Proceedings of the IBM Austin Center for Advanced Sudies 5th Annual Austin

CASConference, Austin, TX, February 2004

Semisupervised Clustering for Intelligent User Management

Sugato Basu, Mikhail Bilenko, Raymond J. Mooney
Department of Computer Sciences
University of Texas at Austin
{sugato, mbilenko, mooney} @cs.utexas.edu

IBM Technical Contact: Mark W. Johnson
Tivoli Technical Strategy
IBM Software Group

Abstract

Grouping users automatically based on their system us-
age can be beneficial in an autonomic computing envi-
ronment. Clustering algorithms can generate meaningful
user groups that provide important insights to system ad-
ministrators about user profiles and group policies. In
particular, if a small amount of supervision is provided by
the administrator to the clustering process, semi-supervi-
sed clustering algorithms can use this supervision to gen-
erate clusters which are more useful for user manage-
ment. In this work, we demonstrate the utility of semi-
supervised clustering in intelligent user management. We
collect publicly available system usage data of users in
a university computing environment, and cluster the users
using semi-supervised hierarchical agglomerative cluster-
ing based on the profile of the processes they run. Initial
supervision is provided in the form of a few users run-
ning a specific process. Semi-supervised clustering gives
us more meaningful clusters than unsupervised clustering
in this domain, demonstrating that our technique can find
interesting and useful groups in data with minimal user
intervention.

1 Introduction

The goal of autonomic computing is to help automate the
management and maintenance of information technology
in order to ease the burden on system administrators [15].
As IT systems become more complex and the number of
users increases dramatically, automation of user manage-
ment tasks becomes a high priority for system adminis-
trators. Automatic intelligent grouping of users based on
their interactions with the system can serve two purposes.
First, it can supply administrators with a global view of

the user pool via meaningful user classes that are based
on actual system usage information. Second, given ex-
pressive clusters of users, policies that apply to identi-
fied user groups can be developed along with profiles cor-
responding to particular clusters, alleviating the need to
tailor group management tasks to a diverse set of users.
Thus, grouping users based on their system usage pro-
vides insights about the set of users that can be directly
translated into typical user profiles and policies for user
groups.

Clustering algorithms are machine-learning and data-
mining techniques that group data into meaningful cate-
gories containing similar objects [8, 9]. A typical data-
mining application of clustering is grouping a company’s
customers into coherent groups based on the items that
they have purchased. Clustering algorithms have been de-
veloped for a wide variety of data representations includ-
ing vectors of features (with nominal or continuous val-
ues), strings, trees, graphs, etc.. By representing users
with sets of features or statistics that characterize their
system usage, data appropriate for clustering users can be
developed. System-usage data provides a wealth of in-
formation about users, such as command traces, sets of
running processes, and resource load profiles. Based on
this information, meaningful user groups can be computed
and proposed to system administrators. In our initial ex-
periment on this idea, we have applied standard hierar-
chical agglomerative clustering (HAC) [14] to executing-
process data for 624 users of our department’s pool of
public Linux workstations. Inspection of the resulting
clusters revealed a number of meaningful groups, such
as members of particular computer-science classes or re-
search groups.

However, although the results of generic clustering al-
gorithms will reveal regularities in the system-usage data,



they may not represent a grouping that serves the purposes
of a given system administrator. Clustering is called unsu-
pervised learning since it does not use any user feedback
to guide the classes it discovers. Typical supervised learn-
ing techniques, on the other hand, assume every training
example is labeled with a desired class and the goal is to
construct a categorization function appropriate for classi-
fying future examples [18, 8, 9]. Recently, semisupervised
learning techniques that exploit both labeled and unla-
beled data have been developed [5, 12, 19]. In partic-
ular, semisupervised clustering employs a small number
of examples for which the user has provided class labels
or constraints, in order to bias the grouping so that it cor-
responds more closely to the user’s view of similar and
dissimilar objects.

We have developed several techniques for incorporat-
ing limited supervision into clustering, such as seeding
(initializing clusters with the labeled objects) and distance-
metric learning (training a similarity measure using the la-
beled objects) [2, 4, 3]. If a system administrator is will-
ing to provide a few examples of users that they believe
should (or should not) be in the same cluster, these algo-
rithms can utilize such supervision to bias the clustering
algorithm and help it produce results that are more use-
ful for system management. An initial application of this
idea to our Linux process data has demonstrated the abil-
ity of semisupervised algorithms to incorporate adminis-
trator preferences in user clustering.

