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1.1 Introduction

Understanding natural language presents many challenging problems that lend

themselves to statistical relational learning (SRL). Historically, both logical and

probabilistic methods have found wide application in natural language processing

(NLP). NLP inevitably involves reasoning about an arbitrary number of entities

(people, places, and things) that have an unbounded set of complex relationships

between them. Representing and reasoning about unbounded sets of entities and

relations has generally been considered a strength of predicate logic. However, NLP

also requires integrating uncertain evidence from a variety of sources in order

to resolve numerous syntactic and semantic ambiguities. Effectively integrating

multiple sources of uncertain evidence has generally been considered a strength of

Bayesian probabilistic methods and graphical models. Consequently, NLP problems

are particularly suited for SRL methods that combine the strengths of first-order

predicate logic and probabilistic graphical models. In this article, we review our

recent work (Bunescu and Mooney [2004]) on using Relational Markov Networks
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(RMNs) (Taskar et al. [2002]) for information extraction, the problem of identifying

phrases in natural language text that refer to specific types of entities (Cardie

[1997]). We use the expressive power of RMNs to represent and reason about several

specific relationships between candidate entities and thereby collectively identify

the appropriate set of phrases to extract. We present experiments on learning to

extract protein names from biomedical text, which demonstrate the advantage of

this approach over existing IE methods.

The remainder of the article is organized as follows. In Section 1.2, we review the his-

tory of logical and probabilistic approaches to NLP, and discuss the unique suitabil-

ity of SRL for NLP. Section 1.3 introduces the problem of information extraction,

followed by Section 1.4, where we summarize our work on collective information

extraction using RMNs. In Section 1.5, we examine challenging problems for future

research on SRL for NLP. In Section 1.6, we present our final conclusions.

1.2 Background on Natural Language Processing

Early research in NLP focused on symbolic techniques in which the knowledge

required for understanding and generating language consisted of manually writ-

ten production rules, semantic networks, and/or axioms in predicate logic (Allen

[1987]). The semantic analysis of language was a particular focus of NLP research

in the 1970’s, with researchers exploring tasks ranging from responding to com-

mands and answering questions in a micro-world (Winograd [1972]) to answering

database queries (Woods [1977]) and understanding short stories (Schank and Ries-

beck [1981]). These early systems could perform impressive semantic interpretation

and inference when understanding particular sentences or stories; however, they

tended to require tedious amounts of application-specific knowledge-engineering

and were therefore quite brittle and not easily extended to new texts or new appli-

cations.

Disenchantment with the knowledge-engineering requirements and brittleness of

symbolic, manually-developed NLP systems grew. Meanwhile, researchers in speech

recognition started to obtain promising results using statistical methods trained

on large annotated corpora (Jelinek [1976]). Eventually, statistical methods came

to dominate speech recognition (Jelinek [1998]), and this development began to

motivate the application of similar methods to other aspects of NLP, such as part-

of-speech (POS) tagging (Church [1988]).

During the early 1990’s, research in computational linguistics underwent a dramatic

paradigm shift. Statistical learning methods that automatically acquire knowledge

for language processing from empirical data largely supplanted systems based on

human knowledge engineering (Hirschberg [1998], Manning and Schütze [1999]).

However, in order to avoid the difficult problems of detailed semantic interpretation,

NLP research focused on building robust systems for simpler tasks, such as POS

tagging, syntactic parsing, word-sense disambiguation, and information extraction

of specific types of entities.
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Many of the methods used in statistical NLP are fundamentally SRL techniques

since they perform some form of collective classification on unbounded length

strings. Strings can be seen as simple instances of relational data where the

individual items are characters, words, or tokens and the single relation “after”

holds between adjacent items. Many NLP tasks, such as POS tagging, phrase

chunking (Ramshaw and Marcus [1995]), and information extraction (e.g. named

entity tagging), can be viewed as sequence labelling problems in which each word

is assigned one of a small number of class labels. The label of each word typically

depends on the labels of adjacent words in the sentence and collective inference

must be performed to assign the overall most probable combination of labels to all

of the words in the sentence. Statistical sequence models such as Hidden Markov

Models (HMMs) (Rabiner [1989]) or Conditional Random Fields (CRFs) (Lafferty

et al. [2001]) are used to model the data and some form of the Viterbi dynamic

programming algorithm (Viterbi [1967]) is used to efficiently perform the collective

classification. However, in order to develop systems that accurately and robustly

perform natural language analysis, we believe that more advanced SRL methods

are needed. In this paper, we explore the application of an alternative SRL method

to the natural language task of information extraction. We introduce the task in

the following section and then present our recent SRL approach.

