
Unpublished Technical Note, Apr 2004

Learning Transformation Rules for Semantic Parsing

Rohit J. Kate Yuk Wah Wong Ruifang Ge Raymond J. Mooney
Department of Computer Sciences

University of Texas, Austin
TX 78712, USAfrjkate,ywwong,grf,mooneyg@cs.utexas.edu

Abstract

This paper presents an approach for in-
ducing transformation rules that map
natural-language sentences into a for-
mal semantic representation language.
The approach assumes a formal gram-
mar for the target representation lan-
guage and learns transformation rules
that exploit the non-terminal symbols in
this grammar. Patterns for the trans-
formation rules are learned using an
induction algorithm based on longest-
common-subsequences previously de-
veloped for an information extraction
system. Experimental results are pre-
sented on learning to map English
coaching instructions for Robocup soc-
cer into an existing formal language for
coaching simulated robotic agents.

1 Introduction

The ability to map natural language to a pre-
existing formal query or command language
is critical to developing more usable inter-
faces to many computing applications (e.g.
databases (Woods, 1977)). However, relatively lit-
tle research in empirical NLP has addressed the
problem of learning such semantic parsers from
a corpus of sentences paired with their formal-
language equivalents.

As a part of a larger project on advice-taking
reinforcement-learning agents, we are developing
a system for simulated robotic soccer that can take

coaching instructions in natural language. In the
extant RoboCup Coach Competition, teams com-
pete to provide effective instructions to acoach-
able teamin a simulated soccer domain. Coach-
ing advice is provided in a formal language called
CLANG (Coach Language) comprised of if-then
rules for influencing players’ behavior (Chen et
al., 2003). Therefore, in this paper, we consider
the problem of learning to translate English coach-
ing advice into formal CLANG instructions (see
Section 2 for an example).

The few previous systems for directly learn-
ing semantic parsers have employed complex
inductive-logic-programming methods to acquire
parsers for mapping sentences to a logical query
language (Zelle and Mooney, 1996; Tang and
Mooney, 2000). In this paper, we introduce a
much simpler approach based on learning string-
to-tree transformation rules. The approach as-
sumes that a deterministically-parsable formal
grammar for the target representation language is
available. Transformation rules are learned that
map substrings in natural-language to sub-trees of
the formal-language parse tree. The non-terminal
symbols in the target-language grammar provide
convenient intermediate representations that en-
able the construction of general, effective transfor-
mation rules. Transformation rules for introducing
each of of the productions in the target-language
grammar are induced using a pattern-learning al-
gorithm based on longest common subsequences
previously developed for an information extrac-
tion task (Bunescu et al., 2004).

Our approach has been implemented in a system

called SILT (Semantic Interpretation by Learning
Transformations). Using an assembled corpus of
300 sentences, we present experimental results
on learning to translate natural-language RoboCup
coaching instructions into formal CLANG expres-
sions. SILT is able to produce completely correct
parses for more than a third of novel sentences,
and mostly correct parses for most others.

2 CLANG: The RoboCup Coach
Language

RoboCup1 is an international AI research initiative
using robotic soccer as its primary domain. In the
Coach Competition, teams of agents compete on
a simulated soccer field, each player controlled by
a separate client that makes intelligent decisions
based on its limited perception of the field. Dur-
ing the game, players may receive advice from a
human or automated coach. In particular, a hu-
man observer may act as a coach and change the
behavior of individual players by giving advice.
Since the goal of the competition is to test how
well coaches work with teams developed by dif-
ferent research groups, a standard, formal coach-
ing language called CLANG (Chen et al., 2003)
has been developed to facilitate communication
between coaches and players.

CLANG is a simple declarative programming
language with a set of domain-specific terms com-
posed using a primarily prefix notation like LISP.
Tactics and behaviors are described as if-then
rules, which consist of aconditiondescription and
a list of directives that are applicable when the
condition is true. Directives are lists ofactions
that individual sets of players should or should
not take. There are expressions for soccer-specific
entities such asregionsand points. Coreference
among expressions is possible using variables, but
is restricted to player numbers and is currently in-
frequently used.

