In Proceedings of the ICML Workshop on Structural Knowledge Transfer for Machine Learning. Pittsburgh, PA, July 2006.

Transfer Learning with Markov Logic Networks

Lilyana Mihalkova
Raymond J. Mooney

LILYANAM@QCS.UTEXAS.EDU
MOONEYQCS.UTEXAS.EDU

University of Texas, Department of Computer Sciences, 1 University Station, C0500, Austin, TX 78712

Abstract

We propose a new algorithm for transfer
learning of Markov Logic Network (MLN)
structure. An important aspect of our ap-
proach is that it first diagnoses the provided
source MLN and then focuses on re-learning
only the incorrect portions. Experiments
in a pair of synthetic domains demonstrate
that this strategy significantly decreases the
search space and speeds up learning while
maintaining a level of accuracy comparable
to that of the current best algorithm.

1. Introduction

Traditional machine learning algorithms operate under
the assumption that learning for each new task starts
from scratch, thus disregarding knowledge gained in
previous domains. Naturally, if the domains encoun-
tered during learning are related, this approach would
waste both data and computer time to develop hy-
potheses that could be recovered by examining and
possibly slightly modifying previously acquired knowl-
edge. The field of transfer learning, which has recently
greatly increased in popularity, addresses the prob-
lem of how to leverage previous knowledge in order
to improve the efficiency and accuracy of learning on
a new task that is related to the original one. Transfer
learning approaches have been developed for a variety
of learning settings, including reinforcement learning
(Torrey et al., 2005), and Bayesian nets (Niculescu-
Mizil & Caruana, 2005), among others.

We propose a new transfer learning algorithm for
MLNs. MLNs are a powerful formalism that combines
the expressiveness of first-order logic with the flexi-
bility of probability (Richardson & Domingos, 2006).
There are two aspects to learning an MLN—the struc-
ture and the weights. While weight learning is rela-
tively quick, structure learning is very computationally
intensive. Therefore, MLN structure learning, which is

Appearing in the ICML-06 Workshop on Structural Knowl-
edge Transfer for Machine Learning, June 29, Pittsburgh,
PA. Copyright 2006 by the author(s)/owner(s).

the focus of the present work, could particularly ben-
efit from transfer.

We assume the following set-up. A source MLN is
learned in the original task and is provided to the
learner, along with a mapping from the predicates of
the original domain to those of the target domain. Re-
covering this mapping automatically is another very
interesting research problem, but for now we assume
the mapping is simply given. A similar assumption is
made by Torrey et al. (2005).

The current state-of-the-art structure learning algo-
rithm (Kok & Domingos, 2005), which we will call
Alchemy after the open-source system that implements
it! (Kok et al., 2005), can start learning either from
scratch or from a provided MLN and can therefore be
used for transfer. However, Alchemy does not explic-
itly attempt to assess the similarities between tasks or
take advantage of them. As a result, it could search
through an unnecessarily large number of structures
and take a long time to complete. Our proposed al-
gorithm successfully diagnoses the source MLN and
exploits the similarities between the tasks by focusing
on relearning only the inaccurate parts. In this way, it
significantly decreases both the learning time and the
number of hypotheses considered, while maintaining a
level of learning accuracy similar to that of Alchemy.

2. Background
2.1. Markov Logic Networks

An MLN (Richardson & Domingos, 2006) consists of
a set of first-order logic formulae, each with a weight
attached, and provides a model for the joint distri-
bution of a set of variables. A useful way of view-
ing MLNs is as templates for producing fully-grounded
Markov networks (Pearl, 1988) when a set of constants
is provided. As described by Richardson and Domin-
gos (2006), an MLN, L, can be used to construct a
Markov network by including a node for each ground-
ing of each predicate appearing in L and a feature for

Tn addition to implementing this algorithm, Alchemy
also includes capabilities for performing inference and
weight learning.

Transfer Learning with Markov Logic Networks

each formula in L. The value of a particular node is
given by the truth value of the corresponding ground
literal; similarly, the value of each feature is 1 if the
corresponding ground formula is true and 0 otherwise.

To answer a query about the probability of a set of
ground literals or formulae, one can perform Gibbs
sampling over the Markov Network. Gibbs sampling
starts by assigning a random truth value to each query
literal. It then proceeds in rounds, recomputing the
probability of a ground literal X given its Markov
Blanket M Bx (i.e. its neighboring nodes). As given
by Richardson and Domingos (2006), this probability

is recomputed using the following equation:
eSx (z,m)
P(X =z|MBx =m)

T eSx(0,m) 4 gSx(Lm) (1)
where, if F' is the set of ground formulae in which X
participates, Sx is defined as follows.