2 Clustering

Clustering can be roughly defined as the problem of par-
titioning a dataset into disjoint groups so that objects be-
longing to the same cluster are similar, while objects be-
longing to different clusters are dissimilar. Traditionally,
clustering has been viewed as a form of unsupervised learn-
ing, since no class labels on the data are provided. In
the most general formulation, the number of clusters K is
also considered to be an unknown parameter. Clustering
problems can be categorized as generative or discrimina-
tive. In the generative clustering model, a parametric form
of data generation is assumed, and the goal in the maxi-
mum likelihood formulation is to find the parameters that
maximize the probability (likelihood) of generation of the
data given the model. Clustering algorithms can also be
categorized as either hierarchical or partitional [11], de-
pending on whether the algorithm clusters the data into
a hierarchical structure or gives a flat partitioning of the
data.

In this work, we employ the Hierarchical Agglomera-
tive Clustering (HAC) algorithm that constructs a hierar-

chy of clusterings in an bottom-up fashion [14]. In HAC,
points are initially allocated to singleton clusters, and at
each step the “closest” pair of clusters are merged, where
closeness is defined according to a similarity measure be-
tween clusters. The algorithm generally terminates when
the specified “convergence criterion” is reached, which in
our case is when the number of current clusters becomes
equal to the number of clusters desired by the user. Dif-
ferent cluster-level similarity measures are used to deter-
mine the closeness between clusters to be merged. Single-
link cluster similarity considers similarity between clus-
ters to be equal to similarity between two most similar
points, leading to elongated clusters with good local co-
herence. Complete-link cluster similarity uses similarity
of two most dissimilar cluster members which results in
spherical clusters. Finally, group-average similarity takes
the average similarity between all pairs of objects that lie
in two clusters, striking a balance between single-link and
complete-link clustering [17].

Different HAC schemes have been recently shown to
have well-defined underlying generative models — single-
link HAC corresponds to the probabilistic model of a mix-
ture of branching random walks, complete-link HAC cor-
responds to uniform equal-radius hyperspheres, whereas
group-average HAC corresponds to equal-variance con-
figurations [13]. So, the HAC algorithms can be catego-
rized as generative clustering algorithms.

3 Semi-supervised Clusteringand In-
telligent User M anagement

Semi-supervised clustering, where a small amount of ini-
tial supervision is used to aid and bias the clustering of
the data, has been the focus of several recent projects [2,
16, 21, 22]. In clustering for intelligent user management,
the initial supervision would come from information pro-
vided by system administrators. The supervision can in-
clude class labels on parts of the data, e.g., the adminis-
trator can label some users with a known set of processes
mainly run by that user. It can also be provided in the form
of constraints, e.g., the administrator can specify whether
two users should be put in the same cluster, or whether
they should not be in the same cluster. Semi-supervised
clustering will be able to use the provided seeds or con-
straints to generate a clustering of the data that incorpo-
rates the preferences of the system administrator, thereby
facilitating user management.

Existing methods for semi-supervised clustering fall
into two general approaches that we call search-based and
similarity-based methods. In search-based approaches,



the clustering algorithm itself is modified so that user-
provided labels or constraints are used to bias the search
for an appropriate partitioning. This can be done by sev-
eral methods, e.g., modifying the clustering objective func-
tion so that it includes a term for satisfying specified con-
straints [7], enforcing constraints to be satisfied during the
cluster assignment in the clustering process [21], doing
clustering using side-information from conditional distri-
butions in an auxiliary space [20], and initializing clus-
ters and inferring clustering constraints based on neigh-
borhoods derived from labeled examples [2].

In similarity-based approaches, an existing clustering
algorithm that uses a similarity metric is employed; how-
ever, the similarity metric is first trained to satisfy the la-
bels or constraints in the supervised data. Several sim-
ilarity metrics have been used for similarity-based semi-
supervised clustering, including string-edit distance trained
using EM [4], Jensen-Shannon divergence trained using
gradient descent [6], Euclidean distance modified by a
shortest-path algorithm [16], or Mahalanobis distances
trained using convex optimization [10, 22]. Several clus-
tering algorithms using trained similarity metrics have been
employed for semi-supervised clustering, including single-
link [4] and complete-link [16] agglomerative clustering,
EM [6, 10], and KMeans [10, 22].

To simulate initial supervision provided by system ad-
ministrators, we provided the clustering algorithm with
process seed clusters, i.e., sets of users characterized by
running specific processes, each seed cluster having the
set of users that run a particular process. The clustering
algorithm, on being given this initial supervision, was able
to grow the seed clusters by adding users running similar
processes, as shown by the initial results outlined in Sec-
tion 4. Such a clustering could be useful to the administra-
tor in a number of ways. For example, the administrator
can run the clustering algorithm at various times and track
the number of users in the cluster corresponding to a given
process. The administrator can then determine the num-
ber of shared user-licenses that would be sufficient for the
set of users.

