/*) - Q(s,a))

where a* = arg max,{Q(s’,a)} and « is the learning rate.
We will call each Q(s,a) a Q-value. The Q-function deter-
mines the agent’s policy. To ensure that the agent exploits
its current knowledge but also explores its environment, an
e-greedy policy is frequently followed with which the agent
deviates from the greedy policy with probability €.

If all state/action pairs continue to be visited, (J-learning
is guaranteed to converge to the (-function of an optimal
policy (Sutton & Barto 1998). When this happens, the agent
can select the best action from each state. In terms of optimal
behavior, however, the agent will be just as effective if it
evolves the (Q-values only to the extent that the best action
from each state has the highest value. In this case, the correct
Q@-values or the relative ordering of the rest of the actions do
not matter. We will call this the best-only characteristic.

Relocation

Q@-learning assumes that the agent receives no assistance
as it wanders through the environment. In this work, we
slightly ease the learner’s task by assuming the existence of
an assistant who can at any time relocate the agent to any
state desired by the agent. The learner can only relocate to
states it has visited at least once. It is worth noting that the
common case when the agent is trained in simulation to per-
form an episodic task already assumes the ability to relocate
because at the end of each episode the simulation moves, or
relocates, the agent back to a start state. We propose to make
fuller use of this assumption by allowing the agent to con-
trol when and where it relocates so that it finds a good policy
with less environment interaction.

To account for the additional work involved in moving
the agent, a cost ¢ will be charged for each relocation and for
each restart of an episode, which is also a form of relocation.
More formally, the cost is defined in terms of time-steps.
Each transition that results from taking an action counts as 1
time-step, and each relocation counts as c time-steps where
¢ > 0. The addition of the cost does not modify the learned
Q-function or the reward function of the environment.

As an important aside, the ability to relocate at any time
does not violate the convergence condition of ()-learning
that each (s, a) pair continues to be visited. Thus, if the
base exploration method does not completely ignore certain
pairs, they will also not be ignored after we add relocation
because the methods we propose always leave a non-zero
probability of not relocating from a state.

In order to take advantage of the ability to relocate, the
agent needs to decide when it should interrupt its current
line of action and where, or to which state, it should relocate.
Next, we present methods that address these questions.

When to Relocate

At every step the agent decides to relocate with probability
p, calculated differently by the two methods discussed next.

Agent is “In Trouble.” This approach is based on the in-
tuition that if the ()-values of the best actions decrease as
the agent transitions from state to state, then it is probably
moving away from the useful regions of the environment. It
targets the situations when the learner takes exploratory ac-
tions that turn out to be a poor choice. In such cases, even
though the agent learns from the negative experience by up-
dating its ()-values accordingly, continuing down the same
path would cause it to waste time-steps in a part of the state
space that is unlikely to be visited during optimal behavior.

As an illustration, consider the task of balancing a bicycle.
If the agent abruptly shifts its center of mass and turns the
handlebars, it will lose balance, and in a few more steps will
crash, regardless of the subsequent actions it attempts. After
experiencing this several times, based on its ()-values, the
learner starts to recognize when it is in a helpless state and,
rather than waiting for the inevitable crash, prefers to relo-
cate in order to focus on identifying where its policy fails.

Two parameters, 4 and v, are used. Initially and after
relocating p is set to u, which is usually small in order to
discourage repeated relocations. Otherwise, after each step
p is modified as follows:

p=p+v(Q(s,a) —Q(s',a")).

In the above formula v controls the rate with which p is mod-
ified. Q(s,a) is the value of the current state/action pair,
and Q(s’,a*) is the greedy action value in the state that re-
sulted from taking action a in s. This approach increases the
probability with which the learner decides to relocate as the
Q-values of subsequent state/action pairs decrease and vice
versa. The value of p is not allowed to exceed 0.9. In our
experience, p never became so large.