We have supplemented CLANG with additional
expression types for those concepts that are easily
expressible in natural language but not in CLANG,
such as “all our players except for playern” and
“left half of region r”. These new expression
types can be automatically converted into original

1http://www.robocup.org/

CLANG.
CLANG has a deterministic context free gram-

mar. Below are some of its productions:� RULE ! (CONDITION DIRECTIVE)� CONDITION ! (bpos REGION)� DIRECTIVE! (do PLAYER ACTION)� ACTION ! (pos REGION)� REGION! (penalty-area TEAM)

Below is a sample pair of an English statement
with its corresponding CLANG:� “If the ball is in our penalty area, the goalie

should stay in front of our goal.”
((bpos (penalty-area our))

(do (player our {1})

(pos (front-of-goal our))))

Conditions and regions, among other entities,
can be pre-defined in separate statements, and the
coach may refer to them later using identifiers,
making the rules more concise. Below is a sam-
ple definition of a region, and its subsequent use
in a rule:� “Define REG1 to be our penalty area.”

(definer "REG1" (penalty-area our))� “If the ball is in REG1, the goalie should stay
in front of our goal.”
((bpos "REG1")

(do (player our {1})

(pos (front-of-goal our))))

CLANG is a useful test-bed for semantic parsing
because although it is relatively simple, it was not
constructed specifically for natural-language inter-
pretation and allows expressing a wide range of in-
structions for a realistic application. The language
has been in use for over 2 years by the worldwide
RoboCup community, and has been actively main-
tained since its inception.

3 Semantic Parsing by String-to-Tree
Transformation

We have developed a new approach called SILT

(Semantic Interpretation by Learning Transforma-
tions) for mapping natural-language sentences to
their formal representations. Approaches based on

transformation rules have previously been used for
other tasks (Brill, 1995). SILT uses pattern-based
transformation rules which map phrases in natural
language directly to the productions in the CLANG

grammar. These transformation rules are repeat-
edly applied to construct the parse tree for the cor-
responding CLANG representation in a bottom-up
manner.

3.1 Rule Representation

SILT ’s transformation rules consist of a pattern
and a CLANG production to be introduced when
this pattern is matched. The pattern is a sequence
of words and CLANG non-terminal symbols. Ev-
ery pair of adjacent words or non-terminals is sep-
arated by a number which stands for the maximum
number of words allowed between the two (called
aword gap). A sample rule is:

“If player N has<1> ball”)
CONDITION! (bowner our fNg)

here “N” and “CONDITION” are non-terminals, the
“<1>” between “has” and “ball” is a word gap, all
other word gaps are zero and have been omitted for
clarity. A rule matches a sentence if the sentence
satisfies all the word and non-terminal constraints
in the given order and respects all the respective
word gaps.

A rule also has a special contiguous portion
of the pattern called thereplacement subpattern,
shown in bold in the example. When the rule is
applied to a sentence, it replaces the portion of the
sentence that matches the replacement subpattern
with the production’s left-hand-side (LHS) non-
terminal (i.e. “CONDITION” in the example, an ex-
ample trace is given in the next subsection). The
purpose of replacement subpatterns is to allow the
rest of the pattern to specify the context for the
rule’s application without actually contributing to
the semantic concept introduced by the rule. Since
this context may contribute to another semantic
concept, it should be preserved when the rule is
applied. In the example, “If” represents the addi-
tional context in which the rule should be applied.

Finally, a rule’s replacement subpattern must
contain all of the non-terminals present in the
right-hand-side (RHS) of the production (N in the
example). This condition is needed for successful

semantic parsing as described in the next subsec-
tion.

