Appear s i n Proceedings of the Third International Workshop on Multi-Srategy Learning (MSL-96)

pp. 271-279, Harpers Ferry, W, My 1996

Integrating EBL and ILP to Acquire Control Rules for Planning

*

Tara A. Estlin and Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712

{estlin,mooney }@cs.utexas.edu

Abstract

Most approaches to learning control information in
planning systems use ezplanation-based learning to
generate control rules. Unfortunately, EBL alone of-
ten produces overly complex rules that actually de-
crease planning efficiency. This paper presents a novel
learning approach for control knowledge acquisition
that integrates explanation-based learning with tech-
niques from inductive logic programming. EBL is used
to constrain an inductive search for selection heuristics
that help a planner choose between competing plan re-
finements. SCOPE is one of the few systems to address
learning control information in the newer partial-order
planners. Specifically, SCOPE learns domain-specific
control rules for a version of the UCPOP planning al-
gorithm. The resulting system is shown to produce
significant speedup in two different planning domains.

Introduction

Efficient planning often requires domain-specific search
heuristics; however, constructing appropriate heuris-
tics for a new domain is a difficult, laborious task.
Research in learning and planning attempts to ad-
dress this important problem by developing meth-
ods that automatically acquire search-control knowl-
edge from experience.
employed explanation-based learning (EBL) to learn
search-control knowledge. Unfortunately, standard
EBL can frequently produce complex, overly-specific
control rules that decrease rather than improve over-
all planning performance (Minton 1988). By incorpo-
rating induction to learn simpler; approximate control
rules, we can greatly improve the utility of acquired
knowledge (Cohen 1990; Leckie & Zuckerman 1993).
In this paper, we describe SCOPE, a system that uses a
unique combination of machine learning techniques to

Past systems have often

acquire effective search-control rules for a partial-order
planner.

This research was supported by the NASA Graduate
Student Researchers Program, grant number NGT-51332.

Specifically, ScoPE (Search Control Optimization of
Planning through Experience) integrates explanation-
based generalization (EBG) (Mitchell, Keller, & Kedar-
Cabelli 1986; DeJong & Mooney 1986) with techniques
from inductive logic programming (ILP) (Quinlan 1990;
Muggleton 1992; Lavra¢ & Dzeroski 1994) to learn
high-utility rules that can generalize well to new plan-
ning situations. ILP techniques have often been used
in the past for inducing logic programs from a set of
examples. SCOPE illustrates that these techniques can
also be successfully applied for improving program ef-
ficiency.

SCOPE extends previous planning and learning re-
search by acquiring control knowledge for the newer,
more efficient partial-order planners. Most work in this
area has been in the context of linear, state-based plan-
ners (Minton 1989; Gratch & DeJong 1992; Leckie &
Zuckerman 1993). These planners are usually classi-
fied as total-order planners, since plans steps are main-
tained in a strictly ordered list. Recent experimental
results, however, support that partial-order planners
are more efficient than total-order planners in most
domains (Barrett & Weld 1994; Minton et al. 1992;
Kambhampati & Chen 1993). In a partially-ordered
plan, some steps can remain unordered with respect to
each other, thereby allowing a planner to avoid prema-
ture commitments to an incorrect ordering. Though
partial-order planners are considered a more proficient
planning strategy, they are not a panacea for efficient
planning. Added control knowledge can still dramati-
cally effect the their performance. However, there has
been little work on learning control for current partial-
order planning systems (Katukam & Kambhampati
1994).

SCOPE learns control rules for a partial-order plan-
ner in the form of selection heuristics. These heuris-
tics greatly reduce backtracking by directing a plan-
ner to immediately select appropriate plan refinements.
ScoPE is implemented in Prolog, which provides a
good framework for learning control knowledge. A ver-

sion of the UCPOP planning algorithm (Penberthy &
Weld 1992) was implemented as a Prolog program to
provide a testbed for SCOPE. Experimental results are
presented on two domains that demonstrate SCOPE
can significantly increase partial-order planning effi-
ciency.

The remainder of this paper is organized as follows.
In the next section, we describe the UCPOP planner
and explain how control rules are implemented. Next,
ScoPE’s learning algorithm is described, after which
experimental results are presented. Finally, we discuss
related work and present ideas for future research.