Agent is “Bored.” The idea behind this approach is that if
the algorithm updates the (Q-values of the state/action pairs
it visits by tiny amounts, the agent is not learning anything
new in the current part of the environment.

To reflect the above intuition, the function computing p
is designed so that the learner relocates with greatest prob-
ability when updating a particular)-value does not change
it. The only parameter used by this method is ¢. The vari-
able § gives the difference between the @Q-values of the cur-
rent state/action pair following and preceding the update.
AQ in and AQ,,q, are the largest decrease and increase,
respectively, in any particular ()-value observed throughout
the operation of the learner. p is calculated as follows:

1, a5—
_ 56 Qmin
p= { P)
§eAQm.m
p is largest (equal to 0.5) when the update to the current Q-

value is 0. It drops exponentially as the amount of increase
or decrease to the current ()-value grows.

Where to Relocate

if 5 € [_AQmina O)a
it 6€[0,AQmazl.

Ideally, the state to which the agent chooses to relocate
should fulfill two requirements: it should be likely to be en-
countered while following an optimal policy, and it should
be one in which the agent is uncertain about the best action.

The first requirement ensures that the agent does not waste
time in states that are unlikely to be visited during optimal
behavior. The difficulty is that since the optimal policy is un-
known, the agent cannot be sure whether a state is relevant.
However, as the agent accumulates more experience, its pol-
icy is likely to come closer to optimal. Therefore, states
encountered while following a later policy are more likely
to be relevant. This is why the agent considers for relocation
only states visited during the current episode.

The second requirement ensures that the state to which the
agent relocates is one in which additional experience is nec-
essary. Our uncertainty measure is informed by the best-only
characteristic and depends not on how confident the agent is
about the individual @)-values but on how confident it is that
the action with the highest Q-value is indeed the best action.
The agent’s uncertainty is measured as the width of the con-
fidence interval of the difference between the means of the
two best (-values in a given state s. A wider confidence
interval indicates greater uncertainty. The width of the con-
fidence interval is equal to (Devore 1991):

1 1

uncert(s) =2 to)2,mtn—2 " Vp - + -

In this formula m and n are the number of times respectively

each of the two best actions has been attempted. ¢4, /2 1 4n—2

is the critical value for the ¢ distribution at confidence level
o with m + n — 2 degrees of freedom. v, is given by:

o m=D- vt (n—1) 03

p m+n—2

where v? and v3 are the sample variances given by:

2 _ Zz‘qzz -2 g:)*/m

v
! m—1

For a particular (s, a;) pair, the ¢;’s are obtained by “sam-
pling” Q(s, a1) each time the action a; is taken in state s.
To compute vg, we replace m by n and a; by as, where aq
and ay are the actions that appear best and second-best.

Visiting states in which the learner is uncertain is related
to selective sampling in active classifier learning (Cohn, At-
las, & Ladner 1994) where the algorithm requests the label
of an example about whose correct class it is uncertain.

Putting it all together

At the beginning of an episode, the agent chooses the e-
greedy action from its current state, increments the reloca-
tion counter (used to calculate the cost), and initializes p.
“In Trouble” initializes p to u, and “Bored” initializes it to
0. The agent behaves as described in Algorithm 1. In this
algorithm, 8., is the set of states visited during the current
episode for which the current greedy action is different from
the action actually taken during the last visit to this state.
The relocation cost is taken into consideration by dividing
p by 1 + c. Thus, the agent relocates more conservatively
when relocation is expensive. Despite its simplicity, this
approach to dealing with the relocation cost was preferred
because it outperformed several more complex techniques
we tested that were based on the differences in improvement

during episodes when the agent relocated and when it did
not. Immediately after relocating, the agent always takes the
action with the highest Q-value. This is done because gain-
ing more experience with the best action available from a
state increases the agent’s confidence in that state.

Experiments
Domains

We tested the above techniques in two common domains—
Maze and Bicycle.