3.2 Semantic Parsing

SILT builds the semantic parse tree bottom-up by
repeatedly applying the transformation rules to the
given natural-language sentence. When a rule is
applied to a sentence, the matched portion of its re-
placement subpattern is replaced by the LHS non-
terminal of the production. This non-terminal is
expanded into a subtree according to the produc-
tion. In this expansion, RHS non-terminals re-
quired by the production are provided by the non-
terminals (sub-trees) present in the sentence that
matched the non-terminals of the replacement sub-
pattern (hence the requirement that all RHS non-
terminals should be present in it). We illustrate
this process through an example, assuming we
have already acquired the transformation rules. In
the next section, we present how transformations
are learned. Consider the sentence:
“If player 2 has the ball, player 2 should pass to
player 10.” A pre-processing step replaces every
number in the sentence by the non-terminal N ex-
panded into that number. In this running example
we show expansions by square brackets. After this
the sentence becomes:

“If player N[2℄ has the ball, playerN[2℄
should pass to playerN[10℄.”

Next, the transformation rule:

“If player N has <1> ball”)
CONDITION! (bowner our fNg)

rewrites the sentence to:

“If CONDITION[(bowner our fN[2℄g)℄, player
N[2℄ should pass to playerN[10℄.”

Here the replacement subpattern “player N has<1> ball” replaced “player 2 has the ball” in
the sentence by the non-terminalCONDITION. This
non-terminal is then expanded into “(bowner ourfNg)”. The RHS non-terminalN in the expansion
is taken from the sentence where theN of the rule’s
pattern matched the sentence.
Next:

“should pass to player N”) ACTION! (pass fNg)
rewrites the sentence to:

“If CONDITION[(bowner ourfN[2℄g)℄, player 2
shouldACTION[(passfN[10℄g)℄.”

Next:

“player N should ACTION”)
DIRECTIVE! (do ourfNg ACTION)

rewrites the result to:

“If CONDITION[(bowner our fN[2℄g) ℄,
DIRECTIVE[do ourfN[2℄g ACTION[(passfN[10℄g)℄℄.”

Finally:

“If CONDITION <2> DIRECTIVE.”)
RULE! (CONDITION DIRECTIVE)

produces the final CLANG parse:

RULE[CONDITION[(bowner ourfN[2℄g) ℄
DIRECTIVE[do ourfN[2℄g ACTION[(passfN[10℄g)℄℄℄

SILT ’s transformation procedure can be looked
upon as compositionally doing “information ex-
traction” of the non-terminals of the semantic lan-
guage.

4 Learning Transformation Rules

SILT induces transformation rules from a training
set of natural-language sentences paired with their
formal representations and the grammar of the for-
mal language. First, all of the formal represen-
tations in the training data are parsed using the
grammar of the formal language. Since the lan-
guage is deterministic, parsing is unambiguous.
These parses are then used to build positive and
negative example sets for each of the productions.
If production� is used in a parse of a formal repre-
sentation then the corresponding natural language
sentence is included in�’s positive example setP(�) otherwise it is included in its negative ex-
ample setN (�). It is possible for a production to
have multiple applications in a parse. For this rea-
son, each natural language sentencep in the pos-
itive example setP(�) is also given a countp

equal to the number of times� was used in the
parse ofp’s semantic representation.

Using a bottom-up (specific-to-general) learn-
ing method, SILT induces transformation rules for
every production from its positive and negative
example sentences (similar to rule learning algo-
rithm GOLEM (Muggleton and Feng, 1990)). Rule
induction starts with separate, maximally-specific

rules for each positive sentence which contains
all of the words in the sentence with zero-length
word gaps. These rules are then repeatedly gen-
eralized to form more general rules until the rules
become overly general and start matching negative
sentences. Hence, a key operation in SILT ’s rule
learning algorithm is generalization of two exist-
ing rules which is described in the next subsection.
The bottom-up algorithm for learning a single
transformation rule for a production is described
next. The last subsection describes the complete
algorithm for learning transformation rules for all
the productions.

