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Abstract

Most research in learning for planning has con-
centrated on e�ciency gains. Another impor-
tant goal is improving the quality of �nal plans.
Learning to improve plan quality has been ex-
amined by a few researchers, however, little re-
search has been done learning to improve both
e�ciency and quality. This paper explores this
problem by using the Scope learning system
to acquire control knowledge that improves on
both of these metrics. Since Scope uses a very
exible training approach, we can easily focus
its learning algorithm to prefer search paths
that are better for particular evaluation met-
rics. Experimental results show that Scope

can signi�cantly improve both the quality of
�nal plans and overall planning e�ciency.

1 Introduction

A considerable amount of planning and learning re-
search has been devoted to improving planning e�-
ciency, also known as \speedup learning" [Minton, 1989;
Leckie and Zuckerman, 1993; Estlin and Mooney, 1996;
Kambhampati et al., 1996]. These systems construct
domain-speci�c control rules that enable a planner to
�nd solutions more quickly. Another aim of planning
and learning research, which has received much less at-
tention, is to improve the quality of plans produced by
a planner [P�erez, 1996; Iwamoto, 1994]. In this type of
learning, control rules guide the planner towards better
solutions. Generating high-quality plans is an essential
feature for many real-world planning systems, as is gen-
erating these plans e�ciently [Chien et al., 1996]. Im-
proving plan quality and planner e�ciency can often be
accomplished by using similar learning methods. How-
ever, little research has been done in acquiring control
knowledge to improve both these metrics.
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To investigate this issue, we employ the Scope1 learn-
ing system, which uses a combination of machine learn-
ing techniques to acquire control rules for a partial-order
planner. Scope has previously been shown to signi�-
cantly improve e�ciency of a version of the well-known
UCPOP planner [Estlin and Mooney, 1996]. Scope em-
ploys a exible learning algorithm that can be trained to
focus on di�erent evaluation metrics. The primary focus
of previous experiments was to avoid backtracking, and
thus, improve planning e�ciency. However, by using a
particular training method, Scope can be easily modi-
�ed to learn rules that guide the planner towards only
\high-quality" solutions.
The remainder of this paper is organized as follows.

Section 2 further introduces the issue of plan quality and
why it is important. Section 3 describes how Scope

is used to construct control rules, and in Section 4 we
discuss how Scope was used to learn rules for improving
plan quality. Section 5 presents experimental results that
show Scope can improve both the quality of plans and
planner e�ciency. Finally, Section 6 discusses related
work, Section 7 presents ideas for future research and
Section 8 presents our conclusions.

2 Plan Quality

In many real-world planning systems the quality of a
plan may be just as important (if not more) than the
time it takes to generate the plan. For instance, it may
be vital in a manufacturing domain for a planner to pro-
duce plans with low resource consumption, or with the
least number of possible steps. There are a variety of no-
tions about what makes a good plan. Some of the more
common quality metrics are listed below:

� The length of the plan (or the total number of steps)

� The execution time of the plan

� The resource consumption required

� The robustness of the plan
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Figure 1: Two re�nement candidates for achieving the goal
at-obj(pkg1,airport2).

Depending on the domain, di�erent quality metrics will
have varying importance. In this paper, we focus on im-
proving the �rst quality metric, minimizing the number
of plan steps.

3 The Scope Learning System

Scope was designed to learn search-control rules for
planning decisions that might lead to failure (i.e. might
be backtracked upon). Figure 1 illustrates an example
from the logistics transportation domain [Veloso, 1992]

where control knowledge could be useful. Here, there
are two possible re�nement candidates for adding a new
action to achieve the goal at-obj(pkg1,city2-airport).
Only the �rst will actually lead to a solution, since in this
domain, only planes can be used to transport packages
between cities. For each set of re�nement candidates,
Scope learns control rules in the form of selection rules
that de�ne when each re�nement should be applied. For
example, shown next is a selection rule for the �rst can-
didate (from Figure 1) which contains several control
conditions.

Select operator unload-airplane(?X,?Y,?Z)
to establish at-obj(?X,?Z))

Ifmember(at-obj(?X,?W),Init-State) ^
not(member(same-city(?Z,?W),Init-State)).

This rule states that unload-airplane(?X,?Y,?Z) should
be selected to add at-obj(?X,?Z) only when it is ini-
tially true that object ?X starts at a location which is in
a di�erent city than ?Z. Learned control information is
incorporated into the planner so that attempts to select
an inappropriate re�nement will immediately fail.
Scope is implemented in Prolog, which provides an

excellent framework for learning control rules. Search
algorithms can be implemented in Prolog in such a way
that allows control information to be easily incorporated
in the form of clause-selection rules [Cohen, 1990]. For
its base planner, Scope uses a version of the UCPOP
partial-order planning algorithm which has been reim-
plemented in Prolog.2 Planning decision points are rep-
resented in the planner as clause-selection problems (i.e.