Maze is a standard undiscounted (y = 1) 50 x 50 grid
world in which the task is to reach the goal in the small-
est number of steps. There are four actions—up, down,
left, and right—and the selected action succeeds with prob-
ability p (we used p = 0.9); otherwise, a random move
is executed. The agent remains in its current state if the
move is impossible. The reward is —1 at each step before
reaching the goal and 0 upon entering the terminal state.
In the Bicycle domain, adapted
from (Randlgv & Alstrgm 1998), ©.15)
the agent learns to balance a bicycle
moving at a constant speed within a
narrow lane. The state is described
by the angle 6 of the handlebars with
respect to straight ahead, the angular
velocity of 6, the angle w of the
bicycle with respect to vertical, and
the angular velocity and acceleration
of w. These variables were discretized
as in (Randlgy & Alstrom 1998). Two additiShal vaaables
determine the position of the bicycle within the lane. D
takes on the values near, if continuing in the same direction
would take the bicycle off the lane within 5 steps; nearing,
if this would happen within 30 steps; and far otherwise. W
tells the agent whether the closer wall is on its left or right.
The agent provides the torque applied to the handlebars
and the amount of displacement of the center of mass, each
of which has three possible values, thus adding up to a
total of nine actions. A small amount of noise is added to
the displacement. The agent receives a reward of —1000
and the episode ends if the bicycle falls over or drives off
the lane. At all other times the reward is 0. The discount
factor v was 0.999. Figure 1 shows the lane we used.
The agent starts from location (0,0). The Bicycle domain
is well-suited to relocation because a simulator for the
environment is available, and thus the relocation cost is tiny.
Moreover, although most people can ride a bicycle, it is
hard to provide detailed guidance in terms of the parameters
describing the state, thus making it difficult to apply the
guidance techniques mentioned in the Introduction.

Methodology

The performance of @-learning with relocation when
“Bored” and when “In Trouble” was compared to that of the
baseline, @-learning with no relocation. As an off-policy
method, @-learning is well-suited to relocation because the
Q-values begin to approximate the state/action values of
the optimal policy regardless of the policy followed during
training. Thus the policy learned does not rely on relocation

(4.6)

Figure 1: Bi-

Algorithm 1 Relocation algorithm

Suppose the agent is in state s', reached after taking action
a in state s.
Update Q(s, a)
attempt Relocate = true with probability p/(c + 1)
if Scurr Z 0 AND attempt Relocate then
s, = arg max uncert(s)

SEScurr

Relocate to s,
Increment relocation counter
Select greedy action from s,
if the agent did not relocate then
Select e-greedy action from s’
Update p according to the method used

and the learning task is not altered by the ability to relocate.

A learning curve was produced by interrupting learning
every 500 steps and testing on 30 episodes with a maximum
length of 2,000 steps. Each curve is the pointwise aver-
age over 140 random runs. It was smoothed using a sliding
window of width 100. During training, the baseline agent
followed the e-greedy policy (¢ = 0.1). To ensure fairness
and decrease the variance of the results, during testing the
agent followed the greedy policy and was not allowed to
relocate or to change its @-values. In the Maze problem,
performance was measured as the negative of the number of
steps needed to reach the goal, and in the Bicycle task—as
the number of successful steps. The learning rate o was set
to the values at which the baseline achieved the best per-
formance during preliminary experiments: 0.7 and 0.2 in
the Maze and Bicycle domains respectively. The Q)-function
was initialized (optimistically) to O in all cases.

To set the parameters v and p used by “In Trouble” and ¢
used by “Bored,” we ran preliminary experiments that also
demonstrate the robustness of the proposed methods to the
parameter settings. All settings in these preliminary experi-
ments were as described above except that to save time each
curve was the pointwise average of 60 instead of 140 runs.
The cost ¢ was 0. We ran “In Trouble” with all possible com-
binations of settings from the sets {0.1,0.2,0.3,0.4, 0.5} for
v and {0.1,0.2,0.3,0.4} for . Generally, larger values of
these parameters cause more relocations. Figure 3 shows
the best (v = 0.5, = 0.4) and worst (v = 0.1, = 0.1)
performance.! The best and worst performing settings were
reversed in the Bicycle task, demonstrating that more relo-
cation does not always improve performance.