1.3 Information Extraction

Information extraction (IE), locating references to specific types of items in nat-

ural language documents, is an important task with many practical applications.

Typical examples include identifying various “named entities” such as names of

people, companies, and locations. In this paper, we consider the IE task of iden-

tifying names of human proteins in abstracts of biomedical journal articles. Fig-

ure 1.1 shows part of a sample abstract highlighting the protein names to be

identified. This task is an important part of mining the scientific literature in or-

der to build structured databases of existing biological knowledge. In particular,

by mining 753,459 abstracts on the human organism from the Medline repository

(http://www.ncbi.nlm.nih.gov/entrez/) we have extracted a database of 6,580 in-

teractions among 3,737 human proteins. The details of this database have been

published in the biological literature (Ramani et al. [2005]) and it is available on

the web at http://bioinformatics.icmb.utexas.edu/idserve.

Production of nitric oxide ( NO ) in endothelial cells is regulated by direct

interactions of endothelial nitric oxide synthase ( eNOS ) with effector proteins such

as Ca2+ – calmodulin . Here we have ... identified a novel 34 kDa protein , termed

NOSIP ( eNOS interaction protein ) , which avidly binds to the carboxyl terminal

region of the eNOS oxygenase domain .

Figure 1.1 Medline abstract with all protein names emphasized.
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In the simplest case, protein name identification can be treated as a sequence

labeling problem in which each word (token) in the text is classified as either part

of a protein name or not part of a protein name. As long as protein names are not

immediately contiguous (a constraint consistently satisfied in the more than 1,000

human-annotated abstracts we have examined), this labeling allows immediate

recovery of all substrings constituting protein names. However, in practice, a larger

set of word labels can result in more accurate extraction. In particular, we found

that five word labels: Begin (the first word in a multi-word name), End (the last

word in a multi-word name), Inside (an internal word in a multi-word name), Single

(a word corresponding to a single-word name), and Other (a word that is not part

of a name), gave the best empirical results by creating word classes with the most

easily captured regularities.

In a recent follow-up to previously published experiments comparing a wide variety

of IE-learning methods (including HMM, SVM, MaxEnt, and rule-based methods)

on the task of tagging references to human proteins in Medline abstracts (Bunescu

et al. [2005]), CRFs were found to out-perform competing techniques (Ramani et al.

[2005]). However, although CRFs capture the dependence between the labels of

adjacent words, it does not adequately capture long-distance dependencies between

potential extractions in different parts of a document. For example, in our protein-

tagging task, repeated references to the same protein are common. If the context

surrounding one occurrence of a phrase is very indicative of it being a protein, then

this should also influence the tagging of another occurrence of the same phrase in

a different context which is not typical of protein references. Consequently, more

complex SRL methods that can capture such dependencies may result in more

accurate information extraction. In the following section we show how RMNs can be

used to model long-distance dependencies in the context of information extraction

(for two recent alternative approaches, see the skip-chain CRFs introduced in

(Sutton and McCallum [2004]) and the Gibbs sampling method from (Finkel et al.

[2005])).

1.4 Collective Information Extraction with RMNs

In this section, we present our research on using RMNs to collectively extract all of

the entities in a particular document. In particular, we have tested our approach on

the difficult problem of identifying names of human proteins in biomedical journal

abstracts. Unlike proteins in some other organisms (e.g. yeast), human proteins

have no standardized nomenclature, making them particularly difficult to recognize

amongst the variety of entity types referenced in biomedical text. One important

source of potential evidence is the correlations between the labels of repeated

phrases inside a document, as well as between acronyms and their corresponding

long form. In both cases, the mentioned phrases tend to have the same entity

label. For example, Figure 1.2 shows part of an abstract from Medline, an online

database of biomedical articles. In this abstract, the protein referenced by “rpL22”
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is first introduced by its long name “ribosomal protein L22”, followed by the short

name “rpL22” between parentheses. The presence of the word “protein” is a very

good indicator that the entire phrase “ribosomal protein L22” is a protein name. Also,

“rpL22” is an acronym of “ribosomal protein L22”, which increases the likelihood that

it too is a protein name. The same name “rpL22” occurs later in the abstract in

contexts which do not indicate so clearly the entity type, however we can use the

fact that repetitions of the same name tend to have the same type inside the same

document.