2The main di�erence between our planner and UCPOP is
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Figure 2: Scope's High-Level Architecture

each re�nement candidate is formulated as a separate
clause).
By analyzing a set of training examples, Scope learns

re�nement-selection rules which are incorporated into
the original planner in the form of clause-selection
heuristics. As shown in Figure 2, Scope's algorithm
has three main phases which are are briey presented in
the next few sections. A more detailed description can
be found in [Estlin, 1996].

3.1 Example Analysis

In the example analysis phase, training examples are
solved using the original planner and two main out-
puts are produced: a set of selection-decision examples
and a set of generalized proof trees. A \selection deci-
sion" is a planning subgoal that was solved by apply-
ing a particular plan re�nement, such as adding a new
action. Selection-decisions record successful and unsuc-
cessful applications of plan re�nements. To collect these
decisions, a trace of the planning decision process used
to solve each training example is stored in a proof tree.
Then, Scope uses the proof trees to extract examples of
correct and incorrect re�nement-selection decisions.
The second output of this phase is a set of generalized

proof trees. Standard explanation-based generalization
(EBG) [Mitchell et al., 1986; DeJong and Mooney, 1986]

techniques are used to generalize each training example
proof tree. The goal of this generalization is to remove
proof elements that are dependent on the speci�c exam-
ple facts while maintaining the overall proof structure.

that UCPOP normally employs a best-�rst search strategy
while our Prolog planner operates using a depth-�rst back-
tracking search. As shown in Section 5, our Prolog planner
actually performs better than the standard Lisp implementa-
tion of UCPOP on the sample problem sets used to test the
learning algorithm.



�nd-new-op((at-obj(X,Loc),Aid),Steps,Agenda,unload-airplane(X,P,Loc)) :-
�nd-init-state(Steps,Init),
member(at-obj(X,Loc2), Init),
not(member(same-city(Loc,Loc2),Init)),
member(airport(Loc), Init).

�nd-exist-op((at-truck(T,Loc),Aid),Steps,Agenda,init-state)) :-
�nd-init-state(Steps,Init),
member-pred(at-truck(T,Loc),Init),
not(member((Aid2,drive-truck(T,Loc,Loc2)),Steps),Aid 6=Aid2).

Figure 3: Learned control rules for the logistics domain

Generalized proofs provide a background context that
explains the success of all correct planning decisions. In-
formation from these trees is used in the next phase to
construct control rules.

3.2 Control Rule Induction

The goal of the induction phase is to produce an opera-
tional de�nition of when it is useful to apply a planning
re�nement. Scope employs a version of the Foil algo-
rithm [Quinlan, 1990] to learn control rules through in-
duction. Foil attempts to learn a control de�nition that
is composed of a set of Horn clauses. This de�nition cov-
ers all of the positive examples of when to apply a re�ne-
ment, and none of the negatives. The selection-decision
examples collected in the example analysis phase pro-
vide the sets of positive and negative examples for each
re�nement.
Individual clause construction is done by using a

general-to-speci�c hill-climbing search. Foil adds an-
tecedents to the developing clause one at a time. At each
step Foil evaluates all literals that might be added and
selects the one which maximizes an information-based
gain heuristic. One drawback to Foil is that the hill-
climbing search for a good antecedent can easily explode,
especially when there are numerous background predi-
cates with large numbers of arguments.3 Scope circum-
vents this search problem by utilizing the generalized
proofs of training examples. By examining the proof
trees, Scope identi�es a small set of potential literals
that could be added as antecedents to the current clause
de�nition. Scope also considers several other types of
control rule antecedents during induction. These include
negated proof tree literals, determinate literals [Muggle-
ton, 1992], variable codesignation constraints, and rela-
tional clich�es [Silverstein and Pazzani, 1991].

3.3 Program Specialization Phase

Once re�nement selection rules have been learned, they
are passed to the program specialization phase which
adds this control information into the original plan-

3When selecting each new clause antecedent, Foil tries
all possible variable combinations for all predicates before
making its choice. This search grows exponentially as the
number of predicate arguments increases.

ner. The basic approach is to guard each planning re-
�nement with the selection information. This forces
a re�nement application to fail quickly on planning
subgoals to which the re�nement should not be ap-
plied. Figure 3 shows two learned rules for the logis-
tics transportation domain. The �rst rule selects the
new action unload-airplane(X,P,Loc) to achieve the goal
at-obj(X,Loc) when X is found to be initially located in a
di�erent city than the goal location and when the goal lo-
cation is an airport. The second rule uses the initial state
to achieve the goal at-truck(T,Loc) if there does not ex-
ist another action in the plan drive-truck(T,Loc,Loc2)

which moves the truck to a new location.