Similarly, we ran “Bored” with ¢ set to the values
10,15, 20, 25. The difference between the best (¢ = 10)
and the worst (¢ = 25) is shown in Figure 2. Similar results
are obtained in the Bicycle domain. Generally, the value of
¢ had a larger effect on the amount of relocation than on the
performance. Roughly 40 relocations more per 500 train-
ing steps were performed with ¢ = 10 than with ¢ = 25.
Given these results, we chose the most conservative setting

"We omit the first 500,000 training steps in the Maze do-
main when the agent performs its allotment of 2, 000 steps per test
episode without reaching the goal.

-200 -

-400
Best
-600 Worst -=---
Baseline

-800 -
-1000
-1200
-1400
-1600

Negative of number of steps to goal

-1800

-2000

600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06
Number of training steps

Figure 2: Parameter sensitivity of “Bored” in Maze

in terms of relocations: v = 0.1, u = 0.1, ¢ = 25.

In the main set of experiments, we measured the relative
performance of the methods at three values of the cost c: 0,
1, and 5. When ¢ = 5, one relocation is 5 times more ex-
pensive than taking an ordinary action. A relocation cost of
1 is a safe overestimate in the cases when training occurs in
simulation because resetting the simulator to a different state
is likely to be faster than calculating the new state based on
the action taken. Relocation was not found to be useful for
¢ > 10, since in this case, not enough relocation is per-
formed to produce a significant effect.

The significance of the results was tested at the 95% level
using a z-test, which is appropriate because of the large sam-
ple size (140). One complication was that because there
were slight differences in the number of relocations per-
formed during different random runs of the same method,
after factoring in the relocation cost, the number of training
steps at which performance was measured did not line up.
This difficulty was overcome by interpolating at 500-step
intervals based on the actual measurements.

Results

Figures 4-6 show the performance for different relocation
costs. In each graph, the top horizontal line is formed by
plotting a dot for each point at which the improvement of
“In Trouble” over the baseline is statistically significant. The
bottom horizontal line is formed similarly for “Bored.” Note
that because no relocation is allowed during testing, the su-
perior performance of the relocating agent is due entirely to
the better use of training time. Although a cost of 0 is not
realistic, the results in Figure 4 are interesting because they
provide insights into the effects of relocation. In this case,
both relocation methods give a considerable advantage over
the baseline. Interestingly, “Bored” allows for faster con-
vergence in the Maze problem but slows down learning in
the Bicycle domain. This is most likely due to the fact that
getting out of states where little or no updates are made fo-
cuses the agent on areas in which the Q-values are updated
by large amounts. In the Maze task, this forces faster prop-
agation once the goal is discovered. In the Bicycle domain,
however, because non-zero rewards are received only upon
failure, during the early stages, the agent focuses on the bad
states that are unlikely to be visited frequently under a good
policy. Learning how to behave in these states pays off in
the long run, as indicated by the superior performance of
“Bored” in the later stages of learning. On the other hand,

-200

-400
Best
-600 Worst -~~~
Baseline

-800

-1000 -

-1200 -

-1400 -

Number of steps to goal

-1600 -

-1800 -

0 .
600000 800000
Number of training steps

. . .
1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

Number of successful balancing steps

170

160 -

150 |

140

130

120 - Best
Worst -----
110 | Baseline

100 |

90 L,

80
0 200000400000600000800000 1e+061.2e+06 .4e+0@ .6e+06 .8e+06
Number of training steps

Figure 3: Parameter sensitivity of “In Trouble” in Maze (left) and Bicycle (right)