4.1 Generalization of Rules

Given two rules with patternsr = r1r2:::rl andr0 = r01r02:::r0m, Figure 1 gives the pseudo-code for
finding their generalization. First, the setC(r; r0)
of all the non-contiguous common subsequences
betweenr andr0 is computed. For every common
subsequence
 =
1
2:::
n in this set, the word
gap,g(
i;
i+1), between every two of its adjacent
words
i and
i+1, is computed as follows. Lets
ande be the places where
i and
i+1 appear inr.
Similarly, let s0 ande0 be the places where
i and
i+1 appear inr0, then the word gapg(
i;
i+1) is:max(e�s+e�1Xj=s g(rj ; rj+1); e0�s0+e0�1Xj=s0 g(r0j ; r0j+1))
This is the larger of the number of words plus
the sum of existing word gaps between the two
words where
i and
i+1 were present inr andr0. Since the pattern of a generalized rule is re-
quired to have all the RHS non-terminals of its
production, those common subsequences which
do not have all the required non-terminals are
deleted fromC(r; r0). Since the subpattern having
the required non-terminals always gets replaced
(by the LHS non-terminal) when the rule is ap-
plied, it is necessary not to lose any other non-
terminal of the sentence in this process (since it
does not appear in the expansion of the LHS non-
terminal of the rule’s production, it will never ap-
pear in the final result). For this reason, those
common subsequences which have some other
non-terminal present between the required non-
terminals are also deleted. The remaining com-
mon subsequences are scored for their general-
ization quality. Longer common subsequences

Input: Two rulesr andr0
Production� for the rule being learned

Output: Generalization ofr andr0
Parameter: � - negative weight for the word gaps
Functiongeneralize(r, r0)
Let C(r; r0) =fall common sequences betweenr and r0
with their word gapsg
Delete fromC(r; r0) those sequences which don’t have
all the RHS non-terminals of�
Delete fromC(r; r0) those sequences which have any
other non-terminals between the RHS non-terminals of�
Returnargmax
2C(r;r0)(s
ore(
)), wheres
ore(
) = length(
)� � � (sumof
0sword gaps)

Figure 1: Method for generalizing two rules or ex-
amples.
Sentence 1:During a penalty kick position player N at RE-
GION.
Sentence 2:Whenever the ball is in REGION the position
of player N should be at REGION.
Generalization:position<1> player N<2> at REGION.

Figure 2: Generalization of two sentences for
learning pattern forACTION ! (pos REGION).

are better generalizations since they are conser-
vative generalizations and, hence, less likely to
match negative examples. But since the pattern
of the rule typically represents a natural-language
phrase, it is also desirable that the words in gener-
alizations are close-by, therefore large word gaps
should be avoided. Considering these two factors,
we define the score of a common subsequence
 =
1
2:::
n as:s
ore(
) = length(
) � � � n�1Xi=0(g(
i;
i+1))
where� is a parameter that determines the size of
the word-gap penalty. The common sequence with
the highest score is returned as the desired gener-
alization. Figure 2 shows a sample generalization.

4.2 Rule Learning

Using the generalization scheme described in
previous subsection, SILT employs a greedy-
covering, bottom-up rule-induction method to
learn a rule that covers as many positive sentences
as possible while covering few or no negative sen-
tences. This pattern learning algorithm is similar
to the ELCS system, used for an information ex-
traction task (Bunescu et al., 2004). Figure 3 gives
the pseudo-code for the algorithm. It uses beam
search and considers only the� best rules for gen-
eralization at any time. It starts with� randomly

Input: P(�) andN (�) - set of positive and
negative examples for production�

Output: A rule which covers many positive examples
and a very few or no negative example

Parameter: � - beam width for search
FunctionlearnRule(P(�),N (�))
Randomly select� positive examplesP = fp1; p2:::p�g fromP(�)
For each of the remaining positive examplep

For i = 1::�
Add generalize(p; pi) toP and
compute its accuracy usingP(�) andN (�)

SortP by the accuracies of its elements
Retain the top� rules, delete the remaining

Return the first element (i.e. the best rule) inP .

Figure 3: Algorithm for learning one rule

selected positive examples and their initial rules
are generalized with one of the remaining positive
examples to obtain� more rules. From the result-
ing 2� rules, it selects the� most accurate rules
and attempts to generalize them further with the
remaining positive examples. The accuracy of a
rule r is measured as:a

ura
y(r) = pos(r)pos(r) + neg(r) + �
wherepos(r) andneg(r) are the number of posi-
tive and negative examples the ruler matches. A
small positive value� is added so that whenneg(r)
is zero the rule with largerpos(r) is considered
more accurate. After iterating over the remaining
positive examples, the best rule is returned. We de-
scribe later how SILT determines the replacement
subpattern for a learned rule.