Learning Control For Partial-Order
Planning

Search-control information can improve the perfor-
mance of a planner by guiding it to solutions quickly
with minimal search. Past learning systems have
usually employed either EBL (Minton 1989; Bhat-
nagar & Mostow 1994; Kambhampati, Katukam, &
Qu 1996) or induction (Leckie & Zuckerman 1993;
Langley & Allen 1991) to acquire control rules based
on past planning behavior. Our approach differs from
these methods by using a novel combination of analytic
and inductive methods to acquire control information.
In our framework, control-rule learning is viewed as a
form of concept learning. SCOPE uses an inductive al-
gorithm to learn definitions of when plan refinements
should be applied. EBL focuses the inductive search
so good rules are learned quickly without requiring an
overly large search space.

The UCPOP Planner

The base planner we chose for experimentation is
UCPOP, a partial-order planner described in (Pen-
berthy & Weld 1992). In UCPOP, a partial plan is
described as a four-tuple: (S,B8,0,L) where § is a set of
actions, O 1s a set of ordering constraints, £ is a set of
causal links, and B is a set of codesignation constraints
over variables appearing in §. Actions are described
by a STRIPS schema containing precondition, add and
delete lists. The set of ordering constraints, O, spec-
ifies a partial ordering of the actions contained in S.
Causal links record dependencies between the effects
of one action and the preconditions of another. These
links are used to detect threats, which occur when a
new action interferes with a past decision.

UCPOP begins with a null plan and an agenda con-
taining the top-level goals. The initial and goal states
are represented by adding two extra actions to S, Ag
and A.,. The effects of Ay correspond to the initial
state, and the preconditions of A, correspond to the
desired goal state. In each planning cycle; a goal is re-

Initial State: Goal State:
g[‘éié()m CLEAR(B)
ON-TABLE(A) ON-TABLE(B)
@ @3
Step-addition UNSTACK(A,B; ® Step-addition Step-addition STACK(B,A)

PUTDOWN(B)

D) (e — () (o®) — () (D) — GAKER) — ()
4 4 4

CLEAR(®) CLEAR(B) CLEAR(B)

Figure 1: Three competing refinement candidates for
achieving the goal Clear(B).

moved from the agenda and an existing or new action
is chosen to assert the goal. After an action is se-
lected, the necessary ordering, casual link and codes-
ignation constraints are added to O, £, and B. If a
new action was selected, the action’s preconditions are
added to the agenda. UCPOP then checks for threats
and resolves any found by adding an additional order-
ing constraint. UCPOP is called recursively until the
agenda 1s empty. On termination, UCPOP uses the
constraints found in O to determine a total ordering of
the actions in §, and returns this as the final solution.

Control Rule Format

ScoPE learns search-control rules for planning deci-
sions that might lead to a failing search path (i.e.
might be backtracked upon). Figure 1 illustrates an
example from the blocksworld domain where control
knowledge could be useful. Here, there are three pos-
sible refinement candidates for adding a new action to
achieve the goal Clear(B). For each set of refinement
candidates, SCOPE learns control rules in the form of
selection rules that define when each refinement should
be applied. A single selection rule consists of a con-
junction of conditions that must all evaluate to true
for the refinement to be used. If at least one condi-
tion fails, that refinement candidate will be rejected,
and the next candidate evaluated. For example, shown
next is a selection rule for the first candidate (from Fig-
ure 1) which contains several control conditions.

Select operator Unstack(?X,?Y) to establish
goal(Clear(?Y),s1)*
If exists-operator(sz) A
establishes(s2,0n(2X,2Y)) A
possibly-before(sz,s1).

This rule states that the operator Unstack(?X,7?Y)
should be selected to add Clear(?Y) only when there
is an existing action sy that adds On(?X,?Y} and s,
can be ordered before the action s;, which requires
Clear(?Y).
Learned control information is incorporated into the
'Goals are represented in our planner by the

(Goal, Action) structure where Actionis the plan step that
requires Goal.

planner so that attempts to select an inappropriate re-
finement will immediately fail. Control rules can con-
sist of a conjunction of conditions (as shown above) or
a disjunction of several conjunctions. SCOPE can also
make selection rules deterministic or nondeterministic
depending on the accuracy of the learned rule.

