
Appears in Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), pp. 843-848, Portland, OR, August 1996.

Multi-Strategy Learning of Search Control for Partial-Order Planning�

Tara A. Estlin and Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712
festlin,mooneyg@cs.utexas.edu

Abstract

Most research in planning and learning has involved
linear, state-based planners. This paper presents
Scope, a system for learning search-control rules
that improve the performance of a partial-order plan-
ner. Scope integrates explanation-based and induc-
tive learning techniques to acquire control rules for a
partial-order planner. Learned rules are in the form
of selection heuristics that help the planner choose
between competing plan re�nements. Speci�cally,
Scope learns domain-speci�c control rules for a ver-
sion of the UCPOP planning algorithm. The resulting
system is shown to produce signi�cant speedup in two
di�erent planning domains.

Introduction

E�cient planning often requires domain-speci�c search
heuristics; however, constructing appropriate heuris-
tics for a new domain is a di�cult task. Research in
learning and planning attempts to address this prob-
lem by developing methods that automatically ac-
quire search-control knowledge from experience. Most
work has been in the context of linear, state-based
planners (Minton 1989; Leckie & Zuckerman 1993;
Bhatnagar & Mostow 1994). Recent experiments, how-
ever, support that partial-order planners are more e�-
cient than total-order planners in most domains (Bar-
rett & Weld 1994; Minton et al. 1992). However, there
has been little work on learning control for partial-
order planning systems (Kambhampati et al., 1996).
In this paper, we describe Scope, a system that

uses a unique combination of machine learning tech-
niques to acquire e�ective control rules for a partial-
order planner. Past systems have often employed
explanation-based learning (EBL) to learn control
knowledge. Unfortunately, standard EBL can fre-
quently produce complex, overly-speci�c control rules
that decrease rather than improve overall planning

�This research was supported by the NASA Graduate
Student Researchers Program, grant number NGT-51332.

performance (Minton 1989). By incorporating induc-
tion to learn simpler, approximate control rules, we
can greatly improve the utility of acquired knowl-
edge (Cohen 1990). Scope (Search Control Opti-
mization of Planning through Experience) integrates
explanation-based generalization (EBG) (Mitchell et
al., 1986; DeJong & Mooney, 1986) with techniques
from inductive logic programming (ILP) (Quinlan 1990;
Muggleton 1992) to learn high-utility rules that can
generalize well to new planning situations.
Scope learns control rules for a partial-order plan-

ner in the form of selection heuristics. These heuris-
tics greatly reduce backtracking by directing a plan-
ner to immediately select appropriate plan re�nements.
Scope is implemented in Prolog, which provides a
good framework for learning control knowledge. A ver-
sion of the UCPOP planning algorithm (Penberthy &
Weld 1992) was implemented as a Prolog program to
provide a testbed for Scope. Experimental results are
presented on two domains that show Scope can sig-
ni�cantly increase partial-order planning e�ciency.

The UCPOP Planner

The base planner we chose for experimentation is
UCPOP, a partial-order planner described in (Pen-
berthy & Weld 1992). In UCPOP, a partial plan is
described as a four-tuple: hS,B,O,Li where S is a set of
actions, O is a set of ordering constraints, L is a set of
causal links, and B is a set of codesignation constraints
over variables appearing in S. Actions are described
by a STRIPS schema containing precondition, add and
delete lists. The set of ordering constraints, O, spec-
i�es a partial ordering of the actions contained in S.
Causal links record dependencies between the e�ects
of one action and the preconditions of another. These
links are used to detect threats, which occur when a
new action interferes with a past decision.
UCPOP begins with a null plan and an agenda con-

taining the top-level goals. The initial and goal states
are represented by adding two extra actions to S, A0

START

(3)
Step-addition STACK(B,A)

START

Goal State:

 CLEAR(B)
 ON-TABLE(B)

Initial State:

CLEAR(B)

Step-addition UNSTACK(A,B)
(1)

PUTDOWN(B)
Step-addition(2)

GOAL

CLEAR(B)

ON(B,A)

GOAL

CLEAR(B)

START GOAL

CLEAR(B)

UNSTACK(A,B) PUTDOWN(B) STACK(B,A)

ON-TABLE(A)

Figure 1: Three competing re�nement candidates for
achieving the goal Clear(B).

and A1. The e�ects of A0 correspond to the initial
state, and the preconditions of A1 correspond to the
goal state. In each planning cycle, a goal is removed
from the agenda and an existing or new action is cho-
sen to assert the goal. After an action is selected, the
necessary ordering, casual link and codesignation con-
straints are added to O, L, and B. If a new action was
selected, the action's preconditions are added to the
agenda. UCPOP then checks for threats and resolves
any found by adding an additional ordering constraint.
UCPOP is called recursively until the agenda is empty.
On termination, UCPOP uses the constraints found in
O to determine a total ordering of the actions in S,
and returns this as the �nal solution.