4 Focusing Scope on Plan Quality

By learning rules which avoid search paths that lead to
backtracking, Scope has been shown to signi�cantly im-
proving the e�ciency of a planner [Estlin and Mooney,
1996]. However, by modifying the method used to col-
lect training data, it can easily improve other planning
metrics as well.
In order to improve plan quality, we trained Scope

on only high-quality solutions. To improve plan lengths,
Scope was given the shortest solution plans for all train-
ing problems. This causes Scope to collect positive and
negative examples of when to apply a plan re�nement
based on �nding the optimal plan. Thus, it learns rules
that not only avoid dead-end paths, but also that avoid
paths that lead to sub-optimal solutions.
In order to train Scope on high-quality solutions, the

search method of depth-�rst iterative deepening (DFID)
[Korf, 1985] was employed to solve the training prob-
lems. This method ensured that the shortest possible
solutions were always returned. To improve upon other
quality metrics, di�erent training methods may have to
be employed that return optimal (or near-optimal) solu-
tions based on other evaluation functions.

5 Evaluation

5.1 Experimental Setup

The logistics transportation domain [Veloso, 1992] was
used to evaluate Scope's ability to improve both qual-
ity and e�ciency. In this domain, packages must be
delivered to di�erent locations in several cities. Trucks
are used to transport packages within a city, and planes
are used to transport packages between di�erent cities.
Training and test problems were produced by generat-
ing random initial and �nal states. Problems contained
one and two packages, two trucks and two planes, which
were distributed among two cities.
As explained above, depth-�rst iterative deepening

was used to solve the training problems. Scope was
trained on separate example sets of increasing size. Five
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Figure 4: E�ciency Performance

trials were run for each training set size, after which re-
sults were averaged.
For each trial, a test set of 100 independently gener-

ated problems was used to evaluate performance. No
time limit was used during testing, but a depth bound
was given that ensured all test problems could be solved.
For comparison purposes we used several di�erent search
methods to solve the test examples. These include
depth-�rst search, depth-�rst search + learned control
information, depth-�rst iterative deepening search, and
best-�rst search. The best-�rst search tests were done
using the standard Lisp implementation of UCPOP [Bar-
rett et al., 1995]. To utilize all of these search methods,
only test problems with solutions under a certain length
were used. This ensured all problems could be solved by
all methods in a reasonable amount of time.

5.2 Experimental Results

Figure 4 shows improvement in planning e�ciency. The
times shown represent the number of seconds required
to solve the problems in the test sets after Scope was
trained on a given number of examples. The best per-
formance occurred when the planner utilized the learned
control information. In these tests, Scope was able to
produce a new planner that was an average of 28 times
faster than the original depth-�rst planner. Depth-�rst
iterative deepening performs better than depth-�rst but
not nearly as well as Scope. Best-�rst search, on the
other hand, performed worse than depth-�rst.4

Figure 5 represents how Scope improved �nal plan
quality. The lengths shown in the graph represent the
average solution lengths returned for the test problems.
The depth-�rst iterative deepening line shows the aver-

4Note that the best-�rst tests were done using the Lisp
implementation of UCPOP. Thus this result could be par-
tially due to implementation di�erences between Prolog and
Lisp.
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Figure 5: Quality Performance. Here, depth-�rst iter-
ative deepening and best-�rst have almost identical perfor-
mances.

age length of all optimal solutions. In this experiment,
Scope was able to produce a new planner that returned
optimal solutions, and returned signi�cantly shorter so-
lutions than those returned by depth-�rst alone. Best-
�rst search also generated near-optimal solutions.
Overall, these results indicate that is it possible to

learn control rules that improve both planning e�ciency
and plan quality. By using depth-�rst iterative deepen-
ing to solve the training problems, Scope can be trained
on optimal solutions. Scope can then learn control rules
that not only help the planner �nd solutions quickly, but
that also lead to high quality solutions.

5.3 Scalability

One other set of experiments was performed to test how
Scope performed on harder problems. Using depth-�rst
iterative deepening, Scope was trained on 100 training
problems from the same distribution explained above.
Four di�erent test sets of increasing complexity were
then used to evaluate Scope's performance. During
testing, a time limit of 500 seconds was used. No lim-
its on solutions length were imposed on test problems
in these experiments, however, a depth bound was used
that ensured all test problems could be solved. Five
trials were run for these tests, after which results were
averaged.
The results are shown in Table 1. The �rst two

columns of the table show the percentage of test prob-
lems that could be solved within the time limit (using
depth-�rst search) before and after learning. The next
set of columns report the planning time required. The
last two sets of columns contain results on plan quality.
In the �rst set, we show the average solution lengths of
all solved test problems before and after learning. In the
last set, we show the average solution lengths (and opti-
mal solution lengths) for problems that could be solved