4.3 Complete Learning Algorithm

SILT learns transformation rules for all produc-
tions by using the algorithm described in the pre-
vious subsection for learning a single transforma-
tion rule for a given production. Figure 4 gives the
pseudo-code for the complete learning algorithm.

First, the productions of the formal language
are divided into levels. This fixes the order in
which the transformation rules for various produc-
tions will be learned. Productions that haveno
RHS non-terminals (e.g.REGION! (midfield),
POINT ! (pt ball)) are included in the first
level. Each subsequent higher level then in-
cludes productions whose RHS non-terminals are
all present as LHS non-terminals at lower levels.
For example, the productionACTION ! (pass

REGION) is at one level above the highest-level
production withREGION as its LHS non-terminal.
If a production is recursive, then it is added to the
level immediately above the levels of all of its base
cases.

Since the productions at a higher level depend
on the productions at lower levels for their RHS
non-terminals, the transformation rules for the
productions are learned in the order of their lev-
els. The learned transformation rules are applied
to the sentences, and then the algorithm proceeds
to the next level. At any level, transformation rules
for all its productions can be learned simultane-
ously because these productions do not depend on
each other for their RHS non-terminals. Simulta-
neous learning is beneficial because it allows the
transformation rules to compete with each other
when determining their patterns from the same
set of sentences. This idea of learning multiple
rules for different concepts simultaneously is sim-
ilar to Multiple Predicate Learning (De Raedt et
al., 1993).

At each level, the algorithm obtains the best rule
for each of the productions at that level by invok-
ing the algorithm in Figure 3. From the resulting
rules, the rule with the best accuracy is selected
for inclusion in the set of learned transformation
rules. The replacement subpattern for a selected
rule is determined as follows. As argued earlier, it
must contain all of the non-terminals in the RHS
of its production, and no other non-terminals. All
possible subpatterns of the rule’s pattern satisfy-
ing this criteria are considered, starting with the
largest one. A desirable property of a replacement
subpattern is that it not include any terms that act
only as context for the rule’s application and there-
fore could be part of another rule’s replacement
subpattern that will be learned subsequently. If a
subpattern matches some positive sentences of a
production whose rules are yet to be learned, but
none of its negative sentences, then this is a strong
indication that the subpattern could become a part
of a rule’s pattern when rules are later learned for
that production. The largest subpattern which does
not so indicate that it could become part of another
rule’s pattern, is marked as the replacement sub-
pattern.

Next, the resulting rule is applied to all the pos-

itive sentences for its production. As described in
section 3.1, a rule application replaces the portion
of the sentence matched by the replacement pat-
tern, introduces the LHS non-terminal of its pro-
duction, and expands this non-terminal according
to the production. It is possible for a rule to be
applicable to a sentence multiple times. Hence,
the rule is applied to a sentence,p, as many times
as possible while decrementing its countp
 ev-
ery time. If the countp
 becomes zero, it means
that the algorithm has introduced and expanded as
many LHS non-terminals of the rule’s production
in the sentence as there were instances of that pro-
duction used in the parse of the corresponding for-
mal representation. At this point, the sentence is
deleted from the production’s positive set and is
included in its negative set to prevent any further
introduction of the LHS non-terminal and its ex-
pansion by that production. The modifications to
the sentences caused by the rule applications are
propagated to all the instances of sentences in the
example sets of other productions. The rule is then
included in the set of learned transformation rules.

This rule learning process is repeated until all
positives of all production rules are covered at that
level, then the algorithm moves to the next level.

During testing, transformation rules are applied
to a sentence in the order in which they were
learned.