Learning Control For Planning

Scope learns search-control rules for planning deci-
sions that might lead to a failing search path (i.e.
might be backtracked upon). Figure 1 illustrates an
example from the blocksworld domain where control
knowledge could be useful. Here, there are three pos-
sible re�nement candidates for adding a new action to
achieve the goal Clear(B). For each set of re�nement
candidates, Scope learns control rules in the form of
selection rules that de�ne when each re�nement should
be applied. A single selection rule consists of a conjunc-
tion of conditions that must all evaluate to true for the
re�nement candidate to be used. For example, shown
next is a selection rule for the �rst candidate (from
Figure 1) which contains several control conditions.

Select operator Unstack(?X,?Y)to establish goal(Clear(?Y),s1)
If exists-operator(s2) ^ establishes(s2 ,On(?X,?Y)) ^

possibly-before(s2 ,s1).

This rule states that Unstack(?X,?Y) should be selected
to add Clear(?Y) only when there is an existing action
s2 that adds On(?X,?Y) and s2 can be ordered be-
fore the action s1, which requires Clear(?Y). Learned
control information is incorporated into the planner
so that attempts to select an inappropriate re�nement
will immediately fail.
The Prolog programming language provides an ex-

cellent framework for learning control rules. Search
algorithms can be implemented in Prolog in such a
way that allows control information to be easily in-
corporated in the form of clause-selection rules (Co-

hen 1990). These rules help avoid inappropriate clause
applications, thereby reducing backtracking. A ver-
sion of the UCPOP partial-order planning algorithm
has been implemented as a Prolog program.1 Plan-
ning decision points are represented in this program
as clause-selection problems (i.e. each re�nement can-
didate is formulated as a separate clause). Scope is
then used to learn re�nement-selection rules which are
incorporated into the original planning program in the
form of clause-selection heuristics.

The Scope Learning System

Scope is based on the Dolphin learning system (Zelle
& Mooney 1993), which optimizes logic programs by
learning clause-selection rules. Dolphin has been
shown successful at improving program performance
in several domains, including planning domains which
employed a simple state-based planner. Dolphin,
however, has little success improving the performance
of a partial-order planner due to the higher complexity
of the planning search space. In particular, Dolphin's
simple control rule format lacked the expressibility
necessary to describe complicated planning situations.
Scope has greatly expanded upon the Dolphin algo-
rithm to be e�ective on more complex planners.

The input to Scope is a planning program and a
set of training examples. Scope uses the examples to
induce a set of control heuristics which are then incor-
porated into the original planner. Scope's algorithm
has three main phases, which are presented in the next
few sections. A more detailed description can be found
in (Estlin 1996).

Example Analysis

In the example analysis phase, two outputs are pro-
duced: a set of selection-decision examples and a set
of generalized proof trees. Selection-decision examples
record successful and unsuccessful applications of plan
re�nements. Generalized proofs provide a background
context that explains the success of all correct planning
decisions. These two pieces of information are used in
the next phase to build control rules.

Selection-decision examples are produced using the
following procedure. First, training examples are
solved using the existing planner. A trace of the
planning decision process used to solve each example
is stored in a proof tree, where the root represents
the top-level planning goal and nodes correspond to
di�erent planning procedure calls. These proofs are

1Our Prolog planner performs comparably to the stan-
dard LISP implementation of UCPOP on the sample prob-
lem sets used to test the learning algorithm.