The control of human ribosomal protein L22 (rpL22 ) to enter into the nucleolus

and its ability to be assembled into the ribosome is regulated by its sequence .

The nuclear import of rpL22 depends on a classical nuclear localization signal

of four lysines at positions 13 - 16 . RpL22 normally enters the nucleolus via

a compulsory sequence of KKYLKK ( I - domain , positions 88 - 93 ) ... Once it

reaches the nucleolus , the question of whether rpL22 is assembled into the

ribosome depends upon the presence of the N - domain .

Figure 1.2 Medline abstract with all protein names emphasized.

The capitalization pattern of the name itself is another useful indicator, nevertheless

it is not sufficient by itself, as similar patterns are also used for other types of

biological entities such as cell types or aminoacids. Therefore, correlations between

the labels of repeated phrases, or between acronyms and their long form can

provide additional useful information. Our intuition is that a method that could use

this kind of information would show an increase in performance, especially when

doing extraction from biomedical literature, where phenomena like repetitions and

acronyms are pervasive. This type of document-level knowledge can be captured

using Relational Markov Networks (RMNs), a version of undirected graphical

models which have already been successfully used to improve the classification of

hyper-linked web pages (Taskar et al. [2002]).

The rest of this section is organized as follows. In Sections 1.4.1 and 1.4.2 we de-

scribe the input to our named entity extractor in terms of a set of candidate entities

and their features. Subsequent sections introduce the RMN framework for entity

recognition (representation, inference and learning), ending with experimental re-

sults in Section 1.4.8.

1.4.1 Candidate Entities

Typically, as described in section 1.3, entity recognition has been approached by

classifying individual tokens. Bunescu and Mooney [2004] considered a different

approach, where candidate phrases in a document are classified according to the

desired set of entity types. An advantage of using phrase classification is that it

allows for phrase-based features such as the text of the candidate phrase, or its

similarity with dictionary entries. However, phrase classification requires an initial
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set of candidate entity phrases. Considering as candidate entities all contiguous

word sequences from a document would lead to a quadratic number of phrases,

which would adversely affect the time complexity of the extraction algorithm. For

our task, there are various heuristics that can significantly reduce the size of the

candidate set; two of these are listed below:

H1: In general, named entities have limited length. Therefore, one simple way

of creating the set of candidate phrases is to compute the maximum length of all

annotated entities in the training set, and then consider as candidates all word

sequences whose length is up to this maximum length. This is also the approach

followed in SRV (Freitag [1998]).

H2: In the task of extracting protein names from Medline abstracts, we noticed

that, like most entity names, almost all proteins in our data are base noun phrases or

parts of them. Therefore, such substrings are used to determine candidate entities.

To avoid missing options, we adopt a very broad definition of base noun phrase

– a maximal contiguous sequence of tokens with their part-of-speech restricted

to nouns, gerund verbs, past-participle verbs, adjectives, numbers and dashes.

The complete set of POS tags is {”JJ”, ”VBN”, ”VBG”, ”POS”, ”NN”, ”NNS”,

”NNP”, ”NNPS”, ”CD”, ”–”} (using the Treebank notation (Marcus et al. [1993])).

Also, the last word (the head) of a base noun phrase is constrained to be either a

noun, or a number. Candidate extractions then consist of base NPs, together with

all their contiguous subsequences headed by a noun or number.

1.4.2 Entity Features

The set of features associated with each candidate is based on the feature templates

introduced in (Collins [2002]), used there for training a re-ranking algorithm on the

extractions returned by a maximum-entropy tagger. Many of these features use the

concept of word type, which allows a different form of token generalization than

POS tags. The short type of a word is created by replacing any maximal contiguous

sequences of capital letters with ‘A’, of lower-case letters with ‘a’, and of digits with

‘0’. For example, the word TGF-1 would be mapped to type A-0.

Consequently, each token position i in a candidate extraction provides three types

of information: the word itself wi, its POS tag ti, and its short type si. The full

set of features types is listed in Table 1.1, where we consider a generic candidate

extraction as a sequence of n + 1 words w0w1...wn.

