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Abstract

Semi-supervised clustering uses a small
amount of labeled data to aid and bias the
clustering of unlabeled data. This paper ex-
plores the use of labeled data to generate
initial seed clusters, as well as the use of
constraints generated from labeled data to
guide the clustering process. It introduces
two semi-supervised variants of KMeans clus-
tering that can be viewed as instances of the
EM algorithm, where labeled data provides
prior information about the conditional dis-
tributions of hidden category labels. Experi-
mental results demonstrate the advantages of
these methods over standard random seeding
and COP-KMeans, a previously developed
semi-supervised clustering algorithm.

1. Introduction

In many learning tasks, there is a large supply of unla-
beled data but insufficient labeled data since it can be
expensive to generate. Semi-supervised learning com-
bines labeled and unlabeled data during training to
improve performance. Semi-supervised learning is ap-
plicable to both classification and clustering. In super-
vised classification, there is a known, fixed set of cate-
gories and category-labeled training data is used to in-
duce a classification function. In semi-supervised clas-
sification, training also exploits additional unlabeled
data, frequently resulting in a more accurate classifi-
cation function (Blum & Mitchell, 1998; Ghahramani
& Jordan, 1994). In unsupervised clustering, an unla-
beled dataset is partitioned into groups of similar ex-
amples, typically by optimizing an objective function
that characterizes good partitions. In semi-supervised
clustering, some labeled data is used along with the

unlabeled data to obtain a better clustering. This pa-
per explores the use of labeled data to generate seed
clusters that initialize a clustering algorithm, as well
as the use of constraints generated from the labeled
data to guide the clustering process. Proper seeding
biases clustering towards a good region of the search
space, thereby reducing the chances of it getting stuck
in poor local optima, while simultaneously producing
a clustering similar to the user-specified labels.

If the initial labeled data represent all the relevant
categories, then both semi-supervised clustering and
semi-supervised classification algorithms can be used
for categorization. However in many domains, knowl-
edge of the relevant categories is incomplete. Unlike
semi-supervised classification, semi-supervised cluster-
ing can group data using the categories in the initial
labeled data, as well as extend and modify the existing
set of categories as needed to reflect other regularities
in the data.

This paper introduces two semi-supervised variants of
KMeans clustering (MacQueen, 1967) that use ini-
tial labeled data for seeding. We motivate the al-
gorithms using the Expectation Maximization (EM)
framework (Dempster et al., 1977), showing that seed-
ing can be explained using the conditional distribu-
tion of hidden category labels. We present results
of experiments demonstrating the advantages of our
methods over standard random seeding and COP-
KMeans (Wagstaff et al., 2001), an alternative semi-
supervised KMeans algorithm.

2. Background

KMeans is a clustering algorithm based on iterative
relocation that partitions a dataset into K clusters, lo-
cally minimizing the average squared distance between
the data points and the cluster centers. For a set of



data points X = {z1,--- ,zn},z; € R?, the KMeans
algorithm creates a K-partitioning ! {X;}%, of X so
that if {u1,--- , ux } represent the K partition centers,
then the following objective function

K
Jkmeans = Z Z ||z; — /J'l”2 (1)

=1 z;,€X;
is locally minimized.

2.1 COP-KMeans algorithm

COP-KMeans (Wagstaff et al., 2001) is a semi-
supervised variant of KMeans, where initial back-
ground knowledge, provided in the form of constraints
between instances in the dataset, is used in the clus-
tering process. There are two types of constraints,
must-link (two instances have to be together in the
same cluster) and cannot-link (two instances have to
be in different clusters), which are used in the clus-
tering process to generate a partition that satisfies all
the given constraints. In this paper, we have developed
two semi-supervised variants of KMeans and compared
them to COP-KMeans.