The Prolog programming language provides an ex-
cellent framework for learning control rules. Search
algorithms can be implemented in Prolog in such a
way that allows control information to be easily in-
corporated in the form of clause-selection rules (Co-
hen 1990). These rules help avoid inappropriate clause
applications, thereby reducing backtracking. A ver-
sion of the UCPOP partial-order planning algorithm
has been implemented as a Prolog program.? Plan-
ning decision points are represented in this program
as clause-selection problems (i.e. each refinement can-
didate is formulated as a separate clause). SCOPE is
then used to learn refinement-selection rules which are
incorporated into the original planning program in the
form of clause-selection heuristics.

The ScoOPE Learning System

SCOPE is based on the DOLPHIN speedup learning sys-
tem (Zelle & Mooney 1993), which optimizes logic pro-
grams by learning clause-selection rules. DOLPHIN has
been shown successful at improving program perfor-
mance in several different domains, including planning
domains which employed a simple state-based plan-
ner. DOLPHIN, however, has little success improving
the performance of a partial-order planner due to the
higher complexity of the planning search space. In par-
ticular, DOLPHIN’s simple control rule format lacks the
expressibility necessary to describe complicated plan-
ning situations. DOLPHIN also has difficulty success-
fully generalizing explanations produced by a partial-
order planner. ScoPE has greatly expanded upon
DoLPHIN’s algorithm to be effective on more complex
planning systems.

The input to SCOPE is a planning program and a
set of training examples. SCOPE uses the examples
to induce a set of control heuristics which are then
incorporated into the original planner. Figure 2 shows
the three main phases of SCOPE’s algorithm, which are
explained in the next few sections. A more detailed
description can be found in (Estlin 1996).

Example Analysis

In the example analysis phase, two main outputs are
produced: a set of selection-decision examples and a set

20ur Prolog planner performs comparably to the stan-
dard LISP implementation of UCPOP on the sample prob-
lem sets used to test the learning algorithm (discussed in
the Experimental Evaluation section).

Training
Examples

Planning
Program

! I
! I
! I
1 |
| Example |
| Analysis |
! I
! I
1 |
. Selection Generalized }
| Decisions Proof Trees |
! I
! I
1 |
|

! Control Selection Program |

_—

‘ Rule Rules Specialization |
|)

I Induction }
! I
! I
! I
! I

New Planning
Program

Figure 2: Scopr’s High-Level Architecture

of generalized proof trees. Selection-decision examples
are used to record successful and unsuccessful appli-
cations of a plan refinement. Generalized proof trees
provide a background context that explains the success
of all correct planning decisions. These two pieces of
information are used in the next phase to build control
rules.

Selection-decision examples are produced using the
following procedure. First, training examples are
solved using the existing planner. A trace of the
planning decision process used to solve each example
is stored in a proof tree, where the root represents
the top-level planning goal and nodes correspond to
different planning procedure calls. These proofs are
then used to extract examples of correct and incorrect
refinement-selection decisions. Specifically, a “selec-
tion decision” is a planning subgoal that was solved
correctly by applying some plan refinement, such as
adding a new action. As an example, consider the plan-
ning problem that was introduced in Figure 1. The
planning subgoal represented by this figure is shown
below:3

For & = (0:Start,G:Goal),
O = (0 < G)7
£=0
agenda = (Clear(B),G),(On-Table(B),G),
Select operator 7OP to establish goal(Clear(B),G)

Selection decisions such as this one are collected for all

"Binding constraints in our system are maintained
through Prolog, therefore, the set of binding constraints,
B, is not explicitly represented in planning subgoals.

UCPOP(Actions0,0OrderCons0,Links0,Goal s0,Sol ution)
SELECT-GOAL (Goals0,goal (clear(X),0))
MEMBER(goal (clear(X),0),Goals0)
SELECT-OP(goal(clear(X),0),),Actions0,0OrderCons0,Links0,Goal s0,action(ANum1,putdown(X)))

ADD-ACTION(action(ANum1,putdown(X)),Actions0,Actionsl)

v

Figure 3: Top Portion of a Generalized Proof Tree

competing plan refinements. Refinements are consid-
ered “competing” if they can be applied in identical
planning decisions, such as the three refinement candi-
dates shown in Figure 1. A correct decision for a par-
ticular refinement candidate is an application of that
refinement found on a solution path. An incorrect deci-
sion 1s a refinement application that was tried and sub-
sequently backtracked over. The subgoal shown above
would be identified as a positive selection decision for
candidate 2 (adding Putdown(a)), and would also be
classified as a negative selection decision for candi-
dates 1 and 3 (adding Unstack(A,B) or Stack(B,A)).
Any given training problem may produce numerous
positive and negative examples of refinement selection
decisions. Selection decision examples are used later in
induction to represent positive and negative examples
of when to apply particular planning refinements.