Each feature template instantiates numerous features. For example, the candi-

date extraction “HDAC1 enzyme” has the head word HD=enzyme, the short type

ST=A0 a, the prefixes PF=A0 and PF=A0 a, and the suffixes SF=a and SF=A0 a.

All other features depend on the left or right context of the entity. Feature values

that occur less than three times in the training data are filtered out.
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Table 1.1 Feature Templates.

Description Feature Template Description Feature Template

Text / Head w0w1...wn / wn Short Type s0s1...sn

Bigram Left z−1z0 Bigram Right znzn+1

(4 bigrams) where z ∈ {w, s} (4 bigrams) where z ∈ {w, s}

Trigram Left z−2z−1z0 Trigram Right znzn+1zn+2

(8 trigrams) where z ∈ {w, s} (8 trigrams) where z ∈ {w, s}

POS Left t−1 POS Right tn+1

Prefix s0 s0s1 ... Suffix sn sn−1sn ...

(n+1 prefixes) s0s1...sn+1 (n+1 suffixes) s0s1...sn+1

1.4.3 The RMN Framework for Entity Recognition

Given a collection of documents D, we associate with each document d ∈ D a set

of candidate entities d.E, in our case a restricted set of token sequences from the

document as given by H2 (Section 1.4.1). Each entity e ∈ d.E is characterized by a

predefined set of boolean attributes e.F (Section 1.4.2), the same for all candidate

entities. One particular attribute is e.label which is set to 1 if e is considered a valid

extraction, and 0 otherwise. In this document model, labels are the only hidden

variables, and the inference procedure will try to find a most probable assignment

of values to labels, given the current model parameters and the values of all other

variables.

Each document is associated with a factor graph (Kschischang et al. [2001]), which

is a bipartite graph containing two types of nodes:

Variable Nodes correspond directly to the labels of all candidate entities in the

document.

Potential Nodes model the correlations between two or more entity attributes.

For each such correlation, a potential node is created that is linked to all variable

nodes involved. This is equivalent to creating a clique in the corresponding Markov

random field.

The types of correlations captured by factor graphs (see Figure 1.4 for some

examples) are specified by matching clique templates against the entire set of

candidate entities d.E. A clique template is a procedure that finds all subsets of

entities satisfying a given constraint, after which, for each entity subset, it connects

through a potential node all the variable nodes corresponding to a selected set of

attributes. Formally, there is a set of clique templates C, with each template c ∈ C

specified by:

1. A matching operator Mc for selecting subsets of entities, Mc(E) ⊆ 2E

2. A selected set of features Sc = 〈Xc, Yc〉, the same for all subsets of entities

returned by the matching operator. Xc denotes the observed features, while Yc

refers to the hidden labels.
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3. A clique potential φc which gives the compatibility of each possible configuration

of values for the features in Sc, s.t. φc(s) ≥ 0,∀s ∈ Sc.

Given a set E of nodes, Mc(E) consists of subsets of entities whose attribute nodes

Sc are to be connected in a clique. In previous applications of RMNs, the selected

subsets of entities for a given template have the same size; however, some of our

clique templates may match a variable number of entities. The set Sc may contain

the same attribute from different entities. Usually, for each entity in a matching set,

its label is included in Sc. All these will be illustrated with examples in Sections 1.4.4

and 1.4.5 where the clique templates used in our model are described in detail.

Depending on the number of hidden labels Yc selected by a clique c, we define two

categories of clique templates:

Local Templates are all templates c ∈ C for which |Yc| = 1. They model the

correlations between an entity’s observed features and its label.

Global Templates are all templates c ∈ C for which |Yc| > 1. They capture

influences between multiple entities from the same document.

After the factor graph model for a document d has been completed with potential

nodes from all templates, the probability distribution over the random field of

hidden entity labels d.Y given the observed features d.X is given by the Gibbs

distribution:

P (d.Y |d.X) =
1

Z(d.X)

∏

c∈C

∏

G∈Mc(d.E)

φC(G.Xc, G.Yc) (1.1)

where Z(d.X) is the normalizing partition function:

Z(d.X) =
∑

Y

∏

c∈C

∏

G∈Mc(d.E)

φC(G.Xc, G.Yc) (1.2)

There are two problems that need to be addressed when working with RMNs:

1. Inference: Usually, two types of quantities are needed from an RMN model:

The marginal distribution for a hidden variable, or for a subset of hidden

variables in the graphical model.

