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ien
es, 1 University Station, C0500, Austin, TX 78712Abstra
tWe propose a new algorithm for transferlearning of Markov Logi
 Network (MLN)stru
ture. An important aspe
t of our ap-proa
h is that it �rst diagnoses the providedsour
e MLN and then fo
uses on re-learningonly the in
orre
t portions. Experimentsin a pair of syntheti
 domains demonstratethat this strategy signi�
antly de
reases thesear
h spa
e and speeds up learning whilemaintaining a level of a

ura
y 
omparableto that of the 
urrent best algorithm.1. Introdu
tionTraditionalma
hine learning algorithms operate underthe assumption that learning for ea
h new task startsfrom s
rat
h, thus disregarding knowledge gained inprevious domains. Naturally, if the domains en
oun-tered during learning are related, this approa
h wouldwaste both data and 
omputer time to develop hy-potheses that 
ould be re
overed by examining andpossibly slightly modifying previously a
quired knowl-edge. The �eld of transfer learning, whi
h has re
entlygreatly in
reased in popularity, addresses the prob-lem of how to leverage previous knowledge in orderto improve the eÆ
ien
y and a

ura
y of learning ona new task that is related to the original one. Transferlearning approa
hes have been developed for a varietyof learning settings, in
luding reinfor
ement learning(Torrey et al., 2005), and Bayesian nets (Ni
ules
u-Mizil & Caruana, 2005), among others.We propose a new transfer learning algorithm forMLNs. MLNs are a powerful formalism that 
ombinesthe expressiveness of �rst-order logi
 with the 
exi-bility of probability (Ri
hardson & Domingos, 2006).There are two aspe
ts to learning an MLN|the stru
-ture and the weights. While weight learning is rela-tively qui
k, stru
ture learning is very 
omputationallyintensive. Therefore, MLN stru
ture learning, whi
h isAppearing in the ICML-06 Workshop on Stru
tural Knowl-edge Transfer for Ma
hine Learning, June 29, Pittsburgh,PA. Copyright 2006 by the author(s)/owner(s).

the fo
us of the present work, 
ould parti
ularly ben-e�t from transfer.We assume the following set-up. A sour
e MLN islearned in the original task and is provided to thelearner, along with a mapping from the predi
ates ofthe original domain to those of the target domain. Re-
overing this mapping automati
ally is another veryinteresting resear
h problem, but for now we assumethe mapping is simply given. A similar assumption ismade by Torrey et al. (2005).The 
urrent state-of-the-art stru
ture learning algo-rithm (Kok & Domingos, 2005), whi
h we will 
allAl
hemy after the open-sour
e system that implementsit1 (Kok et al., 2005), 
an start learning either froms
rat
h or from a provided MLN and 
an therefore beused for transfer. However, Al
hemy does not expli
-itly attempt to assess the similarities between tasks ortake advantage of them. As a result, it 
ould sear
hthrough an unne
essarily large number of stru
turesand take a long time to 
omplete. Our proposed al-gorithm su

essfully diagnoses the sour
e MLN andexploits the similarities between the tasks by fo
usingon relearning only the ina

urate parts. In this way, itsigni�
antly de
reases both the learning time and thenumber of hypotheses 
onsidered, while maintaining alevel of learning a