-200

-400 -

In Trouble
-600 - Bored -----
Baseline

-800 -

-1000 -

-1200

-1400

Negative of number of steps to goal

-1600 -

-1800

0 " e
600000 800000
Number of training steps

. . .
1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

Number of successful balancing steps

160

150 -

140 |

130

120 - [/ In Trouble
] Bored -----
Baseline

110

100

90 -

80
0 200000400000600000800000 1e+06 1.2e+061.4e+061.6e+061.8e+06
Number of training steps

Figure 4: Performance in Maze (left) and Bicycle (right) with c =0

“In Trouble” is very effective early on in the Bicycle task
because it helps remove the agent from the bad states during
training and it learns how to avoid them faster.

As the cost is increased, the relocating agent seems to be
slower at discovering the goal in the Maze problem. This
is particularly pronounced with “Bored” and happens be-
cause before the goal state is found, even a small amount of
relocation, for which the agent pays in terms of additional
time-steps, has a negative effect that cannot be immediately
recouped by improved performance. In the Bicycle task,
“In Trouble” never performs worse than the baseline regard-
less of the cost. However, at larger costs the advantages are
smaller because fewer relocations take place. In summary,
“Bored” is appropriate when the early cost penalty is ac-
ceptable in the interests of obtaining a superior policy later.
On the other hand, “In Trouble” is not as effective when the
cost of relocation is large and the task involves discovering a
goal state, as in the Maze problem, but gives excellent early
performance in domains like Bicycle.

Related Work

Prioritized Sweeping (PS), introduced simultaneously
by Moore & Atkeson and Peng & Williams, is a method
related to relocation(1993). In PS, the agent learns both a
policy and a world model. As with relocation, the PS agent
visits states that are not directly reachable from its current
position. However, these visits occur “in its mind” based on
the learned model and are performed to single states reg-
ularly after each actual step, as opposed to relocation, in
which the agent permanently interrupts its line of action and
decides when to relocates. The two methods also differ in

how they select the states to visit. In PS, the learner prefers
state/action pairs whose ()-values would undergo the largest
update, whereas the relocating agent prefers uncertain states.

Driessens and DZeroski (2004) describe Active Guidance
in which the learner asks for guided traces originating in a
state it picks. As in relocation, the agent can control in what
part of the environment it gains more experience. Unlike
relocation, the starting state is one from which the learner
previously failed, and restarts cannot occur at any time.

In our experiments, we have assumed the existence of a
simulator for the environment. In this respect, the current
project is related to work that exploits the assumption that
a generative model of the environment is provided. For
example, in (Kearns, Mansour, & Ng 2000) a simulator is
used to generate reusable trajectories in the environment,
and in (Lagoudakis & Parr 2003) approximate policy iter-
ation is performed based on the generative model. However,
our methods limit the number of relocations and assume that
the agent relocates only rarely while following its normal
course of action most of the time. This makes our frame-
work easier to apply in real domains, particularly in ones
where the cost of physically moving the learner is small.

Finally, relocation is a method for efficient exploration.
So, it is related to the large body of research that addresses
exploration in RL. Some methods include Interval Estima-
tion (Kaelbling 1993), the E3 algorithm (Kearns & Singh
1998), and model-based exploration (Wiering & Schmidhu-
ber 1998). These methods differ from our approach mainly
in that they do not assume an ability to relocate.