The second output of the example analysis phase
is a set of generalized proof trees. Standard EBG
techniques (Mitchell, Keller, & Kedar-Cabelli 1986;
DeJong & Mooney 1986) are used to generalize each
training example proof tree. The goal of this gener-
alization is to remove proof elements that are depen-
dent on the specific example facts while maintaining
the overall proof structure. Generalized proof infor-
mation 1s used later to explain new planning situa-
tions. The top portion of a generalized proof tree is
shown in Figure 3. This proof was extracted from the
solution trace of the problem introduced in Figure 1.
The top-level goal in this proof is a call to the planner
that included the initial list of plan actions, operators,
causal-links, and agenda as input arguments. The last
argument corresponds to the output plan solution. All
subsequent planning procedure calls are included in the
proof structure. The generalized proof of an example
provides a context which “explains” the success of cor-
rect decisions.

Control Rule Induction

The goal of the induction phase is to produce an op-
erational definition of when it is useful to apply a
refinement candidate. Given a candidate, C, we de-
sire a definition of the concept “subgoals for which C

is useful”. In the blocksworld domain, such a def-
inition is learned for each of the candidates shown
in Figure 1. In this context, control rule learn-
ing can be viewed as relational concept learning. A
number of systems (Quinlan 1990; Muggleton 1992;
Zelle & Mooney 1994) have been designed to tackle
this type of learning problem. SCOPE employs a ver-
sion of Quinlan’s FoIL algorithm to learn control rules
through induction.

The choice of a FoirL-like framework is motivated
by a number of factors. First, the basic FoIL algo-
rithm is relatively easy to implement and has proven
efficient in a number of domains. Second, FoiL has
a “most general” bias which tends to produce simple
definitions. Such a bias is important for learning rules
with a low match cost, which helps avoid the utility
problem. Third, it is relatively easy to bias FoiL with
prior knowledge (Pazzani & Kibler 1992). In our case,
we can utilize the information contained in the gener-
alized proof trees of planning solution traces.

FOIL Algorithm FoIL attempts to learn a concept
definition in terms of a given set of background pred-
icates. This definition is composed of a set of Horn
clauses that cover all of the positive examples of a con-
cept, and none of the negative examples. The selection-
decision examples collected in the example analysis
phase provide the sets of positive and negative exam-
ples for each refinement candidate.

Initialization
Definition := null
Remaining := all positive examples
While Remaining is not empty
Find a clause, C, that covers some examples in
Remaining, but no negative examples.
Remove examples covered by C from Remaining.
Add C to Definition.

Figure 4: Basic For Covering Algorithm

FoiL may be viewed as a simple covering algorithm
which has the basic form shown in Figure 4. The “find
a clause” step is implemented by a general-to-specific
hill-climbing search. FoiL adds antecedents to the de-
veloping clause one at a time. At each step FOIL eval-
uates all possible literals that might be added and se-
lects the one which maximizes an information-based
gain heuristic.

The generation of candidate literals to add to a de-
veloping clause normally consists of trying each back-
ground predicate with all possible combinations of vari-
ables currently in the clause and any new predicate
variables. SCOPE uses an intensional version of FoIL
where background predicates can be defined as Prolog
predicates instead of requiring an extensional represen-

tation (Mooney & Califf 1995). Any predicates that
can be used as rule antecedents must be introduced as
background knowledge.

One major drawback to ForL (and other similar
inductive algorithms) is that the hill-climbing search
for a good antecedent can easily explode, especially
when there are numerous background predicates with
large numbers of arguments. When selecting each new
clause antecedent, FoIL tries all possible variable com-
binations for all predicates before making its choice.
This search grows ezponentially as the number of pred-
icate arguments increases. SCOPE circumvents this
search problem by using the generalized proofs of train-
ing examples. By examining the proof trees, SCOPE
identifies a small set of potential literals that could be
added as antecedents to the current clause definition.
Literals are added in a way that utilizes variable con-
nections already established in the proof tree. This
approach nicely focuses the FoIL search by only con-
sidering literals (and variable combinations) that were
found useful in solving the training examples.