Test Sets Problems Solved Solution Time Plan Lengths Plan Lengths

(%) (Secs) (Only problems solvable
by original planner)

Num. of Num. of W/o With W/o With W/o With W/o With Optimal
Goals Problems Rules Rules Rules Rules Rules Rules Rules Rules Lengths
1 100 100 100 5632 7 8.1 5.6 8.1 5.6 5.6
2 100 18 90 41000 4992 6.7 9.9 6.7 6.7 6.7
5 100 0 58 50000 27935 - 20.1 - - -
10 100 0 9 50000 45518 - 33.7 - - -

Table 1: E�ciency and quality results on increasingly complex test problems in the logistics domain.

by the original planner (without rules). This last set of
columns show any improvements made in solution length
by the learned rules.
For all four test sets, Scope was able to improve plan-

ning e�ciency, and when possible, increase the percent-
age of problems solved. For instance, on the �rst set of
problems (containing 1 goal), Scope was able to create a
new planner that was an average of 800 times faster than
the original. Unfortunately, it was di�cult to gather
data on whether plan quality was improved in all test
sets. For many examples, the original planner could not
�nd a solution under the time limit, and thus we were of-
ten not able to compare solution lengths. (Additionally,
neither DFID or best-�rst search could �nd solutions for
any problems in the two larger test sets.) For the �rst
test set, Scope was able to signi�cantly improve �nal
solution quality and always generated optimal solutions.
For the second test set, only 18 problems could originally
be solved under the time limit and these solutions were
already at optimal length.

6 Related Work

Most systems that learn control knowledge for planning
have been directed at improving planning e�ciency. In
this regard, the most closely, related system to Scope

is UCPOP+EBL [Kambhampati et al., 1996]. In con-
trast to Scope, which uses a combination of EBL and
induction, UCPOP+EBL uses a purely explanation-
based approach to construct control rules in response
to planning failures. This system has been shown to
improve planning e�ciency, however, Scope has out-
performed UCPOP+EBL in previous experiments us-
ing the blocksworld domain [Estlin and Mooney, 1996].
Most other research on learning control rules to im-
prove planning e�ciency has been conducted on lin-
ear, state-based planners. [Minton, 1989; Etzioni, 1993;
Leckie and Zuckerman, 1993; Bhatnagar and Mostow,
1994].
Very little research has been done in learning rules

that improve plan quality. One learning mechanism for
improving the quality of plans was introduced by [P�erez,
1996] and is built on top of the PRODIGY nonlinear

planner [Carbonell and et al., 1992]. It uses EBL and
an input quality evaluation function to explain why a
higher quality solution is better than a lower quality one
and converts this information into control knowledge.
This method has been successfully used to improve solu-
tion quality in the process planning domain [Gil, 1991].
In contrast, Scope uses a combination of learning tech-
niques to learn control rules that cover good planning
decisions and rule out bad ones. Also, Scope has been
focused on improving both quality and e�ciency.
Another learning method for improving quality, which

was also runs on the PRODIGY nonlinear planner, was
developed by [Iwamoto, 1994]. This technique uses EBL
to acquire control rules for near-optimal solutions in LSI
design. This method is similar to the one employed by
Perez, however it does not make use of the quality eval-
uation function to build the explanation.
Most other work in plan quality has concentrated

on adding features to the plan algorithm itself that
prefer least-cost plans [Hayes, 1990; Williamson and
Hanks, 1994] or on examining goal interactions and
how they relate to solution quality [Wilensky, 1983;
Foulser et al., 1992].

7 Future Directions

There are several issues we hope to address in future
research. First, we would like to experiment with di�er-
ent types of quality metrics. We are currently working
on implementing a version of the logistics domain where
actions have di�erent execution costs. In this way, we
can measure plan quality in terms of plan execution cost
as well as plan length. We would also like to experiment
with the Truckworld domain utilized by [Williamson and
Hanks, 1994] where resource consumption is important,
and the process planning domain [Gil, 1991], where a
number of quality metrics would be applicable.
Finally, we would like to devise a method for incremen-

tal learning and training for Scope. Scope could use
learned control information for smaller problems to help
generate training examples for more complex problems.
This type of incremental approach could help Scope

scale up more e�ectively to solve harder problems.



8 Conclusion

This paper describes experimental results from learning
control knowledge to improve both planning e�ciency
and plan quality. Most planning and learning research
has concentrated on improving e�ciency. Another im-
portant learning goal is to improve the quality of the
�nal solution. However, little research has been done
in learning rules that improve both these metrics. In
this paper, we have presented results utilizing the Scope
learning system that show both of these metrics can be
improved simultaneously by focusing the learning system
on avoiding both dead-end paths and paths that lead to
sub-optimal solutions.
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