The most probable assignment of values to all hidden variables in the model.

2. Learning: As the structure of the RMN model is already defined by its clique

templates, learning refers to finding the clique potentials that maximize the likeli-

hood over the training data. Inference is usually performed multiple times during

the learning algorithm, which means that an accurate, fast inference procedure is

doubly important.

The actual algorithms used for inference and learning will be described in Sec-

tions 1.4.6 and 1.4.7 respectively.



1.4 Collective Information Extraction with RMNs 9

1.4.4 Local Clique Templates

As described in the previous section, the role of local clique templates is to model

correlations between an entity’s observed features (see Table 1.1) and its label. For

each binary feature f we introduce a local template LTf . Given a candidate entity

e, with the observed feature e.f = 1, the template LTf creates a potential node

linked to the variable node e.label. As an example, Figure 1.3 shows that part of the

factor graph which is generated around the entity label for “HDAC1 enzyme”, with

potential nodes for the head feature (HD), prefix features (PF) and suffix features

(SF). Variable nodes are shown as empty circles and potential nodes are figured

as black squares. The potential φf associated with all potential nodes created by

template LTf would consist in a 1 × 2 table, as e.f is known to be 1, and e.label

has cardinality 2 (assuming only one entity type is to be extracted, we need only

two values for the label attribute).

e label

φHD=enzyme

φPF=A0

φPF=A0_a

φSF=a

φSF=A0_a

...

Figure 1.3 Factor Graph for local templates.

1.4.5 Global Clique Templates

Global clique templates enable us to model hypothesized influences between entities

from the same document. They create potential nodes connected to the label nodes

of two or more entities. In our experiments we use three global templates:

Overlap Template (OT): No two entity names overlap in the text i.e if the

span of one entity is [s1, e1] and the span of another entity is [s2, e2], and s1 ≤ s2,

then e1 < s2.

Repeat Template (RT): If multiple entities in the same document are repeti-

tions of the same name, their labels tend to have the same value (i.e. most of them

are protein names, or most of them are not protein names). In Section 1.4.5.2 we

discuss situations in which repetitions of the same protein name are not tagged as

proteins, and design an approach to handle this.

Acronym Template (AT): It is common convention that a protein is first

introduced by its long name, immediately followed by its short-form (acronym) in

parentheses.
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In Figure 1.4 we show the factor graphs created by these global templates, each of

which is explained in the following sections.

u v

φOT

1 u2u v1 2v

φ φ
u u v v

or or

or or

RT
φ

un vm
... ...

1 u2u

φ
u v

or

or

un

...

φAT

(a) Overlap Factor Graph (b) Repeat Factor Graph (c) Acronym Factor Graph

Figure 1.4 Factor Graphs for global templates.

1.4.5.1 The Overlap Template

The definition of a candidate extraction from Section 1.4.1 leads to many overlapping

entities. For example, “glutathione S - transferase” is a base NP, and it generates five

candidate extractions: “glutathione”, “glutathione S”, “glutathione S - transferase”, “S -

transferase”, and “transferase”. If “glutathione S - transferase” has label-value 1, the other

four entities should all have label-value 0, because they overlap with it.

This type of constraint is enforced by the overlap template by creating a potential

node for each pair of overlapping entities and connecting it to their label nodes,

as shown in Figure 1.4(a). To avoid clutter, all entities in this and subsequent

factor graphs stand for their corresponding labels. The potential function φOT is

manually set so that at most one of the overlapping entities can have label-value 1,

as illustrated in Table 1.2.

Table 1.2 Overlap Potential.

φOT e1.label = 0 e1.label = 1

e2.label = 0 1 1

e2.label = 1 1 0

Continuing with the previous example, because “glutathione S” and “S - transferase” are

two overlapping entities, the factor graph model will contain an overlap potential

node connected to the label nodes of these two entities.
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1.4.5.2 The Repeat Template

We could specify the potential for the repeat template in a 2 × 2 table, this time

leaving the table entries to be learned, given that assigning the same label to

repetitions is not a hard constraint. However we can do better by noting that

the vast majority of cases where a repeated protein name is not also tagged as a

protein happens when it is part of a larger phrase that is tagged. For example,

“HDAC1 enzyme” is a protein name, therefore “HDAC1” is not tagged in this phrase,

even though it may have been tagged previously in the abstract where it was not

followed by “enzyme”. We need a potential that allows two entities with the same

text to have different labels if the entity with label-value 0 is inside another entity

with label-value 1. But a candidate entity may be inside more than one “including”

entity, and the number of including entities may vary from one candidate extraction

to another. Using the example from Section 1.4.5.1, the candidate entity “glutathione”

is included in two other entities: “glutathione S” and “glutathione S - transferase”.