Building Control Rules from Proof Trees The
generalized proofs of training examples can be seen as
giving the context for the appropriate applications of
refinements within a proof. Some nodes of a gener-
alized proof tree contain calls to “operational” predi-
cates. These are usually low-level predicates that have
been classified as “easy to evaluate” within the problem
domain, and thus can be used to build efficient concept
definitions. The operational nodes of a proof represent
all of the primitive conditions that had to be satisfied
for the proof to succeed. SCOPE employs induction
in an attempt to identify a small set of these simple
tests that will provide necessary guidance in determin-
ing whether the application of a refinement is likely
to lead to a solution. Since test conditions that verify
a planning decision are sometimes not executed until
much later, it 1s important to consider an entire ex-
ample proof instead of just the surrounding context of
a particular decision. For instance, the planner might
not verify that choosing the action Putdown(a) to es-
tablish the goal Clear(a)is correct until much later in
the planning process when it checks to see if some other
action has asserted Holding(a).

ScoPE employs the same general covering algorithm
as FoIL but modifies the clause construction step.
Clauses are successively specialized by considering how
their target refinements were used in solving training
examples. Suppose we are learning a definition for
when each of the refinement candidates in Figure 1
should be applied. The actual program predicate rep-
resenting this type of refinement is select-op. This pred-
icate is defined with several arguments including the

unachieved goal and an output argument for the se-
lected operator. (Plan state information is also au-
tomatically included as arguments to any refinement
predicate.) The full predicate head of this refinement
is shown below.

select-op(Goal,Steps,OrderCons,Links,Agenda,ReturnOp)

For each refinement candidate, SCOPE begins with
the most general definition possible. For instance, the
most general definition covering candidate 1’s selection
examples is the following; call this clause C.

select-op(Goal,Steps,OrderCons,Links,Agenda,unstack(A,B)) :-
TRUE

This overly general definition covers all positive exam-
ples and all negative examples of when to apply candi-
date 1, since it will always evaluate to true. C can be
specialized by adding antecedents to its body. This is
done by unifying C’s head with a (generalized) proof
subgoal that was solved by applying candidate 1 and
then adding an operational literal from the same proof
tree which shares some variables with the subgoal. For
example, one possible specialization of the above clause
is shown below.

select-op((clear(B),S1),Steps0,OrderCons,Links,Agenda,unstack(A,B)) :-
establishes(on(B,A),Steps1,52).

Here, a proof tree literal has been added which checks
if there an existing plan step that establishes the goal
On(B,A). Variables in a newly added antecedent can
be connected with the existing rule head in several
ways. First, by unifying a rule head with a general-
ized subgoal, variables in the rule head become uni-
fied with variables existing in a proof tree. All op-
erational literals in that proof that share variables
with the generalized subgoal are tested as possible an-
tecedents. This method initially establishes many rel-
evant variable connections between a rule head and its
antecedents.

A second way variable connections can be estab-
lished is through the standard FoIL technique of uni-
fying variables of the same type. When SCOPE tests a
literal for use in a control rule, the literal may contain
input parameters that are not bound by the rule head
or other existing literals in the rule. If such parame-
ters exist, SCOPE attempts to unify these parameters
with terms of the same type that are already present
in the rule. For example, the rule shown above has an
antecedent with an unbound input, Steps1, which does
not match any other variables in the clause. SCOPE will
modify the rule, as shown below, so that the Steps1 is
unified with a term of the same type from the rule
head, Stepso0.

select-op((clear(B),S1),Steps0,OrderCons,Links,Agenda,unstack(A,B)) :-
establishes(on(B,A),Steps0,52).

SCcoOPE considers all such specializations of a rule and
selects the one which maximizes FoIL’s information-
gain heuristic.

SCOPE also considers several other types of control
rule antecedents during induction. Besides pulling lit-
erals directly from generalized proof trees, SCOPE can
use negated proof literals, determinate literals (Mug-
gleton 1992), variable codesignation constraints, and
relational clichés (Silverstein & Pazzani 1991). Incor-
porating different antecedent types helps SCOPE learn
expressive control rules that can describe partial-order
planning situations.

Program Specialization Phase

Once refinement selection rules have been learned, they
are passed to the program specialization phase which
adds this control information into the original plan-
ner. The basic approach is to guard each refinement
candidate with the selection information. This forces
a refinement application to fail quickly on subgoals to
which the refinement should not be applied.