2.2 SPKMeans algorithm

In the Spherical KMeans (SPKMeans) algorithm,
standard KMeans is applied to data vectors that have
been normalized to have unit Ls norm, i.e., the data
points lie on a unit sphere (Dhillon et al., 2001). As-
suming ||z;|| = ||w|l = 1, Vi, in Eqn. 1, we get
lz; — ul|> = 2 — 22T ;. Then, the clustering problem
can be equivalently formulated as that of maximizing
the objective function:

K

Z Z o w (2)

=1 z;€X

u7spkmeans =

The SPKMeans algorithm gives a local maximum of
this objective function. The SPKMeans algorithm has
computational advantages for sparse high dimensional
data vectors, which are very common in domains like
text clustering. For this reason, we have used SP-
KMeans in our experiments.

3. Algorithms

In this section, we explain how semi-supervision can
be incorporated into the KMeans algorithm by seed-
ing and propose two variants of the KMeans algorithm
that use the seeds; then we give the mathematical mo-
tivation behind the two proposed algorithms.

Algorithm: Seeded-KMeans

Input: Set of data points X = {z;,--- ,zn},z; € RY,
number of clusters K, set S = UX | S; of initial seeds

Output: Disjoint K partitioning {&;}X, of X such that
KMeans objective function is optimized

Method:

1. intialize: p,;lo) — ﬁ Dses, T forh=1,...  K;t <0

2. Repeat until convergence

2a. assign cluster: Assign each data point z to the

cluster h* (i.e. set X,(Li+1)), for h* = arg min||z — /15:) |12
h

. t+1
2b. estimate means: u£+ ) ﬁ Ezex(Hrl) T
h h

2. t«(t+1)

Figure 1. Seeded-KMeans algorithm

Algorithm: Constrained-KMeans
Input: Set of data points X = {z;,-- ,zn},7; € R?,
number of clusters K, set S = u{;sl of initial seeds
Output: Disjoint K partitioning {X;}X,; of X such that
the KMeans objective function is optimized
Method:
1. intialize: [L;IO) «— ﬁ Dees, T forh=1,... \K;t <0
2. Repeat until convergence
2a. assign cluster: For z € S, if € S;, assign z to the
cluster h (i.e., set X,EHI)). For z ¢ S, assign z to the
cluster h* (i.e. set X,(Liﬂ)), for h* = argmin||z — pg) |12
h

2b. estimate means: ugﬂ)

2.t (t+1)

1
TR S

Figure 2. Constrained-KMeans algorithm

3.1 Seeding

Given a dataset X, as previously mentioned, KMeans
clustering of the dataset generates a K-partitioning
{X}E, of X so that the KMeans objective is locally
minimized. Let S C X, called the seed set, be the sub-
set of data-points on which supervision is provided as
follows: for each z; € S, the user provides the cluster
A, of the partition to which it belongs. We assume
that corresponding to each partition A of X, there is
typically atleast one seedpoint z; € S. Note that we
get a disjoint K -partitioning {S§;}, of the seed set
S, so that all z; € S; belongs to A; according to the
supervision. This partitioning of the seed set S forms
the seed clustering and is used to guide the KMeans
algorithm.

3.2 Two Semi-supervised KMeans Algorithms

In Seeded-KMeans, the seed clustering is used to ini-
tialize the KMeans algorithm. Thus, rather than ini-
tializing KMeans from K random means, the mean of
the [th cluster is initialized with the mean of the [th
partition S; of the seed set. The seed clustering is only

'K disjoint subsets of X', whose union is X



used for initialization, and the seeds are not used in
the following steps of the algorithm. The algorithm is
presented in detail in Fig. 1.

In Constrained-KMeans, the seed clustering is used
to initialize the KMeans algorithm as described for
the Seeded-KMeans algorithm. However, in the sub-
sequent steps, the cluster memberships of the data
points in the seed set are not re-computed in the
assign cluster steps of the algorithm — the cluster
labels of the seed data are kept unchanged, and only
the labels of the non-seed data are re-estimated. The
algorithm is given in detail in Fig. 2.

Constrained-KMeans seeds the KMeans algorithm
with the user-specified labeled data and keeps that
labeling unchanged throughout the algorithm. In
Seeded-KMeans, the user-specified labeling of the seed
data may be changed in the course of the algorithm.
Constrained-KMeans is appropriate when the initial
seed labeling is noise-free, or if the user does not want
the labels on the seed data to change, whereas Seeded-
KMeans is appropriate in the presence of noisy seeds.
This and other aspects of these two algorithms are
studied in detail through experiments in Sec. 4.