In order to instantiate potentials over a variable number of label nodes, we introduce

a logical OR clique template that matches a variable number of entities. When

this template matches a subset of entities e1, e2, ..., en, it will create an auxiliary

OR entity eOR, with a single attribute eOR.label. The potential function φOR

is manually set so that it assigns a non-zero potential only when eOR.label =

e1.label∨e2.label∨ ...∨en.label. The potential nodes are only created as needed, e.g.

when the auxiliary OR entity is required by repeat and acronym clique templates.

Figure 1.4(b) shows the factor graph for a sample instantiation of the repeat

template using the OR template. Here, u and v represent two same-text entities, u1,

u2, ... un are all entities that include u, and v1, v2, ..., vm are entities that include v.

The potential function φRT can either be manually preset to prohibit unlikely label

configurations, or it can be learned to represent an appropriate soft constraint. In

our experiments, it was learned since this gave slightly better performance.

Following the previous example, suppose that the phrase “glutathione” occurs inside

two base NPs in the same document, “glutathione S - transferase” and “glutathione

antioxidant system”. Then the first occurrence of “glutathione” will be associated with

the entity u, and correspondingly its including entities will be u1 = “glutathione S”

and u2 = “glutathione S - transferase”. Similarly, the second occurrence of “glutathione”

will be associated with the entity v, with the corresponding including entities v1 =

“glutathione antioxidant” and v2 = “glutathione antioxidant system”.

1.4.5.3 The Acronym Template

One approach to the acronym template would be to use an extant algorithm for

identifying acronyms and their long forms in a document, and then define a potential

function that would favor label configurations in which both the acronym and its

definition have the same label. One such algorithm is described by Schwartz and

Hearst [2003], achieving a precision of 96% at a recall rate of 82%. However, because

this algorithm would miss a significant number of acronyms, we have decided to
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implement a softer version as follows: detect all situations in which a single word is

enclosed between parentheses, such that the word length is at least 2 and it begins

with a letter. Let v denote the corresponding entity. Let u1, u2, ..., un be all entities

that end exactly before the open parenthesis. If this is a situation in which v is an

acronym, then one of the entities ui is its corresponding long form. Consequently,

we use a logical OR template to introduce the auxiliary entity uOR, and connect it

to v’s node label through an acronym potential φAT , as illustrated in Figure 1.4(c).

For example, consider the phrase “the antioxidant superoxide dismutase - 1 ( SOD1 )”.

“SOD1” satisfies our criteria for acronyms, thus it will be associated with the entity

v in Figure 1.4(c). The candidate long forms are u1 = “antioxidant superoxide dismutase

- 1”, u2 = “superoxide dismutase - 1”, and u3 = “dismutase - 1”.

1.4.6 Inference in Factor Graphs

In our setting, given the clique potentials, the inference step for the factor graph

associated with a document involves computing the most probable assignment of

values to the hidden labels of all candidate entities:

d.Y ∗ = arg max
d.Y

P (d.Y |d.X) (1.3)

where P (d.Y |d.X) is defined as in Equation 1.1. A brute-force approach is excluded,

since the number of possible label configurations is exponential in the number

of candidate entities. The sum-product algorithm (Kschischang et al. [2001]) is a

message-passing algorithm that can be used for computing the marginal distribution

over the label variables in factor graphs without cycles, and with a minor change

(replacing the sum operator used for marginalization with a max operator) it can

also be used for deriving the most probable label assignment. In our case, in order

to get an acyclic graph, we would have to use local templates only. However, it

has been observed that the algorithm often converges in general factor graphs, and

when it converges, it gives a good approximation to the correct marginals. The

algorithm works by altering the belief at each label node by repeatedly passing

messages between the node and all potential nodes connected to it (Kschischang

et al. [2001]).