A decision is also made as to whether the control
information has made the planner deterministic. If a
refinement rule (or rule disjunct) covers no incorrect
selection decisions in the induction phase, then it is
assumed that the rule 1s fully accurate and no other
refinement candidates will need to be considered. If
a refinement rule could not exclude all incorrect deci-
sions 1n the previous phase, then the planner is still
allowed to backtrack over the selection of that refine-
ment. This type of rule can still substantially improve
planning efficiency by preventing many inappropriate
applications of that refinement.

Figure 5 shows several learned selection rules for the
first two refinement candidates (from Figure 1). The
first rule allows Unstack (A,B) to be applied only when A
is found to be on B initially, and Stack (B,C) should not
be selected instead. The second and third rule allow
Putdown (4) to be applied only when A should be placed
on the table and not stacked on another block.

Experimental Evaluation

The blocksworld and logistics transportation domains
were used to test the SCOPE learning system. In the
logistics domain (Veloso 1992), packages must be de-
livered to different locations in several cities. Packages
are transported between cities by airplane and within
a city by truck. In both domains, a test set of 100
independently generated problems was used to evalu-
ate performance. SCOPE was trained on separate ex-
ample sets of increasing size. Ten trials were run for

select-op((clear(B),S1),Steps,OrderCons,Links,Agenda,unstack(A,B)) :-
find-init-state(Steps, Init),
member(on(A,B),Init),
not(member((on(B,C),S1),Agenda),member(on-table(B), Init)).

select-op((clear(A),G),Steps,OrderCons,Links,Agenda, putdown(A)) :-
not(member((on(A,B),G),Agenda)).

select-op((clear(A),S1),Steps,OrderCons,Links,Agenda,putdown(A)) :-
member((on-table(A),S2),Agenda),
not(establishes(on-table(A),S3)).

Figure 5: Learned control rules for two refinement candi-
dates

each training set size, after which results were aver-
aged. Training and test problems were produced for
both domains by generating random initial and final
states. In blocksworld, problems contained two to six
blocks and one to four goals. Logistics problems con-
tained up to two packages and three cities, and one
or two goals. No time limit was imposed on planning
in either domain, but a uniform depth bound on the
plan length was used during testing that allowed for
all problems to be solved. All tests were performed on

a Sun SPARCstation 5.

For each trial, SCOPE learned control rules from the
given training set and produced a modified planner.
Since SCOPE only specializes decisions in the original
planner; the new planning program is guaranteed to
be sound with respect to the original one. Unfortu-
nately, the new planner is not guaranteed to be com-
plete. Some control rules could be too specialized and
thus the new planner may not solve all problems solv-
able by the original planner. In order to guarantee the
completeness of the final planner, a strategy used by
Cohen (1990) is adopted. If the final planner fails to
find a solution to a test problem, the initial planning
program is used to solve the problem. When this situa-
tion occurs in testing, both the failure time for the new
planner and the solution time for the original planner
are included in the total solution time for that prob-
lem. In the results presented in the next section, the
new planner generated by SCOPE was typically able to
solve 95% of the test examples.

Figures 6 and 7 present the experimental results.
The times shown represent the number of seconds re-
quired to solve the problems in the test sets after
SCOPE was trained on a given number of examples.
In both domains, the SCOPE consistently produced a
more efficient planner and significantly decreased solu-
tion times on the test sets. In the blocksworld, SCOPE
produced modified planning programs that were an av-
erage of 11.3 times faster than the original planner.
For the logistics domain, SCOPE produced programs
that were an average of 5.3 times faster. These results

200

150 [

Planner

a - Planner+SCOPE

100

Run Time (sec)

50 T

0 10 20 30 40 50 60 70 80 90 100
Training Examples

Figure 6: Performance in Blocksworld

indicate that SCOPE can significantly improve the per-
formance of a partial-order planner.

Related Work

A closely related system to Scopk is UCPOP+EBL
(Kambhampati, Katukam, & Qu 1996), which also
learns search control rules for UCPOP, but uses
a purely explanation-based approach. Specifically,
UCPOP+EBL employs the standard EBL techniques
of regression, explanation propagation and rule genera-
tion to acquire search-control rules. Rules are learned
only in response to past planning failures. This sys-
tem has been shown to improve planning performance
in several domains, including the blocksworld. To com-
pare the two systems, we replicated an experiment
used by Kambhampati, Katukam, & Qu (1996). Prob-
lems were randomly generated from a version of the
blocksworld domain that contained between three to
six blocks and three to four goals.* SCOPE was trained
on a set of 100 problems. The test set also contained
100 problems and a CPU time limit of 120 seconds was
imposed during testing. Data was collected on plan-
ner speedup and on the number of test problems that
could be solved under the time limit. The results are
shown in the following table.