Sx(z,m) = > wifiX =2,MB, =m) (2)

fi€F

It is not necessary to fully ground the MLN in order
to perform inference on it—formulae that are already
trivially satisfied by the evidence can be omitted be-
cause they have no effect on the value of Equation (1),
and the only ground literals that need to appear in
the Markov network are the query variables and those
that are present in the Markov blanket of a literal with
an unknown value.
Kok and Domingos (2005) introduce an algorithm for
learning MLN structure that can start either from
an empty MLN or from a previously-constructed one.
Candidate clauses are generated by considering all pos-
sible additions and deletions of literals to the exist-
ing clauses as well as all possible sign flips. Two
search strategies are proposed—beam search, which
maintains a beam of best clauses, and shortest-first
search, which considers adding shorter clauses before
moving on to longer ones. Candidates are scored us-
ing a weighted pseudo-log-likelihood measure. In this
paper, we compare to the faster, beam search, version
of the algorithm, which we call Alchemy after its open
source implementation (Kok et al., 2005).

3. New Algorithm

Recall that the learner is given the MLN obtained from
the source domain and a mapping from the predicates
in the source domain to those in the target domain. In
addition, we assume that the formulae of the provided
MLN are disjunctions of literals. The learner is not
told which parts of the source MLN are useful in the
new task and which may need to be relearned. Thus,
the algorithm first needs to diagnose the given MLN.
The general skeleton of our algorithm proceeds in two
stages and is similar to that of FORTE (Richards &
Mooney, 1995), which revises first-order theories.

1. Self-Diagnosis: In this step, the algorithm in-
spects the given MLN and determines for each
formula whether it is too general, too specific, or
requires no change. The purpose of this step is to
focus the search for new formulae to those parts
of the MLN that truly need to be updated.

2. Structure Update: In this step we carry out
the actual updates to the clauses by specializing
the ones marked as too general and generalizing
those marked as too specific.

Next, we describe these steps in more detail.

3.1. Self-Diagnosis

One natural approach to self-diagnosis is to attempt to
use the source MLN while observing where its formulae
fail. In the case of FORTE where the formulae are part
of a first-order theory, this is done by attempting to
prove positive examples in the data. Our self-diagnosis
algorithm proceeds analogously.

At the onset, the learner is provided with a source
MLN and a relational dataset. Each of the predicates
in the target domain is examined in turn. The current
predicate under examination is denoted as P*. The
algorithm performs a slightly modified version of Gibbs
sampling with P* serving as a query predicate whose
groundings have their values set to unknown, while
evidence is given by the values of all other predicate
groundings in the data. In each round of sampling, in
addition to recalculating the probability of a ground
literal X, the algorithm considers all clauses in which
X participates. Even though the truth value of X is
set to unknown for the purposes of sampling, its value
is known from the data. Let the actual value of X be
v (true or false).

Each participating clause C' can be placed in one of
four bins with respect to X. For the purposes of ex-
position, let ¢ = false if X appears negated in C
and o = true if X appears non-negated in C. For
a running example, we will use the following simple
relational database: {Student(Ann), ~HasJob(Ann),
Sleepy(Ann), Sociable(Ann), InClass(Ann)} where
P* = Student, X = Student(Ann), and v = true.

¢ [Applies;Good] The value of X is crucial in eval-
uating C', with C being true only when X = v, as
in ~InClass(Ann) V Student(Ann).

e [Applies;Bad] C is true only when X = —w, e.g.
—Sociable(Ann) V ~Student(Ann).

¢ [Does not apply;Good] C is true regardless of
the value of X (i.e. it holds trivially), and o # v.
For example, Sleepy(Ann) V —Student(Ann).

Transfer Learning with Markov Logic Networks

e [Does not apply;Bad] C is trivially true, and
o =v, eg. “HasJob(Ann) V Student(Ann).

This taxonomy is motivated by a close inspection of
Equation (1). The probability of X = z is increased
only by clauses in the [Applies;Good] bin and is de-
creased by clauses in the [Applies;Bad] bin. Clauses
in the other two bins do not have an effect on this
equation. However, if some of the literals other than
X in a [Does not apply;Bad] clause, are deleted so
that it no longer holds trivially, it will be moved to
the [Applies;Good] bin and will help to increase the
probability of the correct value of X. Similarly, if we
add some literals to an [Applies;Bad)] clause so that
it becomes trivially satisfied, it will enter the [Does
not apply;Good] bin and will no longer decrease the
probability of the correct value of X.

With these observations in mind, we can complete the
description of the self-diagnosis step. As the probabil-
ity of a literal is recalculated in each iteration of Gibbs
sampling, for each clause in which the literal partici-
pates, we keep a tally of the number of times it falls
into each of the bins. Finally, if a clause was placed in
the [Applies;Bad] bin more than p percent of time, it
is marked for specialization and if it fell in the [Does
not apply; Bad] bin more than p percent of time, it is
marked for generalization. We anticipated that in the
highly sparse relational domains in which we tested,
clauses would fall mostly in the [Does not apply;
Good] bin. To prevent this bin from swamping the
other ones, we set p to the low value of 10%.

This process is repeated for each predicate, P*, in the
target domain.