1.4.7 Learning Potentials in Factor Graphs

Following a maximum likelihood estimation, we shall use the log-linear representa-

tion of potentials:

φC(G.Xc, G.Yc) = exp{wcfc(G.Xc, G.Yc)} (1.4)

Let w be the concatenated vector of all potential parameters wc. One approach to

finding the maximum-likelihood solution for w is to use a gradient-based method,

which requires computing the gradient of the log-likelihood with respect to potential

parameters wc. It can be shown that this gradient is equal with the difference
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between the empirical counts of fc and their expectation under the current set of

parameters w.

∇L(w,D) =
∑

d∈D

fc(d.X, d.Y ) −
∑

d∈D

∑

d.Y ′

fc(d.X, d.Y ′)Pw(d.Y ′|d.X) (1.5)

The expectation in the second term is expensive to compute, since it requires sum-

ming over all possible configurations of candidate entity labels from a given docu-

ment. To circumvent this complexity, we used the voted perceptron approach (Fre-

und and Schapire [1999]), which can be seen as approximating the full expectation

of fc with the fc counts for the most likely labeling under the current parameters

w.

∇L(w,D) ≈
∑

d∈D

fc(d.X, d.Y ) −
∑

d∈D

fc(d.X, d.Yw) (1.6)

The Voted Perceptron algorithm is detailed in Table 1.3. At each step i in the

Table 1.3 The Voted Perceptron Algorithm.

Input: a set of documents D, number of epochs T , learning rate η.

set parameters w0 = 0, counter i = 0

for t = 1...T

for every document d ∈ D

d.Yi = arg maxd.Y ′ Pwi
(d.Y ′|d.X)

wi+1 = wi + η ∗ [f(d.X, d.Y ) − f(d.X, d.Yi)]

i = i + 1

Output: w = 1

T |D|

P

i
wi

algorithm, inference is performed using the current parameters wi, which results

in the most likely labeling d.Yi. The parameters are then updated based on the

difference between the features counts computed on the ideal labeling d.Y and those

computed on the current most likely labeling d.Yi. The final set of parameters is

the average taken over the parameters at all steps i in the algorithm. In all our

experiments, the perceptron was run for 50 epochs, with a learning rate set at 0.01.

1.4.8 Experimental Results

We have tested the RMN approach on two datasets that have been hand-tagged for

human protein names. The first dataset is Yapex1 which consists of 200 Medline

abstracts. The second dataset is Aimed2, which consists of 225 Medline abstracts

we previously annotated for evaluating systems that extract both human proteins

1. URL:www.sics.se/humle/projects/prothalt/
2. URL:ftp.cs.utexas.edu/mooney/bio-data/
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and their interactions (Bunescu et al. [2005]).

We compared the performance of three systems:

LT-RMN is the RMN approach using local templates and the overlap template.

GLT-RMN is the full RMN approach, using all local and global templates.

CRF, which uses a CRF for labeling token sequences. We used the CRF imple-

mentation from (McCallum [2002]) with the set of tags and features employed by

the Maximum-Entropy tagger described in (Bunescu et al. [2005]).

All Medline abstracts were tokenized and then POS tagged using the (Brill [1995])

tagger. Each extracted protein name in the test data was compared to the human-

tagged data, with the positions taken into account. Two extractions are considered

a match if they consist of the same character sequence in the same position in the

text.

Results are shown in Table 1.4, which presents the standard IE metrics of average

precision (percentage of extracted names that are correct), recall (percentage of

correct names that are extracted), and F-measure (harmonic mean of precision and

recall) using 10-fold cross validation.

Table 1.4 Information-Extraction Performance on Two Human Protein Corpora.

Yapex Aimed

Method Precision Recall F-m Method Precision Recall F-m

LT-RMN 70.79 53.81 61.14 LT-RMN 81.33 72.79 76.82

GLT-RMN 69.71 65.76 67.68 GLT-RMN 82.79 80.04 81.39

CRF 72.45 58.64 64.81 CRF 85.37 75.90 80.36

In terms of F-measure, the use of global templates for modeling influences between

possible entities from the same document significantly improves extraction perfor-

mance over the local approach (a one-tailed paired t-test for statistical significance

results in a p value less than 0.01 on both datasets). There is also a small improve-

ment over CRFs, with the results being statistically significant only for the Yapex

dataset, corresponding to a p value of 0.02. As expected, GLT-RMN gave a consis-

tently higher recall – additional protein names were extracted as a result of linking

them to repetitions with more informative contexts.