System Orig Final Speedup Orig Final

Time | Time %Sol | %Sol
UCPOP+EBL 7872 5350 1.47X 51% 69%
SCOPE 5312 1857 2.86X 59% 94%

*In order to replicate the experiments of Kambhampati,
Katukam, & Qu (1996), the blocksworld domain theory
used for these tests slightly differed from the one used for
the experiments presented previously. Both domains em-
ployed similar predicates however the previous domain defi-
nition consists of four operators while the domain used here
has only two.

500

400 |-

Planner

Planner+SCOPE
300

200 Ca

Run Time (sec)

100

0
0 10 20 30 40 50 60 70 80 90 100

Training Examples

Figure 7: Performance in Logistics

Both systems were able to increase the number of
test problems solved, however, SCOPE had a much
higher success rate. Overall, SCOPE achieved a bet-
ter speedup ratio, producing a more efficient planner.
By combining EBL with induction, SCOPE was able to
learn better planning control heuristics than EBL did
alone. These results are particularly significant since
UCPOP+EBL uses additional domain axioms which
were not provided to SCOPE.

Most other related learning systems have been eval-
uated on different planning algorithms, thus direct sys-
tem comparisons are difficult. The HAMLET (Borrajo
& Veloso 1994a) system learns control knowledge for
the nonlinear planner underlying PrRoODIGY4.0. HAM-
LET acquires rules by explaining past planning deci-
sions and then incrementally refining them. It is diffi-
cult to directly compare HAMLET and SCOPE for sev-
eral reasons. First, HAMLET is directly integrated with
the PRODIGY4.0 system, which does not use a partial-
order planner. PRODIGY4.0 also employs some ini-
tial built-in control knowledge not given to our plan-
ner. HAMLET has successfully improved planner per-
formance in the blocksworld and logistics planning do-
mains. When making a rough comparison to the re-
sults reported in Borrajo & Veloso (1994b) , SCoOPE
achieves a greater speedup factor in blocksworld (11.3
vs 1.8) and in the logistics domain (5.3 vs 1.8).

Future Work

There are several issues we hope to address in future
research. First, SCOPE should be tested on more com-
plex domains which contain conditional effects, univer-
sal quantification, and other more-expressive planning
constructs. We also plan to examine ways of using
SCOPE to improve plan quality as well as planner ef-
ficiency. Borrajo (1994b) and Perez (1994) have used

learned control information to guide a planner towards
better solutions. SCOPE could be modified to collect
positive control examples only from high-quality solu-
tions so that control rules are focused on quality issues
as well as speedup. Lastly, we want to incorporate
a method that directly evaluates control-rule utility.
Replacing Foil’s information-gain metric for picking
literals with a metric that more directly measures rule
utility could improve ultimate planning performance.

Conclusion

SCOPE provides a new mechanism for learning search
control information in planning systems. This sys-
tem employs a novel learning technique that contains
both explanation-based and inductive learning com-
ponents. Simple, high-utility rules are learned by in-
ducing concept definitions of when to apply plan re-
finements. Explanation-based generalization aids the
inductive search by focusing it towards the best pieces
of background information. Unlike most approaches
which are limited to total-order planners, SCOPE can
learn control rules for the newer, more effective partial-
order planners. In both the blocksworld and logistics
domains, SCOPE significantly improved planner perfor-
mance; SCOPE also outperformed a competing method
based only on EBL.

References

Barrett, A., and Weld, D. 1994. Partial order plan-
ning: Evaluating possible efficiency gains. Artificial
Intelligence 67:71-112.

Bhatnagar, N., and Mostow, J. 1994. On-line learning
from search failure. Machine Learning 15:69-117.

Borrajo, D., and Veloso, M. 1994a. Incremental learn-
ing of control knowledge for nonlinear problem solv-
ing. In Proceedings of the European Conference on
Machine Learning, ECML-94, 64-82.

Borrajo, D., and Veloso, M. 1994b. Incremental learn-
ing of control knowledge for improvement of planning
efficieny and plan quality. In AAAI-94 Fall Sympo-
stum on Planning and Learning, 5-9.