3.3 Semi-supervised KMeans as EM

The EM algorithm is a very general method of find-
ing the maximum-likelihood estimate of the parame-
ters of an underlying distribution, or, more generally,
a probabilistic data generation process, from a set of
observed data that has incomplete or missing values.
If X denotes the observed data, © denotes the cur-
rent estimate of the parameter values and Z denotes
the missing data, then, in the E-step, the EM algo-
rithm computes the expected value of the complete-
data log-likelihood log p(X, Z|®) over the distribution
p(Z|X,0) (Bilmes, 1997). As we shall demonstrate,
the semi-supervision provided to the KMeans algo-
rithm essentially determines this conditional distribu-
tion over which the expectation is computed. We shall
take a closer look at the assumptions one makes on
this distribution in the EM framework for solving the
KMeans problem so that the effect of semi-supervision
will become evident.

The KMeans clustering algorithm is essentially an EM
algorithm on a mixture of K Gaussians under certain
assumptions. The data-generation process in KMeans
is assumed to be as follows — first, one Gaussian is
chosen out of the K following their prior probabil-
ity distribution; then, a data-point is sampled fol-
lowing the distribution of the chosen Gaussian. Let
X = {z1,--- ,zn} be the set of data-points we want
to cluster with each z; € R?. The missing data Z is the

cluster assignment of the data-points. It takes values
in {1,--- , K} and is always conditioned on the data-
point under consideration. We denote (Z = [) by z.
For deriving KMeans, we assume that the prior distri-
bution 7 of the Gaussians is uniform, i.e., m = 1/K, VI,
and that each Gaussian has identity covariance. Then,
the parameter set © consists of just the K means
Bi,- -, pr. With these assumptions, one can show
that (Bilmes, 1997):

EZ|X’@[10gp(X, Z|0)]

K N 1 ,
= 2> log(m- ygme ) plale:, ©)

=1 i=1

==Y llzi — i’ plailzi, ©) + ¢ (3)

=1 i=1

where c is a constant. Further assuming that

1 if I = argmin ||z; — pxl|?,
p(zl|xi’ 9) = h
0 otherwise,

and replacing it in Eqn. 3, we note that the expectation
term comes out to be the negative of the well-known
KMeans objective function with an additive constant.?
Thus, the problem of maximizing the expectation of
the complete-data log-likelihood under these assump-
tions is same as that of minimizing the KMeans ob-
jective function. Keeping in mind the assumption in
Eqn. 4, the KMeans objective can be written as

K N
Fimeans = Y llzi = wll® plalzis ) (5)

=1 i=1

The only “missing data” for the KMeans problem are
the conditional distributions p(z;|z;, u). Knowledge
of these distributions solves the problem, but normally
there is no way to compute it. In the semi-supervised
clustering framework, the user provides information
about some of the data points that specifies the
corresponding conditional distributions.

Example: If z; and z; are two data-points with a
must-link constraint between them (Sec. 2.1), then
p(z1|zi, ) and p(z|x;, ) are identically distributed.
In fact, all data-points in the transitive closure of
a connected set of must-link constraints will be
identically distributed.

Thus, semi-supervision essentially provides informa-
tion about the conditional distributions p(z;|z;, ;).

*The assumption in Eqn. 4 can also be derived by as-
sumin_% the covariance of the Gaussians to be €l and letting
€ = 07 (Kearns et al., 1997).



In standard KMeans without any initial supervision,
the K means are chosen randomly in the initial M-
step and the data-points are assigned to the nearest
means in the subsequent E-step. As explained above,
every point z; in the dataset has K possible condi-
tional distributions associated with it (each satisfying
Eqn. 4) corresponding to the K means to which it can
belong. This assignment of data point z; to a random
cluster in the first E-step is similar to picking one con-
ditional distribution at random from the K possible
conditional distributions.