We hypothesize that further improvements to the LT-RMN approach and a bet-

ter inference algorithm would push the GLT-RMN performance even higher. In

(Bunescu [2004]), based on a version of the junction tree algorithm that exploits

the sparsity of the overlap potential, we show that exact inference for the LT-RMN

case can be performed efficiently, with time complexity linear in terms of the num-

ber of candidate entities. In the same work, it is shown that if the candidate entities

are given by the weak (but complete) heuristic H1, the new LT-RMN approach can

be used for returning all text positions that are unlikely to belong to a named entity.

This provides a general method for reducing the number of candidate extractions,
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which can replace the domain-dependent heuristic H2. The main drawback of this

heuristic is that sometimes it may miss true entity names - its coverage is 95.6% on

Yapex and 97.1% on Aimed. As an example, H2 assumes that a candidate entity

cannot contain parentheses, however the Yapex corpus contains a few entity names

like “V (1a) receptor”, or “interleukin 10 (IL-10) receptor”, which violate this assumption.

Instead, the local phrase model can be used to learn patterns like “allow a close

parenthesis in an entity name if it is followed by the word receptor”.

For the global model GLT-RMN, the inference procedure can be improved by using

a tree-based message propagation schedule, also known as tree reparameterization

(TRP) (Wainwright et al. [2001]). TRP has the advantage that if often converges in

cases where the sum-product algorithm fails, requiring a considerably shorter time

for convergence.

1.5 Future Research on SRL for NLP

There are a variety of promising directions for future research in applying SRL to

NLP. With respect to information extraction, in addition to identifying entities,

an important problem is extracting specific types of relations between entities. For

example, in newspaper text, one can identify that an organization is located in a

particular city or that a person is affiliated with a specific organization (Zelenko

et al. [2003]); in biomedical text, one can identify that a protein interacts with

another protein or that a protein is located in a particular part of the cell (Bunescu

and Mooney [2005], Craven and Kumlien [1999]). SRL methods may be usefully

applied to such problems since they require identifying relations between phrases

that occur in different parts of a sentence or paragraph.

The complete task of natural language understanding incorporates a wide variety

of interacting subtasks such as, speech recognition, morphology, part-of-speech

tagging, phrase chunking, syntactic parsing, word-sense disambiguation, semantic

interpretation, anaphora (e.g. pronoun) resolution, and discourse processing. Each

of these tasks requires disambiguating between numerous possibilities and resolving

each of these ambiguities interacts in complex ways with many of the others.

For example, when understanding the passage: “At the zoo, several men were

showing a group of students various types of flying animals. Suddenly, one of

the students hit the man with a bat.” one must first use the context in the

previous sentence to resolve the meaning of the word “bat” before being able to

properly attach the misleading prepositional phrase “with a bat” to the man (NP)

rather than to the hitting (VP). SRL methods hold the promise of being able to

integrate decisions at all levels of syntactic, semantic, and pragmatic processing in

order to correctly interpret natural language. Several recent projects have taken

the first steps in this direction. For example, (Sutton et al. [2004]) present a

dynamic version of a CRF that integrates part-of-speech tagging and noun-phrase

chunking into one coherent process. (Roth and Yih [2004]) present an information-

extraction approach based on linear-programming that integrates recognition of
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entities with the identification of relations between these entities. The ability of

SRL techniques to integrate uncertain evidence from many interacting problems

in order to collectively determine a globally coherent solution to all of them could

help develop a complete, robust NLP system. However, such a system would create

massive collective inference problems and would require efficient SRL methods that

could scale to very large networks.

1.6 Conclusions

The area of natural language processing includes many problems that lend them-

selves to SRL methods. Most existing statistical methods in NLP such as HMMs,

sequence CRFs and PCFGs are actually restrictive forms of SRL. More general

SRL techniques have advantages over these existing methods and hold the promise

of improving results on a number of difficult NLP problems. In this paper, we

have reviewed our research on applying SRL techniques to information extraction.

By using RMNs to capture dependencies between distinct candidate extractions

in a document, we achieved improved results on identifying names of proteins in

biomedical abstracts compared to a traditional CRF. By using the ability of SRL

to integrate disparate sources of evidence to perform collective inference over com-

plex relational data, robust NLP systems that accurately resolve many interacting

ambiguities can hopefully be developed.
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