SELECT-GOAL(Goals0,goal(clear(X),0))

MEMBER(goal(clear(X),0),Goals0)

UCPOP(Actions0,OrderCons0,Links0,Goals0,Solution)

SELECT-OP(goal(clear(X),0),),Actions0,OrderCons0,Links0,Goals0,action(ANum1,putdown(X)))

ADD-ACTION(action(ANum1,putdown(X)),Actions0,Actions1)

Figure 2: Top Portion of a Generalized Proof Tree

then used to extract examples of correct and incor-
rect re�nement-selection decisions. A \selection deci-
sion" is a planning subgoal that was solved correctly by
applying a particular plan re�nement, such as adding
a new action. As an example, consider the planning
problem introduced in Figure 1. The planning subgoal
represented by this �gure is shown below:2

For S = (0:Start,G:Goal),
O = (0 � G),
L = ;,
agenda = (Clear(B),G),(On-Table(B),G),

Select operator ?OP to establish goal(Clear(B),G)

Selection decisions are collected for all competing
plan re�nements. Re�nements are considered \com-
peting" if they can be applied in identical planning de-
cisions, such as the three re�nement candidates shown
in Figure 1. A correct decision for a particular re�ne-
ment is an application of that re�nement found on a
solution path. An incorrect decision is a re�nement ap-
plication that was tried and subsequently backtracked
over. The subgoal shown above would be identi�ed
as a positive selection decision for candidate 2 (adding
Putdown(A)), and would also be classi�ed as a nega-
tive selection decision for candidates 1 and 3 (adding
Unstack(B,A) or Stack(A,B)). Any given training prob-
lem may produce numerous positive and negative ex-
amples of re�nement selection decisions.

The second output of the example analysis phase is
a set of generalized proof trees. Standard EBG tech-
niques are used to generalize each training example
proof tree. The goal of this generalization is to remove
proof elements that are dependent on the speci�c ex-
ample facts while maintaining the overall proof struc-
ture. Generalized proof information is used later to
explain new planning situations. The top portion of a
generalized proof tree is shown in Figure 2. This proof
was extracted from the solution trace of the problem
introduced in Figure 1. The generalized proof of this
example provides a context which \explains" the suc-
cess of correct decisions.

2Binding constraints in our system are maintained
through Prolog, therefore, the set of binding constraints,
B, is not explicitly represented in planning subgoals.

Control Rule Induction

The goal of the induction phase is to produce an op-
erational de�nition of when it is useful to apply a re-
�nement candidate. Given a candidate, C, we desire a
de�nition of the concept \subgoals for which C is use-
ful". In the blocksworld domain, such a de�nition is
learned for each of the candidates shown in Figure 1.
In this context, control rule learning can be viewed as
relational concept learning. Scope employs a version
of the Foil algorithm (Quinlan 1990) to learn control
rules through induction. Foil has proven e�cient in
a number of domains, and has a \most general" bias
which tends to produce simple de�nitions. Such a bias
is important for learning rules with a low match cost,
which helps avoid the utility problem. Foil is also
relatively easy to bias with prior knowledge (Pazzani
& Kibler 1992). In our case, we can utilize the in-
formation contained in the generalized proof trees of
planning solution traces.
Foil attempts to learn a concept de�nition in terms

of a given set of background predicates. This de�nition
is composed of a set of Horn clauses that cover all of
the positive examples of a concept, and none of the
negatives. The selection-decision examples collected in
the example analysis phase provide the sets of positive
and negative examples for each re�nement candidate.

Initialization
De�nition := null
Remaining := all positive examples

While Remaining is not empty
Find a clause, C, that covers some examples in

Remaining, but no negative examples.
Remove examples covered by C from Remaining.
Add C to De�nition.

Foil's basic algorithm is shown above. The \�nd a
clause" step is implemented by a general-to-speci�c
hill-climbing search. Foil adds antecedents to the de-
veloping clause one at a time. At each step Foil evalu-
ates all literals that might be added and selects the one
which maximizes an information-based gain heuristic.
Scope uses an intensional version of Foil where back-
ground predicates can be de�ned in Prolog instead of
requiring an extensional representation.
One drawback to Foil is that the hill-climbing

search for a good antecedent can easily explode, es-
pecially when there are numerous background predi-
cates with large numbers of arguments. When select-
ing each new clause antecedent, Foil tries all possible
variable combinations for all predicates before making
its choice. This search grows exponentially as the num-
ber of predicate arguments increases. Scope circum-
vents this search problem by utilizing the generalized
proofs of training examples. By examining the proof
trees, Scope identi�es a small set of potential liter-
als that could be added as antecedents to the current