In Seeded-KMeans, the initial supervision is equivalent
to specifying the conditional distributions p(z|z;, u;)
for the seed points z; € S. The specified conditional
distributions of the seed data are just used in the ini-
tial M-step of the algorithm, and p(z|z;, pu) is re-
estimated for all ; € X in the following E-steps of
the algorithm.

In Constrained-KMeans, the initial M-step is same as
Seeded-KMeans. The difference is that for the seed
data points, the initial labels, i.e., the conditional dis-
tributions p(z;|z;, ), are kept unchanged throughout
the algorithm, whereas the conditional distribution for
the non-seed points are re-estimated at every E-step.

In our experiments, we will be using the SPKMeans
framework (Sec. 2.2). In this framework, since every
point lies on the unit sphere so that ||z;|| = |Jwll = 1,
the expectation term in Eqn. 3 becomes equivalent to

K N
Ezxellogp(X, Z|0)] = Z Z i i p(zles, ©) + ¢
I=1 i=1

So, maximizing the SPKMeans objective function
is equivalent to maximizing the expectation of the
complete-data log-likelihood in the E-step of the EM
algorithm.

4. Experiments

In our experiments, we used 2 data sets — CMU
20 Newsgroups data and Yahoo! News data. For
each dataset, we ran 4 algorithms — Seeded-KMeans,
Constrained-KMeans, COP-KMeans, and Random-
KMeans. In Random-KMeans, the K means were ini-
tialized by taking the mean of the entire data and ran-
domly perturbing it K times (Fayyad et al., 1998).
This technique of initialization has given good results
in unsupervised KMeans in previous work (Dhillon
et al., 2001). We compared the performance of
these methods on the 2 datasets with varying seeding
and noise levels, using 10-fold cross validation. For
each dataset, SPKMeans was used as the underlying
KMeans algorithm for all the 4 KMeans variants.

4.1 Datasets

The 20 Newsgroups dataset (20 Newsgroups) is a col-
lection of 20,000 messages, collected from 20 differ-
ent Usenet newsgroups — 1000 messages from each of
the 20 newsgroups were chosen, and the dataset was
partitioned by newsgroup name.® In our experiments,
we used the MC toolkit* for creating the vector space
model for text documents. For the 20 Newsgroups
dataset, MC generated a vocabulary of 21,631 words
— each message is represented as a (sparse) vector in
a 21,631 dimensional space, with TFIDF weighting.
The Yahoo! News K-series (Yahoo! News) dataset® is
a collection of 2340 Yahoo! news articles belonging
to one of 20 different Yahoo! categories. The vec-
tor space model of the K1 set from the Yahoo! K-
series has 12,229 words — the data-points reside in a
12,229 dimensional space and are TFIDF weighted.
For the text datasets, “non-content-bearing” stop-
words, high-frequency words and low-frequency words
were removed, following the methodology of Dhillon et
al. (2001).

From the original 20 Newsgroups dataset, some other
datasets were generated: (1) Small-20 Newsgroups
— contains a random subsample of 100 documents
from each of the 20 newsgroups (2) Different-3
Newsgroups — selects 3 very different newsgroups
from the original 20 Newsgroups dataset (alt.atheism,
rec.sport.baseball, sci.space) (3) Same-3 Newsgroups
— selects 3 very similar newsgroups from the original
20 Newsgroups dataset (comp.graphics, comp.os.ms-
windows, comp.windows.x). The dataset Small-20
Newsgroups was created to study the effect of
dataset size on the performance of the algorithms.
Different-3 Newsgroups and Same-3 Newsgroups
were generated to study the effect of data separability
on the algorithms.

4.2 Evaluation Measures

We have used two evaluation measures in our exper-
iments. One is the objective function of KMeans —
for SPKMeans, the higher the objective function, the
better is the performance. This measure does not
take into account the user-labeling of the data. The
other measure is mutual information (MI), which de-
termines the amount of statistical information shared
by the random variables representing the cluster and
the (user-labeled) class assignments of the data points.
In this work, MI is computed following the methodol-
ogy of Strehl et al. (2000).