5 Experiments

5.1 Methodology

A corpus of formal-language advice paired with
natural-language annotation was constructed as
follows. From the log files of the RoboCup Coach
Competition 2003, we extracted all CLANG ad-
vice given by coaches. The extracted advice con-
sists of definitions of rules, conditions, and re-
gions. 560 of these were picked at random and
translated into English by one of four annotators.
The annotators were instructed to replace identi-
fiers with their definitions as long as the resulting
sentence did not become too convoluted. In the
same spirit, we encouraged the annotators to use
natural phrases for regions whenever possible (e.g.
“our half”), rather than coordinate-based represen-
tations.

Input: (L;F) - Natural language sentences paired with
their formal representations� - all the productions of the formal language

Output: Transformation rulesT for all the productions in�
FunctionlearnAllRules((L;F), �)
Parse all the formal representations ofF using�
/* Find positive and negative examples */
For all productions� in �

Find setsP(�) andN (�) of positive and
negtive examples:

For every natural language sentences in L
If parse ofs’s formal representation uses� then

includes in P(�), set its counts
 to the
number of times� is used in the parse

else includes in N (�)
Divide productions of� into levels.
/* Learn the rules */
For each levell of the productions

Let�l be the set of all productions at levell
while not allP(�) are empty for� 2 �lR = flearnRule(P(�); N (�)) : � 2 �lg

Let r be the best rule ofR and a rule for production��
Computer’s replacement subpattern.
For all elementsp 2 P(��)

While (applicable andp
 > 0)
applyr to the natural language sentencep,
decrementp
 by 1

If (p
 = 0) deletep fromP(��)
and include it inN (��)

Includer in T
returnT

Figure 4: The complete learning algorithm.

Since long CLANG expressions led to unnat-
ural, confusing English glosses, the 300 shortest
CLANG statements were used in the final corpus.
This corpus contains definitions of 202 rules, 38
conditions, and 60 regions. The average length of
a natural-language gloss is 18.77 words.

To evaluate SILT , we performed 10-fold cross
validation. The corpus was split into 10 equal-
sized disjoint segments and results were averaged
over ten trials. In each trial, a different segment
was used as independent test data and the system
was trained on the remaining data. In the exper-
iments, the beam width parameter� was set to 5
and the parameter�, for penalizing word gaps, was
set to 0.4 based on pilot studies.

A sentence is said to becompletely parsedif
the system transforms it into a single top-level
CLANG expression. Learned transformation rules
may be unable to completely parse some test sen-
tences. A sentence is said to becorrectly parsed
if it is completely parsed and the CLANG state-
ment produced is semantically equivalent to the
correct representation (i.e. an exact match up to

Precision Recall

Complete parses 91.1% 37.6%
Parse nodes 98.4% 76.1%

Table 1: Performance on test data

reordering of the arguments of commutative and
associative logical operators). With respect to this
strict measure of correctness, we measured preci-
sion (percentage of completely parsed sentences
that are correctly parsed) and recall (percentage of
sentences that are correctly parsed).

Since complete correctness gives no credit to
parses which are close to the correct parses, we
also use a measure which gives credit to such
parses. This measure evaluates the overlap be-
tween the nodes in the output parse and the correct
parse. A node of a parse is said to match a node in
another parse if both the nodes and their children
have the same labels. A node match thus indicates
that same production was used for expanding them
in both the parses. By counting the number of
matched nodes, we measured precision (percent-
age of nodes in the output parse that matched some
node in the correct parse) and recall (percentage of
nodes in the correct parse that matched some node
in the output parse).

5.2 Results

Table 1 shows the complete as well as partially
correct versions of precision and recall for 10-fold
cross validation. As can be seen from precision of
completely generated parses, if the system com-
pletely parses a sentence, the representation is per-
fectly correct over 90% of the time. This is im-
portant for our application because if the system
generates an incorrect complete parse, then incor-
rect advice will be passed to the coachable players,
which may worsen their performance. It is better
to fail to produce a complete parse, in which case
the players will not receive any advice. The high
scores for node matches indicate that, even when
the system fails to produce a completely correct
parse, it usually produces a representation that is
close to the correct one.