Cohen, W. W. 1990. Learning approximate control
rules of high utility. In Proceedings of the Seventh
International Conference on Machine Learning, 268—

276.

DeJong, G. F., and Mooney, R. J. 1986. Explanation-
based learning: An alternative view. Machine Learn-
ing 1(2):145-176. Reprinted in Readings in Machine
Learning, J. W. Shavlik and T. G. Dietterich (eds.),
Morgan Kaufman, San Mateo, CA, 1990.

Estlin, T. A. 1996. Integrating explanation-based
and inductive learning techniques to acquire search-
control for planning. Technical report, Department of
Computer Sciences, University of Texas, Austin, TX.
Forthcoming. URL: http://net.cs.utexas.edu/ml/

Gratch, J., and DeJong, G. 1992. COMPOSER: A
probabilistic solution to the utility problem in speed-
up learning. In Proceedings of the Tenth National
Conference on Artificial Intelligence, 235-240.

Kambhampati, S., and Chen, J. 1993. Relative utility
of EBG based plan reuse in partial ordering vs. to-
tal ordering. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, 514-519.

Kambhampati, S.; Katukam, S.; and Qu, Y. 1996.
Failure driven search control for partial order plan-
ners: An explanation based approach. Artificial In-
telligence. Forthcoming.

Katukam, S., and Kambhampati, S. 1994. Learn-
ing explanation-based search control for partial order
planning. In Proceedings of the Twelfth National Con-
ference on Artificial Intelligence, 582-587.

Langley, P., and Allen, J. 1991. The acquisition of hu-
man planning expertise. In Proceedings of the Eighth
International Workshop on Machine Learning, 80-84.

Lavraé, N., and Dzeroski, S., eds. 1994. Inductive
Logic Programming: Techniques and Applications. El-
lis Horwood.

Leckie, C., and Zuckerman, I. 1993. An inductive
approach to learning search control rules for planning.
In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, 1100-1105.

Minton, S.; Drummond, M.; Bresina, J. L.; and
Phillips, A. B. 1992. Total order vs. partial or-
der planning: Factors influencing performance. In
Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reason-

ing, 83-92.

Minton, S. 1988. Quantitative results concerning the
utility of explanation-based learning. In Proceedings
of the Seventh National Conference on Artificial In-
telligence, 564-569.

Minton, S. 1989. Explanation-based learning: A
problem solving perspective. Artificial Intelligence

40:63-118.

Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli,
S.T. 1986. Explanation-based generalization: A uni-
fying view. Machine Learning 1(1):47-80.

Mooney, R. J., and Califf, M. E. 1995. Induction of

first-order decision lists: Results on learning the past

tense of English verbs. Journal of Artificial Intelli-
gence Research 3:1-24.

Muggleton, S. H. ed. 1992. Inductive Logic Program-
ming. New York, NY: Academic Press.

Pazzani, M., and Kibler, D. 1992. The utility of
background knowledge in inductive learning. Machine
Learning 9:57-94.

Penberthy, J., and Weld, D. 5. 1992. UCPOP: A
sound, complete, partial order planner for ADL. In
Proceedings of the Third International Conference on
Principles of Knowledge Representation and Reason-
wing, 113-114.

Pérez, M. A. and Carbonell, J. 1994. Control knowl-
edge to improve the plan quality. In Proceedings of
the Second International Conference of AI Planning
Systems.

Quinlan, J. 1990. Learning logical definitions from
relations. Machine Learning 5(3):239-266.

Silverstein, G., and Pazzani, M. J. 1991. Relational
clichés: Constraining constructive induction during
relational learning. In Proceedings of the Eighth In-
ternational Workshop on Machine Learning, 203-207.

Veloso, M. M. 1992. Learning by Analogical Reason-
wng in General Problem Soluving. Ph.D. Dissertation,
School of Computer Science, Carnegie Mellon Univer-
sity.

Zelle, J. M., and Mooney, R. J. 1993. Combining
FOIL and EBG to speed-up logic programs. In Pro-
ceedings of the Thirteenth International Joint Confer-
ence on Artificial Intelligence, 1106-1111.

Zelle, J. M., and Mooney, R. J. 1994. Combining
top-down and bottom-up methods in inductive logic
programming. In Proceedings of the Eleventh Inter-
national Conference on Machine Learning, 343-351.