Our results serve as a proof of concept, demonstrating
that initial supervision in the form of important processes
run by a subset of users was able to guide the clustering
algorithm to get more useful user clusters than that ob-
tained by purely unsupervised clustering. In a full semi-
supervised user management system, data pertaining to
user command traces and resource load profiles would
also be collected along with the set of running processes.
In that case, supervision can be provided by the system
administrator in many other ways. For example, to cluster
users based on their load profiles, the administrator could

seed three clusters by heavy, medium and light users, and
the resulting clustering would be biased towards partition-
ing the users based on their system usage. This informa-
tion could then be used to automatically allocate more re-
sources, e.g., network bandwidth, to heavy system users.

4 Data Collection and Initial Exper-
iments

For our initial prototype we have attempted to obtain mean-
ingful user groups from a pool of 624 users of public
Unix workstations in the Department of Computer Sci-
ences at the University of Texas at Austin. We have mon-
itored processes on 186 workstations over a period of one
month, taking hourly snapshots using the ps command
and recording the processes logged by the snapshots into
a central MySQL database. There was a total of 210 dis-
tinct processes logged. It is important to note that the vast
majority of processes are of little value in distinguishing
between groups of users, since many are sub-processes
launched by window managers (e.g. kdeinit or FvwmBut-
tons) or common utilities (e.g. mozilla-bin or acroread).
We converted the collected information into a data-
set that associated each user « with a vector x,, of at-
tributes. Each attribute corresponds to a process, and a
non-zero value indicates that the user has run the process
during the observation time. We have utilized the TF-IDF
(term-frequency inverse-document-frequency) conversion
frequently used in information retrieval to obtain mean-
ingful feature weights x,,,, from raw usage data [1]:

freq(u, p)
max, freq(u,p’) N(p)

where freq(u,p) is the number of times user « has run
process p; N is the total number of users; and N (p) is the
number of users that ran process p. The TF-IDF weighting
scheme allows assigning more importance to processes
that are run frequently by a given user while being un-
common across the entire user pool.

We first ran the HAC algorithm on the dataset of 624
210-dimensional vectors until similarity between clusters
being merged was below a specified similarity threshold
(0.8 in our experiments). The results were disappointing,
as most users were clustered together because they ran
common utility programs or window managers. Based on
these results, we excluded 51 processes from the data de-
scription, leading to a more meaningful representation of
system usage by the users. However, unsupervised clus-
tering still yielded unsatisfactory results — the main rea-
son for this is that the users could be clustered in multiple

M)

Tup =



user CART processes
Group?
userl | Y aterm rlogin, condor_shadow. s, eclipse, condor _shadow
user2 | Y condor shadow, condor shadow. s, oafd, gvim xdvi.bin
userd | Y condor shadow. s, condor shadow, 686, gdb, w sh
userd | Y condor shadow. s, condor shadow, gvim simal pha, gdb
user5 | Y condor shadow. s, condor shadow, netkit-rlogin, gvim rxvt, simalpha
user6 | Y condor shadow. s, 686
user7 | N condor shadow. s, sftp-server, netkit-rlogin, nore

Figure 1: A sample cluster containing users from the same research group

ways which were not necessarily informative; e.g. users
that used the VNC remote access software were grouped
together. While such clustering could be of interest if sys-
tem administrators needed to group users by their loca-
tion, it was of no use to us since we were interested in
grouping users by their research interests or classes they
were taking.

Next, we employed the semi-supervised version of
HAC, where initial seeding was obtained by creating clus-
ters of users that ran processes indicating their research
interests, such as hugs (a Haskell language interpreter),
xspim (a MIPS simulator), and sim-alpha (part of the tool-
set for the SimpleScalar architecture). The results im-
proved considerably. For example, Figure 1 shows the
cluster containing 6 members of the Computer Architec-
ture and Technology Laboratory that was obtained based
on seeding with two users who ran the sim-alpha process.
Such initial seeding allowed bringing in more people us-
ing another process, condor_shadow, that many users in
that group ran.

Other notable clusters that were obtained after seed-
ing include undergraduate students who ran either hugs or
spim processes. We conjecture that such clusters include
users that are taking the same classes and hence utilize
system resources in a similar manner.

5 FutureWork and Conclusions

As demonstrated by our preliminary results on applying
HAC to Unix process data, clustering algorithms from
machine learning can be used to find interesting and mean-
ingful groups in populations of users by analyzing statis-
tics on their system usage. In particular, our results indi-
cate that by supplying a very small amount of supervision,
the discovered groups can be tailored to the specific goals
of the system administrator. By combining the strengths
of both supervised and unsupervised learning, semisuper-
vised clustering can discover interesting and useful groups
in data with only minimal human intervention.