clause de�nition. Speci�cally, all \operational" predi-
cates contained in a proof tree are considered. These
are usually low-level predicates that have been classi-
�ed as \easy to evaluate" within the problem domain.
Literals are added to rules in a way that utilizes vari-
able connections already established in the proof tree.
This approach nicely focuses the Foil search by only
considering literals (and variable combinations) that
were found useful in solving the training examples.
Scope employs the same general covering algorithm

as Foil but modi�es the clause construction step.
Clauses are successively specialized by considering how
their target re�nements were used in solving training
examples. Suppose we are learning a de�nition for
when each of the re�nements in Figure 1 should be ap-
plied. The program predicate representing this type of
re�nement is select-op, which inputs several arguments
including the unachieved goal and outputs the selected
operator. The full predicate head is shown below.

select-op(Goal,Steps,OrderCons,Links,Agenda,ReturnOp)

For each re�nement candidate, Scope begins with
the most general de�nition possible. For instance, the
most general de�nition covering candidate 1's selection
examples is the following; call this clause C.

select-op(Goal,Steps,OrderCons,Links,Agenda,unstack(A,B)) :-
TRUE

This overly general de�nition covers all positive exam-
ples and all negative examples of when to apply candi-
date 1, since it will always evaluate to true. C can be
specialized by adding antecedents to its body. This is
done by unifying C's head with a (generalized) proof
subgoal that was solved by applying candidate 1 and
then adding an operational literal from the same proof
tree which shares some variables with the subgoal. For
example, one possible specialization of the above clause
is shown below.

select-op((clear(B),S1),Steps0,OrderCons,Links,Agenda,unstack(A,B)) :-
establishes(on(B,A),Steps1,S2).

Here, a proof tree literal has been added which checks if
there is an existing plan step that establishes the goal
On(B,A). Variables in a potential antecedent can be
connected with the existing rule head in several ways.
First, by unifying a rule head with a generalized sub-
goal, variables in the rule head become uni�ed with
variables existing in a proof tree. All operational liter-
als in that proof that share variables with the general-
ized subgoal are tested as possible antecedents. A sec-
ond way variable connections are established is through
the standard Foil technique of unifying variables of
the same type. For example, the rule shown above
has an antecedent with an unbound input, Steps1,

select-op((clear(B),S1),Steps,OrderCons,Links,Agenda,unstack(A,B)) :-
�nd-init-state(Steps,Init),
member(on(A,B),Init),
not(member((on(B,C),S1),Agenda),member(on-table(B),Init)).

select-op((clear(A),G),Steps,OrderCons,Links,Agenda,putdown(A)) :-
not(member((on(A,B),G),Agenda)).

select-op((clear(A),S1),Steps,OrderCons,Links,Agenda,putdown(A)) :-
member((on-table(A),S2),Agenda),
not(establishes(on-table(A),S3)).

Figure 3: Learned control rules for two re�nements

which does not match any other variables in the clause.
Scope can modify the rule, as shown below, so that
the Steps1 is uni�ed with a term of the same type from
the rule head, Steps0.

select-op((clear(B),S1),Steps0,OrderCons,Links,Agenda,unstack(A,B)) :-
establishes(on(B,A),Steps0,S2).

Scope considers all such specializations of a rule and
selects the one which maximizes Foil's information-
gain heuristic.
Scope also considers several other types of control

rule antecedents during induction. Besides pulling lit-
erals directly from generalized proof trees, Scope can
use negated proof literals, determinate literals (Mug-
gleton 1992), variable codesignation constraints, and
relational clich�es (Silverstein & Pazzani 1991). Incor-
porating di�erent antecedent types helps Scope learn
expressive control rules that can describe partial-order
planning situations.

Program Specialization Phase

Once re�nement selection rules have been learned, they
are passed to the program specialization phase which
adds this control information into the original planner.
The basic approach is to guard each re�nement with
the selection information. This forces a re�nement ap-
plication to fail quickly on subgoals to which the re�ne-
ment should not be applied. Figure 3 shows several
learned rules for the �rst two re�nement candidates
(from Figure 1). The �rst rule allows unstack(A,B) to
be applied only when A is found to be on B initially,
and stack(B,C) should not be selected instead. The
second and third rule allow putdown(A) to be applied
only when A should be placed on the table and not
stacked on another block.