Table 2 shows the system’s performance when
tested on thetraining data. The system generates
complete and correct parses for only about half
of the training sentences. This shows that there

Precision Recall

Complete parses 91.3% 49.3%
Parse nodes 99.0% 79.4%

Table 2: Performance on training data

is still significant room for improving the training
algorithm. SILT fails to completely parse train-
ing sentences mostly because, frequently, after ap-
plying an imperfect rule at one level, the resulting
sentence does not match the higher level rule that
will lead to a complete parse. This requires co-
ordination between rule learning for productions
at different levels, possibly by back-tracking when
reaching an impasse at higher levels and learning
different rules at lower levels to avoid the impasse.

6 Future Work

As noted in the Results section, SILT ’s perfor-
mance could improve by having a better coordina-
tion between rule learning for productions at dif-
ferent levels. We also plan to test this system on
other domains (Zelle and Mooney, 1996; Tang and
Mooney, 2000). SILT does not use any knowledge
of the English language. It would be interesting to
incorporate knowledge about phrasal structures in
the natural language when inducing patterns. One
way to do this would be using an external syntac-
tic parser to obtain the phrasal structure of sen-
tences. A better way would be integrating syn-
tactic and semantic analysis by pairing each pro-
duction in the syntactic grammar with a composi-
tional semantic function that produces a semantic
form for a phrase given semantic forms for its sub-
phrases (Norvig, 1992). These are left for future
work.

7 Conclusions

We presented a new approach, SILT , for mapping
natural language sentences to their semantic repre-
sentations using transformation rules. The system
learns these transformation rules from the training
data using a bottom-up rule induction algorithm
based on the generalization of sentences. SILT

was evaluated for the task of mapping natural-
language RoboCup coaching instructions into for-
mal CLANG expressions. The system could out-
put complete semantic parses for a reasonable

fraction of novel sentences. These complete se-
mantic parses were correct over 90% of the time.
For the cases where the system failed to output
complete parses, the partial parses were mostly
close to the correct parses.

Acknowledgements

We would like to thank Gregory Kuhlmann for
his help in annotating the corpus. This research
was supported by Defense Advanced Research
Projects Agency under grant HR0011-04-1-007.
The second author was supported by an MCD Fel-
lowship from the University of Texas at Austin.

References

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging.Computational Lin-
guistics, 21(4):543–565.

Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Ed-
ward M. Marcotte, Raymond J. Mooney, Arun Ku-
mar Ramani, and Yuk Wah Wong. 2004. Compara-
tive experiments on learning information extractors
for proteins and their interactions.Artificial Intelli-
gence in Medicine. To appear.

Mao Chen, Ehsan Foroughi, Fredrik Heintz, Spiros
Kapetanakis, Kostas Kostiadis, Johan Kummeneje,
Itsuki Noda, Oliver Obst, Patrick Riley, Timo Stef-
fens, Yi Wang, and Xiang Yin. 2003. Users
manual: RoboCup soccer server manual for soccer
server version 7.07 and later. Available athttp://
sourceforge.net/projects/sserver/.

Luc De Raedt, Nada Lavrac, and Saso Dzeroski. 1993.
Multiple predicate learning. InProc. of 13th Intl.
Joint Conf. on Artificial Intelligence (IJCAI-93),
pages 1037–1042, Chambery, France.

Stephen Muggleton and C. Feng. 1990. Efficient in-
duction of logic programs. InProc. of 1st Conf.
on Algorithmic Learning Theory, Tokyo, Japan.
Ohmsha.

Peter Norvig. 1992.Paradigms of Artificial Intelli-
gence Programming: Case Studies in Common Lisp.
Morgan Kaufmann, San Mateo, CA.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inte-
grating statistical and relational learning for seman-
tic parsing. InProc. of the Joint SIGDAT Conf. on
Empirical Methods in Natural Language Processing
and Very Large Corpora(EMNLP/VLC-2000), pages
133–141, Hong Kong, October.

William A. Woods. 1977. Lunar rocks in natural
English: Explorations in natural language question
answering. In Antonio Zampoli, editor,Linguistic
Structures Processing. Elsevier North-Holland, New
York.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. InProc. of 13th Natl. Conf. on Artifi-
cial Intelligence (AAAI-96), pages 1050–1055, Port-
land, OR, August.