Once meaningful groups of users have been automat-
ically indentified, they can be used to intelligently allo-
cate resources to maximize these users’ productivity and
satisfaction with the system. They can also be used to
predict and anticipate new users’ needs. Based on lim-
ited data from a new user’s initial system utilization, he or
she can potentially be identified as a member of a previ-
ously discovered cluster. Based on the known behavior of
typical users in this group, their future needs can be reli-
ably predicted and their system automatically configured
with the appropriate applications and resources to support
these demands.

More generally, IBM’s vision of autonomic comput-
ing requires systems that are adaptive to their environment
and that automatically detect regularities in the world and
exploit them to maximize their performance and minimize
the need for human intervention when there is a change.
Research in machine learning and data mining has devel-
oped a rich set of tools for automatically discovering pat-
terns in data and using them to make accurate predictions.
Appropriate use of these tools will be extremely helpful
in making the vision of autonomic computing a reality.
Although our work on clustering users is only an initial
step in this direction, we believe it is indicative of the im-
portant role than machine learning algorithms can play in
making future computing systems more robust and adap-
tive.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press, New York, 1999.

[2] S. Basu, A. Banerjee, and R. J. Mooney. Semi-
supervised clustering by seeding. In Proceedings of
19th International Conference on Machine Learning
(ICML-2002), pages 19-26, 2002.

[3] S. Basu, A. Banerjee, and R. J. Mooney. Ac-
tive semi-supervision for pairwise constrained clus-



(4]

(5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

tering. In To appear in the Proceedings of the
2004 SIAM International Conference on Data Min-
ing (SDM-04), 2004.

M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures.
In Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining (KDD-2003), pages 39-48, Washing-
ton, DC, Aug. 2003.

A. Blumand T. Mitchell. Combining labeled and un-
labeled data with co-training. In Proceedings of the
11th Annual Conference on Computational Learn-
ing Theory, Madison, WI, 1998.

D. Cohn, R. Caruana, and A. McCallum. Semi-
supervised clustering with user feedback. Technical
Report TR2003-1892, Cornell University, 2003.

A. Demiriz, K. P. Bennett, and M. J. Em-
brechts. Semi-supervised clustering using genetic
algorithms. In ANNIE’99 (Artificial Neural Net-
works in Engineering), Nov. 1999.

J. Han and M. Kamber. Data Mining: Concepts
and Techniques. Morgan Kaufmann, San Francisco,
2000.

T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning. Springer Verlag, New
York, Aug. 2001.

A. B. Hillel, T. Hertz, N. Shental, and D. Weinshall.
Learning distance functions using equivalence rela-
tions. In Proceedings of 20th International Confer-
ence on Machine Learning (ICML-2003), 2003.

A. K. Jain, M. N. Myrthy, and P. J. Flynn. Data
clustering: A survey. ACM Computing Survey,
31(3):264-323, 1999.

T. Joachims. Transductive inference for text clas-
sification using support vector machines. In Pro-
ceedings of the Sixteenth International Conference
on Machine Learning (ICML-99), Bled, Slovenia,
June 1999.

S. D. Kamvar, D. Klein, and C. D. Manning. Inter-
preting and extending classical agglomerative clus-
tering algorithms using a model-based approach. In
Proceedings of 19th International Conference on
Machine Learning (ICML-2002), 2002.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

L. Kaufman and P. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. John Wi-
ley and Sons, New York, 1990.

J. O. Kephart and D. M. Chess. The vision of au-
tonomic computing. IEEE Computer, 36(1):41-50,
2003.

D. Klein, S. D. Kamvar, and C. Manning. From
instance-level constraints to space-level constraints:
Making the most of prior knowledge in data clus-
tering. In Proceedings of the The Nineteenth Inter-
national Conference on Machine Learning (ICML-
2002), Sydney, Australia, 2002.

C. D. Manning and H. Schiitze. Foundations of Sta-
tistical Natural Language Processing. MIT Press,
Cambridge, MA, 1999.

T. Mitchell. Machine Learning. McGraw-Hill, New
York, NY, 1997.

K. Nigam, A. K. McCallum, S. Thrun, and
T. Mitchell. Text classification from labeled and un-
labeled documents using EM. Machine Learning,
39:103-134, 2000.

J. Sinkkonen and S. Kaski. Semisupervised cluster-
ing based on conditional distributions in an auxiliary
space. Technical Report A60, Helsinki University of
Technology, 2000.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained K-Means clustering with background
knowledge. In Proceedings of 18th International
Conference on Machine Learning (ICML-2001),
2001.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell.
Distance metric learning, with application to clus-
tering with side-information. In Advances in Neu-
ral Information Processing Systems 15. MIT Press,
2003.