3http://www.ai.mit.edu/people/jrennie/20_newsgroups
*http://www.cs.utexas.edu/users/jfan /dm
Sftp://ftp.cs.umn.edu/users/boley/PDDPdata
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Figure 3. Comparison of MI of algorithms on 20

Newsgroups data, noise fraction = 0

4.3 Learning curves with cross validation

For all the algorithms, on each dataset, we have gener-
ated learning curves with 10-fold cross-validation. For
studying the effect of seeding, 10% of the dataset is
set aside as the test set at any particular fold. The
training sets at different points of the learning curve
are obtained from the remaining 90% of the data by
varying the seed fraction from 0.0 to 1.0 in steps of 0.1,
and the results at each point on the learning curve are
obtained by averaging over 10 folds. The clustering al-
gorithm is run on the whole dataset, but the MI mea-
sure is calculated only on the test set. For studying the
effects of noise in the seeding, similar learning curves
are generated by keeping a fixed fraction of seeding
and varying the noise fraction.

4.4 Seed and Noise generation

In Seeded-KMeans and Constrained-KMeans, the
seeds at any point on the learning curve were se-
lected from the dataset according to the corresponding
seed fraction. In COP-KMeans, the must-link and the
cannot-link constraints are generated from the speci-
fied seeds. The K cluster centers are chosen randomly,
but as each one is chosen, any must-link constraints
that it participates in are enforced, i.e., all items that
the chosen instance must link to are assigned to the
new cluster, so that they cannot later be chosen as the
center of another cluster (Wagstaff et al., 2001).

In a real-life application, since the semi-supervision
will be provided by a human user, there is a chance
that the supervision may be erroneous in some cases.
We simulate such labeling noise in our experiments by
changing the labels of a fraction of the seed examples
to a random incorrect value.

5. Analysis of Results

MI with respect to seeding: For the zero-noise
case, the semi-supervised algorithms perform better
than the unsupervised algorithm in terms of the MI
measure (Figs. [3,4,5]), irrespective of the size of the
dataset. Constrained-KMeans performs at least as
good as the Seeded-KMeans, since the former uses the
correct user bias introduced by the user-labeled seeds
throughout the execution of the algorithm in the zero-
noise case. Though both Constrained-KMeans and
COP-KMeans treat the seeds as constraints, the fact
that Constrained-KMeans uses all the seeds to initial-
ize clusters, as opposed to COP-KMeans which does
not necessarily do that, results in the former having
better performance in most cases, with zero-noise. In
fact, the effect of seeding seems to be so important
that in some cases (Fig. 4), Seeded-KMeans performs
significantly better than COP-KMeans.

Objective function with respect to seeding:
Though the MI measure increases with an increase
in seed fraction for the semi-supervised algorithms,
the behavior of the objective function will depend on
whether the user bias provided by the user-labeled
seeds is consistent with the assumptions of KMeans. If
the category structure created by the user-labeling of
the dataset satisfies the KMeans assumptions, then the
data partition induced by seeding will be close to the
optimal partition, and KMeans is known to converge
to a good local optimum in this case (Fig. 6) (Devroye
et al., 1996). On the other hand, if the user bias is
inconsistent with the KMeans assumptions, then con-
strained seeding will result in convergence to a sub-
optimal solution (Fig. 7). Note that since Seeded-
KMeans does not necessarily maintain the same as-
signments for the seed points in subsequent iterations,
its objective function does not decrease due to conflict
in bias; however, since Constrained-KMeans and COP-
KMeans keep the seeds as constraints, their objec-
tive function decreases with increase in seeding. Since
Random-KMeans never uses the seeds, its behavior is
independent of this conflict.

Dataset separability: Semi-supervision gives sub-
stantial improvement over unsupervised clustering for
datasets that are difficult to cluster, in the sense
that there is a lot of overlap between the clus-
ters, e.g., Same-3 Newsgroups, (Fig. 8), whereas for
datasets that are easily separable, e.g., Different-3
Newsgroups (Fig. 9), the improvement over Random-
KMeans is marginal. If the dataset is easily separable,
then there are not many bad local minima and even
Random-KMeans can easily find the cluster structure.
However, for datasets with overlapping cluster struc-
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Figure 5. Comparison of MI of algorithms on Yahoo! data,
noise fraction = 0

ture, seeding seems to be an important factor in help-
ing the algorithm find a good clustering. The MI mea-
sure for the separable dataset is in general much higher
than for the overlapping dataset even with high seed-
ing, because the latter one is a harder problem to solve.