Experimental Evaluation

The blocksworld and logistics transportation domains
were used to test the Scope learning system. In the
logistics domain (Veloso 1992), packages must be de-
livered to di�erent locations in several cities. A test
set of 100 independently generated problems was used
to evaluate performance in both domains. Scope was

0 10 20 30 40 50 60 70 80 90 100

Training Examples

0

50

100

150

200

Planner

Planner+SCOPE

Figure 4: Performance in Blocksworld

0 10 20 30 40 50 60 70 80 90 100

Training Examples

0

100

200

300

400

500

Planner

Planner+SCOPE

Figure 5: Performance in Logistics

trained on separate example sets of increasing size. Ten
trials were run for each training set size, after which re-
sults were averaged. Training and test problems were
produced for both domains by generating random ini-
tial and �nal states. In blocksworld, problems con-
tained two to six blocks and one to four goals. Logis-
tics problems contained up to two packages and three
cities, and one or two goals. No time limitwas imposed
on planning, but a uniform depth bound on the plan
length was used during testing.

For each trial, Scope learned control rules from the
given training set and produced a modi�ed planner.
Since Scope only specializes decisions in the original
planner, the new planning program is guaranteed to be
sound with respect to the original one. Unfortunately,
the new planner is not guaranteed to be complete.
Some control rules could be too specialized and thus
the new planner may not solve all problems solvable by
the original planner. In order to guarantee complete-
ness, a strategy used by Cohen (1990) is adopted. If
the �nal planner fails to �nd a solution to a test prob-
lem, the initial planning program is used to solve the
problem. When this situation occurs in testing, both
the failure time for the new planner and the solution
time for the original planner are included in the total
solution time for that problem. In the results shown
next, the new planner generated by Scope was typi-
cally able to solve 95% of the test examples.

Figures 4 and 5 present the experimental results.
The times shown represent the number of seconds re-
quired to solve the problems in the test sets after
Scope was trained on a given number of examples.
In both domains, the Scope consistently produced a
more e�cient planner and signi�cantly decreased solu-
tion times on the test sets. In the blocksworld, Scope
produced modi�ed planning programs that were an av-

erage of 11.3 times faster than the original planner.
For the logistics domain, Scope produced programs
that were an average of 5.3 times faster. These results
indicate that Scope can signi�cantly improve the per-
formance of a partial-order planner.

Related Work

A closely related system to Scope is UCPOP+EBL
(Kambhampati et al., 1996), which also learns control
rules for UCPOP, but uses a purely explanation-based
approach. UCPOP+EBL employs standard EBL to
acquire control rules in response to past planning fail-
ures. This system has been shown to improve planning
performance in several domains, including blocksworld.
To compare the two systems, we replicated an exper-
iment used by Kambhampati et al. (1996). Prob-
lems were randomly generated from a version of the
blocksworld domain that contained between three to
six blocks and three to four goals.3 Scope was trained
on a set of 100 problems. The test set also contained
100 problems and a CPU time limit of 120 seconds was
imposed during testing. The results are shown below.

System Orig Final Speedup Orig Final
Time Time %Sol %Sol

UCPOP+EBL 7872 5350 1.47X 51% 69%
SCOPE 5312 1857 2.86X 59% 94%

Both systems were able to increase the number of
test problems solved, however, Scope had a much
higher success rate. Overall, Scope achieved a bet-
ter speedup ratio, producing a more e�cient planner.

3In order to replicate the experiments of Kambhampati
et al.(1996), the blocksworld domain theory used for these
tests slightly di�ered from the one used for the experiments
presented previously. Both domains employed similar pred-
icates however the previous domain de�nition consists of
four operators while the domain used here has only two.

By combining EBL with induction, Scope was able
to learn better planning control heuristics than EBL
did alone. These results are particularly signi�cant
since UCPOP+EBL utilizes additional domain axioms
which were not provided to Scope.
Most other related learning systems have been eval-

uated on di�erent planning algorithms, thus system
comparisons are di�cult. The Hamlet system (Bor-
rajo & Veloso 1994) learns control knowledge for the
nonlinear planner underlying Prodigy4.0. Ham-

let acquires rules by explaining past planning deci-
sions and then incrementally re�ning them. Since,
Prodigy4.0 is not a partial-order planner it is dif-
�cult to directly compare Hamlet and Scope. When
making a rough comparison to the results reported in
Borrajo & Veloso (1994b) , Scope achieves a greater
speedup factor in blocksworld (11.3 vs 1.8) and in the
logistics domain (5.3 vs 1.8).