ura
y similar to that of Al
hemy.2. Ba
kground2.1. Markov Logi
 NetworksAn MLN (Ri
hardson & Domingos, 2006) 
onsists ofa set of �rst-order logi
 formulae, ea
h with a weightatta
hed, and provides a model for the joint distri-bution of a set of variables. A useful way of view-ing MLNs is as templates for produ
ing fully-groundedMarkov networks (Pearl, 1988) when a set of 
onstantsis provided. As des
ribed by Ri
hardson and Domin-gos (2006), an MLN, L, 
an be used to 
onstru
t aMarkov network by in
luding a node for ea
h ground-ing of ea
h predi
ate appearing in L and a feature for1In addition to implementing this algorithm, Al
hemyalso in
ludes 
apabilities for performing inferen
e andweight learning.
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 Networksea
h formula in L. The value of a parti
ular node isgiven by the truth value of the 
orresponding groundliteral; similarly, the value of ea
h feature is 1 if the
orresponding ground formula is true and 0 otherwise.To answer a query about the probability of a set ofground literals or formulae, one 
an perform Gibbssampling over the Markov Network. Gibbs samplingstarts by assigning a random truth value to ea
h queryliteral. It then pro
eeds in rounds, re
omputing theprobability of a ground literal X given its MarkovBlanket MBX (i.e. its neighboring nodes). As givenby Ri
hardson and Domingos (2006), this probabilityis re
omputed using the following equation:P (X = xjMBX = m) = eSX(x;m)eSX(0;m) + eSX(1;m) (1)where, if F is the set of ground formulae in whi
h Xparti
ipates, SX is de�ned as follows.SX(x;m) = Xfi2F wifi(X = x;MBx = m) (2)It is not ne
essary to fully ground the MLN in orderto perform inferen
e on it|formulae that are alreadytrivially satis�ed by the eviden
e 
an be omitted be-
ause they have no e�e
t on the value of Equation (1),and the only ground literals that need to appear inthe Markov network are the query variables and thosethat are present in the Markov blanket of a literal withan unknown value.Kok and Domingos (2005) introdu
e an algorithm forlearning MLN stru
ture that 
an start either froman empty MLN or from a previously-
onstru
ted one.Candidate 
lauses are generated by 
onsidering all pos-sible additions and deletions of literals to the exist-ing 
lauses as well as all possible sign 
ips. Twosear
h strategies are proposed|beam sear
h, whi
hmaintains a beam of best 
lauses, and shortest-�rstsear
h, whi
h 
onsiders adding shorter 
lauses beforemoving on to longer ones. Candidates are s
ored us-ing a weighted pseudo-log-likelihood measure. In thispaper, we 
ompare to the faster, beam sear
h, versionof the algorithm, whi
h we 
all Al
hemy after its opensour
e implementation (Kok et al., 2005).3. New AlgorithmRe
all that the learner is given the MLN obtained fromthe sour
e domain and a mapping from the predi
atesin the sour
e domain to those in the target domain. Inaddition, we assume that the formulae of the providedMLN are disjun
tions of literals. The learner is nottold whi
h parts of the sour
e MLN are useful in thenew task and whi
h may need to be relearned. Thus,the algorithm �rst needs to diagnose the given MLN.The general skeleton of our algorithm pro
eeds in twostages and is similar to that of Forte (Ri
hards &Mooney, 1995), whi
h revises �rst-order theories.