-200

-400 -

In Trouble
-600 - Bored -----
Baseline

-800 -

-1000 -

-1200

-1400

-1600 -

Negative of number of steps to goal

-1800

-2000

600000 800000
Number of training steps

e . .
1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

Number of successful balancing steps

160

150 -

140 |

130 -

120 + i In Trouble
Bored -----
Baseline

110 -

100 |-

O

80
0 200000400000600000800000 1e+06 1.2e+061.4e+061.6e+061.8e+06
Number of training steps

Figure 5: Performance in Maze (left) and Bicycle (right) with ¢ = 1

-200

-400 -

In Trouble
-600 - Bored -----
Baseline

-800 -

-1000 -

-1200

-1400

-1600 -

Negative of number of steps to goal

-1800

-2000

600000 800000
Number of training steps

e L .
1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

Number of successful balancing steps

160

150 -

140 |

130

120 + In Trouble
/ Bored -----
Baseline

110 -

100 |-

90 -

80
0 200000400000600000800000 1e+06 1.2e+061.4e+061.6e+061.8e+06
Number of training steps

Figure 6: Performance in Maze (left) and Bicycle (right) withc =5

Conclusions and Future Work

We proposed a framework for aiding an RL agent by allow-
ing it to relocate, introduced methods for taking advantage
of relocation, and demonstrated their effectiveness in two
domains. Our approaches require minimal human expertise
or involvement and consider the cost of relocation.

An important direction for future work is to extend the
method for computing certainty to continuous state spaces.
If tile coding (Sutton & Barto 1998) is used, one possibility
is to compute confidence intervals from every tile and return
the sum of the widths of the intervals corresponding to active
tiles as the uncertainty of a state. A second research direc-
tion is to combine the currently used measure of uncertainty
with the method PS uses to determine what state to visit.
Thus the agent would relocate to states in which it is both
uncertain and would update the corresponding)-value by a
large amount. Finally, it would be useful to explore ways in
which the agent can adaptively determine whether “In Trou-
ble” or “Bored” is better suited to the current domain.

Acknowledgments

We thank Nicholas Jong, Alexander Sherstov, and Peter
Stone for their insightful comments on early versions of this
paper. This research was partially supported by DARPA
grant HRO011-04-1-0007. Lilyana Mihalkova received the
MCD fellowship from the University of Texas at Austin. A
large portion of the experiments were run on the Mastodon
cluster provided by NSF grant EIA-0303609.

References

Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving generaliza-
tion with active learning. Machine Learning 15(2):201-221.

Devore, J. L. 1991. Probability and Statistics for Engineering
and the Sciences. Brooks/Cole, third edition.

Driessens, K., and DZeroski, S. 2004. Integrating guidance into
relational reinforcement learning. Machine Learning 57:271—
304.

Kaelbling, L. 1993. Learning in Embedded Systems. MIT Press.

Kearns, M. J., and Singh, S. 1998. Near-optimal reinforcement
learning in polynomial time. In Proceedings of the Fifteenth In-
ternational Conference on Machine Learning (ICML-98).
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2000. Approximate
planning in large POMDPs via reusable trajectories. In Advances
in Neural Information Processing Systems 12.

Lagoudakis, M. G., and Parr, R. 2003. Reinforcement learning
as classification: Leveraging modern classifiers. In Proceedings
(2)]5 g30)th International Conference on Machine Learning (ICML-
Maclin, R., and Shavlik, J. W. 1996. Creating advice-taking
reinforcement learners. Machine Learning 22(1-3):251-281.
Moore, A. W., and Atkeson, C. G. 1993. Prioritized sweeping:
Reinforcement learning with less data and less time. Machine
Learning 13:103-130.

Peng, J., and Williams, R. J. 1993. Efficient learning and plan-
ning within the dyna framework. In Proceedings of the Second
International Conference on Simulation of Adaptive Behavior.
Randlgv, J., and Alstrgm, P. 1998. Learning to drive a bicycle
using reinforcement learning and shaping. In Proceedings of the
géjjteenth International Conference on Machine Learning (ICML-

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning:
An Introduction. MIT Press.

Watkins, C. J. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, Cambridge University.

Wiering, M., and Schmidhuber, J. 1998. Efficient model-based
exploration. In Pfeiffer, R.; Blumberg, B.; Meyer, J. A.; and Wil-
son, S. W., eds., Proceedings of the Fifth International Confer-
ence on Simlation of Adaptive Behavior.