Future Work

There are several issues we hope to address in fu-
ture research. First, replacing Foil's information-
gain metric for picking literals with a metric that
more directly measures rule utility could further im-
prove planning performance. Second, Scope should be
tested on more complex domains which contain condi-
tional e�ects, universal quanti�cation, and other more-
expressive planning constructs. Finally, we plan to ex-
amine ways of using Scope to improve plan quality
as well as planner e�ciency. Scope could be modi�ed
to collect positive control examples only from high-
quality solutions so that control rules are focused on
quality issues as well as speedup.

Conclusion

Scope provides a new mechanism for learning con-
trol information in planning systems. Simple, high-
utility rules are learned by inducing concept de�ni-
tions of when to apply plan re�nements. Explanation-
based generalization aids the inductive search by fo-
cusing it towards the best pieces of background infor-
mation. Unlike most approaches which are limited to
total-order planners, Scope can learn control rules for
the newer, more e�ective partial-order planners. In
both the blocksworld and logistics domains, Scope sig-
ni�cantly improved planner performance; Scope also
outperformed a competing method based only on EBL.

References
Barrett, A., and Weld, D. 1994. Partial order planning:
Evaluating possible e�ciency gains. Arti�cial Intelligence
67:71{112.

Bhatnagar, N., and Mostow, J. 1994. On-line learning
from search failure. Machine Learning 15:69{117.

Borrajo, D., and Veloso, M. 1994. Incremental learning of
control knowledge for nonlinear problem solving. In Proc.
of ECML-94, 64{82.

Cohen, W. W. 1990. Learning approximate control rules
of high utility. In Proc. of ML-90, 268{276.

DeJong, G. F., and Mooney, R. J. 1986. Explanation-
based learning: An alternative view. Machine Learning
1(2):145{176.

Estlin, T. A. 1996. Integrating explanation-based and
inductive learning techniques to acquire search-control
for planning. Technical report, Dept. of Computer Sci-
ences, University of Texas, Austin, TX. Forthcoming.
URL: http://net.cs.utexas.edu/ml/

Kambhampati, S.; Katukam, S.; and Qu, Y. 1996. Fail-
ure driven search control for partial order planners: An
explanation based approach. Arti�cial Intelligence. Forth-
coming.

Langley, P., and Allen, J. 1991. The acquisition of human
planning expertise. In Proc. of ML-91, 80{84.

Leckie, C., and Zuckerman, I. 1993. An inductive ap-
proach to learning search control rules for planning. In
Proc. of IJCAI-93, 1100{1105.

Minton, S.; Drummond, M.; Bresina, J. L.; and Phillips,
A. B. 1992. Total order vs. partial order planning: Factors
inuencing performance. In Proc. of the 3rd Int. Conf. on
Principles of Knowledge Rep. and Reasoning, 83{92.

Minton, S. 1989. Explanation-based learning: A problem
solving perspective. Arti�cial Intelligence 40:63{118.

Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T.
1986. Explanation-based generalization: A unifying view.
Machine Learning 1(1):47{80.

Muggleton, S. H., ed. 1992. Inductive Logic Programming.
New York, NY: Academic Press.

Pazzani, M., and Kibler, D. 1992. The utility of back-
ground knowledge in inductive learning. Machine Learn-
ing 9:57{94.

Penberthy, J., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc. of the
3rd Int. Conf. on Principles of Knowledge Rep. and Rea-
soning, 113{114.

Quinlan, J. 1990. Learning logical de�nitions from rela-
tions. Machine Learning 5(3):239{266.

Silverstein, G., and Pazzani, M. J. 1991. Relational
clich�es: Constraining constructive induction during rela-
tional learning. In Proc. of ML-91, 203{207.

Veloso, M. M. 1992. Learning by Analogical Reasoning in
General Problem Solving. Ph.D. Dissertation, School of
Computer Science, Carnegie Mellon University.

Zelle, J. M., and Mooney, R. J. 1993. Combining FOIL
and EBG to speed-up logic programs. In Proc. of IJCAI-
93, 1106{1111.