1. Self-Diagnosis: In this step, the algorithm in-spe
ts the given MLN and determines for ea
hformula whether it is too general, too spe
i�
, orrequires no 
hange. The purpose of this step is tofo
us the sear
h for new formulae to those partsof the MLN that truly need to be updated.2. Stru
ture Update: In this step we 
arry outthe a
tual updates to the 
lauses by spe
ializingthe ones marked as too general and generalizingthose marked as too spe
i�
.Next, we des
ribe these steps in more detail.3.1. Self-DiagnosisOne natural approa
h to self-diagnosis is to attempt touse the sour
e MLN while observing where its formulaefail. In the 
ase of Forte where the formulae are partof a �rst-order theory, this is done by attempting toprove positive examples in the data. Our self-diagnosisalgorithm pro
eeds analogously.At the onset, the learner is provided with a sour
eMLN and a relational dataset. Ea
h of the predi
atesin the target domain is examined in turn. The 
urrentpredi
ate under examination is denoted as P �. Thealgorithmperforms a slightlymodi�ed version of Gibbssampling with P � serving as a query predi
ate whosegroundings have their values set to unknown, whileeviden
e is given by the values of all other predi
ategroundings in the data. In ea
h round of sampling, inaddition to re
al
ulating the probability of a groundliteral X , the algorithm 
onsiders all 
lauses in whi
hX parti
ipates. Even though the truth value of X isset to unknown for the purposes of sampling, its valueis known from the data. Let the a
tual value of X bev (true or false).Ea
h parti
ipating 
lause C 
an be pla
ed in one offour bins with respe
t to X . For the purposes of ex-position, let � = false if X appears negated in Cand � = true if X appears non-negated in C. Fora running example, we will use the following simplerelational database: fStudent(Ann), :HasJob(Ann),Sleepy(Ann), So
iable(Ann), InClass(Ann)g whereP � = Student, X = Student(Ann), and v = true.� [Applies;Good℄The value ofX is 
ru
ial in eval-uating C, with C being true only when X = v, asin :InClass(Ann) _ Student(Ann).� [Applies;Bad℄ C is true only when X = :v, e.g.:So
iable(Ann) _ :Student(Ann).� [Does not apply;Good℄ C is true regardless ofthe value of X (i.e. it holds trivially), and � 6= v.For example, Sleepy(Ann) _ :Student(Ann).
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 Networks� [Does not apply;Bad℄ C is trivially true, and� = v, e.g. :HasJob(Ann) _ Student(Ann).This taxonomy is motivated by a 
lose inspe
tion ofEquation (1). The probability of X = x is in
reasedonly by 
lauses in the [Applies;Good℄ bin and is de-
reased by 
lauses in the [Applies;Bad℄ bin. Clausesin the other two bins do not have an e�e
t on thisequation. However, if some of the literals other thanX in a [Does not apply;Bad℄ 
lause, are deleted sothat it no longer holds trivially, it will be moved tothe [Applies;Good℄ bin and will help to in
rease theprobability of the 
orre
t value of X . Similarly, if weadd some literals to an [Applies;Bad℄ 
lause so thatit be
omes trivially satis�ed, it will enter the [Doesnot apply;Good℄ bin and will no longer de
rease theprobability of the 
orre
t value of X .With these observations in mind, we 
an 
omplete thedes
ription of the self-diagnosis step. As the probabil-ity of a literal is re
al
ulated in ea
h iteration of Gibbssampling, for ea
h 
lause in whi
h the literal parti
i-pates, we keep a tally of the number of times it fallsinto ea
h of the bins. Finally, if a 
lause was pla
ed inthe [Applies;Bad℄ bin more than p per
ent of time, itis marked for spe
ialization and if it fell in the [Doesnot apply; Bad℄ bin more than p per
ent of time, it ismarked for generalization. We anti
ipated that in thehighly sparse relational domains in whi
h we tested,
lauses would fall mostly in the [Does not apply;Good℄ bin. To prevent this bin from swamping theother ones, we set p to the low value of 10%.This pro
ess is repeated for ea
h predi
ate, P �, in thetarget domain.3.2. Stru
ture UpdatesThe updates are performed using beam sear
h start-ing from the 
lauses identi�ed in the previous step.Unlike Kok and Domingos (2005), however, we do not
onsider all possible additions and deletions of a literalto ea
h 
lause. Rather, we only try removing literalsfrom the 
lauses marked as too spe
i�
 and we try lit-eral additions only to the 
lauses marked as too gen-eral. These restri
tions apply also to the 
andidatesprodu
ed from a parti
ular 
lause. The 
andidates ares
ored using the weighted pseudo-log-likelihood mea-sure of Kok and Domingos (2005). Thus, the sear
hspa
e is 
onstrained �rst by limiting the number of
lauses 
onsidered for updates, and se
ond, by restri
t-ing the kind of update performed on ea
h 
lause.4. Experimentation4.1. Data and MethodologyWe used two syntheti
 domains|A
ademi
 (thesour
e), whi
h provides knowledge about a
ademi
 de-