Performance with incomplete seeding: We also
ran initial experiments with incomplete seeding, where
seeds are not specified for every cluster — from Fig. 10,
it can be seen that the MI metric did not decrease
substantially with increase in the number of unseeded
categories, showing that the semi-supervised clustering
algorithms could extend the seed clusters and generate
more clusters, in order to fit the regularity of the data.

Performance with respect to noise: As noise is in-
creased, the performance of Constrained-KMeans and
COP-KMeans starts to degrade compared to Seeded-
KMeans. COP-KMeans and Constrained-KMeans
keep using the same noisy seeds in every subsequent
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Figure 6. Comparison of objective functions of algorithms
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iteration of the algorithm, whereas Seeded-KMeans
can abandon noisy seed labels in subsequent iterations
(Fig. 11). So Seeded-KMeans is quite robust against
noisy seeding, and can take full advantage of the seed-
ing if it gives the algorithm a good initialization.

The statistical significance of the conclusions in this
section have been tested across various datasets. For
example, on the Small-20 Newsgroup dataset, the
conclusions are significant for seed fraction >= 0.2
(p < 0.001) for the first three aspects discussed above,
using two-tailed paired t-test. For the noise experi-
ments, the conclusion is significant for noise fraction
< 0.5 (p < 0.001).

6. Related Work

Several semi-supervised classification algorithms have
shown improvements in classification accuracy over
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purely supervised algorithms, e.g. co-training (Blum
& Mitchell, 1998), transductive Support Vector Ma-
chines (SVMs) (Joachims, 1999), and semi-supervised
EM (Ghahramani & Jordan, 1994; Nigam et al., 2000).

In semi-supervised clustering, previous work has been
done on the use of labeled data to aid clustering by
modifying clustering objective functions to incorpo-
rate labeled data (Demiriz et al., 1999), iterative user
feedback (Cohn et al., 2000), and conditional distri-
butions in an auxiliary space (Sinkkonen & Kaski,
2000). Previous work on cluster initialization includes
comparisons of data-dependent and data-independent
initialization techniques (Meila & Heckerman, 1998),
and estimation of the modes of the data distribution
for good initialization (Fayyad et al., 1998).
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Figure 10. Comparison of MI of algorithms on 20
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7. Future Work

The connection with the general EM framework and
the interpretation of semi-supervision in terms of con-
ditional distributions widens the applicability of the
proposed methods to a variety of clustering problems.
The most important of these is the concept of proba-
bilistic or soft seeding — where semi-supervision gives
the algorithm the probabilities of the seeds belong-
ing to the various cluster labels, rather than explicitly
stating which cluster it belongs to. In terms of the
conditional distribution, we do not need the assump-
tion in Eqn. 4 anymore, since the conditional distribu-
tions can now be any multinomial distribution defined
over the K cluster labels. Semi-supervision by prob-
abilistic seeding could be applicable to many learning
tasks, such as volcano detection in planet-surface im-
ages (Smyth et al., 1994).



8. Conclusion

Semi-supervised clustering uses some labeled data to
aid search and bias the partitioning of unlabeled
data into conceptual groups. Seeded-KMeans and
Constrained-KMeans are semi-supervised clustering
algorithms that use labeled data to form initial clusters
and constrain subsequent cluster assignment. Both
methods can be viewed as instances of the EM algo-
rithm, where labeled data provides prior information
about the conditional distributions of hidden category
labels. Experimental results demonstrate the advan-
tages of these methods over standard random seeding
and COP-KMeans (Wagstafl et al., 2001), an alterna-
tive semi-supervised KMeans algorithm. In particular,
seeding without constraints is a robust semi-supervised
method that is less sensitive to noise and imperfections
in the supervised data.
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