A
ademi
 IndustrialPresident(X) Chair(X)Professor(X) Employee(X)Student(X) Intern(X)AdvisedBy(X, Y) SupervisedBy(X, Y)Publi
ation(P, X) Proje
t(P, X)Area(A, X) Department(A, X)None Se
retary(X)None AssistedBy(X, Y)Figure 1. Predi
ate mappings in the two domainspartments and is similar to that of Ri
hardson andDomingos (2006) but 
ontains fewer predi
ates, andIndustrial (the target), whi
h provides an analogousdes
ription of a 
ompany. Figure 1 lists the mappingbetween the predi
ates in the two domains. The do-mains additionally 
ontain equality predi
ates. Ea
htraining example represents a single organization and
ontains between 50 to 150 true ground literals. Toemphasize the size of ea
h example, we 
all it a mega-example. Mega-examples are arti�
ially generated by�rst produ
ing a skeleton by �xing the values of thegroundings of the unary predi
ates and partially spe
-ifying some of the binary ones and then performingmaximum aposteriori inferen
e over a hand-writtenMLN to assign values to the unspe
i�ed groundings.We 
ompared the performan
e of our new algo-rithm (TransferNew) to that of Al
hemy, startingboth from s
rat
h (S
rat
hAl
hemy) and from thesame sour
e MLN provided to the new algorithm(TransferAl
hemy). Our a

ura
y metri
s were thearea under the pre
ision-re
all 
urve (AUC) and the
onditional log-likelihood (CLL), as used in prior work(Kok & Domingos, 2005). Ea
h point on the learn-ing 
urves is the average of 5 independent learningruns where a

ura
y at ea
h point was measured onan independently generated mega-example, di�erentfor ea
h run. Testing was done for the predi
atessupervisedBy and se
retary. The former was pi
kedbe
ause it represents an interesting relation, and thelatter|be
ause it was absent in the sour
e domain.The algorithms were not told on whi
h predi
ates theywould be tested. All timing experiments were run oneby one on the same dedi
ated ma
hine.4.2. ResultsFigures 2 and 3 
ompare the a

ura
y of the three sys-tems on ea
h of the metri
s. The error bars give thestandard error at ea
h point. The a

ura
y of the twotransfer systems is 
losely mat
hed on both metri
s.The fa
t that it far ex
eeds that of S
rat
hAl
hemyand improves dramati
ally after observing a singlemega-example, demonstrates that the sour
e MLN
aptures useful information about the target, whi
h
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y on CLL
an be easily re
overed after only a few updates. Eventhough TransferNew and TransferAl
hemy per-form similarly, the former 
onsiders mu
h fewer 
andi-date 
lauses during beam sear
h, as listed in Figure 4and has a signi�
antly redu
ed running time, as shownin Figure 5. Moreover, the running time of Trans-ferNew shows mu
h less variability a

ross trainingruns. This demonstrates the e�e
tiveness of the self-diagnosis step and suggests that our algorithm wouldbe espe
ially well-suited to situations where qui
k on-line relearning is important, su
h as when using MLNsto represent the model of a dynami
 environment.
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ura
y on AUCTransferNew TransferAl
hemyNum. Exs. Mean Std. Dev. Mean Std. Dev.1 2,645 721 21,610 5,5032 2,311 1,003 10,555 3,3913 2,474 441 7,253 2,0904 2,025 623 7,332 1,393Figure 4. Average number of 
andidate 
lauses 
onsideredby the transfer systems5. Future Work and Con
lusionsThis paper proposes a new MLN transfer learning al-gorithm that diagnoses the sour
e MLN and updatesonly the ina

urate 
lauses, thus de
reasing both thesear
h spa
e and the learning time, while maintainingthe a

ura
y at the level of the 
urrent state-of-the-artMLN stru
ture learning algorithm.

TransferNew TransferAl
hemyNum. Mean St. Mean St. Speed-upExpls Dev. Dev. Fa
tor1 26 14 690 1165 26.12 92 95 835 566 9.13 133 43 2320 768 17.44 218 130 7208 5597 33.0Figure 5. Average learning times of the transfer systems(in se
onds)We are 
urrently working on further improving theperforman
e of our learner by adapting relationalpath�nding (Ri
hards & Mooney, 1995), a te
hniquefor dis
overing new �rst-order logi
 
lauses bottom-upinstead of via top-down greedy sear
h. In addition, weare planning to test the algorithms on real data.A
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