3.2. Structure Updates

The updates are performed using beam search start-
ing from the clauses identified in the previous step.
Unlike Kok and Domingos (2005), however, we do not
consider all possible additions and deletions of a literal
to each clause. Rather, we only try removing literals
from the clauses marked as too specific and we try lit-
eral additions only to the clauses marked as too gen-
eral. These restrictions apply also to the candidates
produced from a particular clause. The candidates are
scored using the weighted pseudo-log-likelihood mea-
sure of Kok and Domingos (2005). Thus, the search
space is constrained first by limiting the number of
clauses considered for updates, and second, by restrict-
ing the kind of update performed on each clause.

4. Experimentation
4.1. Data and Methodology

We used two synthetic domains—Academic (the
source), which provides knowledge about academic de-

Academic Industrial
President(X) Chair(X)
Professor(X) Employee(X)

Student(X) Intern(X)

AdvisedBy(X, Y)
Publication(P, X)

SupervisedBy (X, Y)
Project(P, X)

Area(A, X) Department(A, X)
None Secretary (X)
None AssistedBy(X, Y)

Figure 1. Predicate mappings in the two domains

partments and is similar to that of Richardson and
Domingos (2006) but contains fewer predicates, and
Industrial (the target), which provides an analogous
description of a company. Figure 1 lists the mapping
between the predicates in the two domains. The do-
mains additionally contain equality predicates. Each
training example represents a single organization and
contains between 50 to 150 true ground literals. To
emphasize the size of each example, we call it a mega-
erample. Mega-examples are artificially generated by
first producing a skeleton by fixing the values of the
groundings of the unary predicates and partially spec-
ifying some of the binary ones and then performing
maximum aposteriori inference over a hand-written
MLN to assign values to the unspecified groundings.

We compared the performance of our new algo-
rithm (TransferNew) to that of Alchemy, starting
both from scratch (ScratchAlchemy) and from the
same source MLN provided to the new algorithm
(Transfer Alchemy). Our accuracy metrics were the
area under the precision-recall curve (AUC) and the
conditional log-likelihood (CLL), as used in prior work
(Kok & Domingos, 2005). Each point on the learn-
ing curves is the average of 5 independent learning
runs where accuracy at each point was measured on
an independently generated mega-example, different
for each run. Testing was done for the predicates
supervisedBy and secretary. The former was picked
because it represents an interesting relation, and the
latter—because it was absent in the source domain.
The algorithms were not told on which predicates they
would be tested. All timing experiments were run one
by one on the same dedicated machine.

4.2. Results

Figures 2 and 3 compare the accuracy of the three sys-
tems on each of the metrics. The error bars give the
standard error at each point. The accuracy of the two
transfer systems is closely matched on both metrics.
The fact that it far exceeds that of ScratchAlchemy
and improves dramatically after observing a single
mega-example, demonstrates that the source MLN
captures useful information about the target, which

Transfer Learning with Markov Logic Networks

Learning Curves in Industrial Domain

02 / -
0.4
0.6 1 .
-4 08 [,
12 “Y" ScratchAlchemy
44 L TransferAlchemy -
' TransferNew ——
_16 L
18 w ‘ ‘ ‘
0 1 2 3 4

Number of Mega Examples

Figure 2. Accuracy on CLL

can be easily recovered after only a few updates. Even
though TransferNew and TransferAlchemy per-
form similarly, the former considers much fewer candi-
date clauses during beam search, as listed in Figure 4
and has a significantly reduced running time, as shown
in Figure 5. Moreover, the running time of Trans-
ferNew shows much less variability accross training
runs. This demonstrates the effectiveness of the self-
diagnosis step and suggests that our algorithm would
be especially well-suited to situations where quick on-
line relearning is important, such as when using MLNs
to represent the model of a dynamic environment.

Learning Curves in Industrial Domain

0.7 1
06 | , .
05 f Ve e
g 04 jh
< 03 /,J{»—"""‘Scrat Alchemy
0.2 TransferAlchemy -
TransferNew ——
0.1 ¢
0 L L L J
0 1 2 3 4
Number of Mega Examples
Figure 3. Accuracy on AUC
TransferNew Transfer Alchemy
Num. Exs. | Mean | Std. Dev. | Mean | Std. Dev.
1 2,645 721 21,610 5,503
2 2,311 1,003 10,555 3,391
3 2,474 441 7,253 2,090
4 2,025 623 7,332 1,393

Figure 4. Average number of candidate clauses considered
by the transfer systems

5. Future Work and Conclusions

This paper proposes a new MLN transfer learning al-
gorithm that diagnoses the source MLN and updates
only the inaccurate clauses, thus decreasing both the
search space and the learning time, while maintaining
the accuracy at the level of the current state-of-the-art
MLN structure learning algorithm.

TransferNew | Transfer Alchemy
Num. | Mean St. Mean St. Speed-up
Expls Dev. Dev. Factor
1 26 14 690 1165 26.1
2 92 95 835 566 9.1
3 133 43 2320 768 17.4
4 218 130 7208 5597 33.0

Figure 5. Average learning times of the transfer systems
(in seconds)

We are currently working on further improving the
performance of our learner by adapting relational
pathfinding (Richards & Mooney, 1995), a technique
for discovering new first-order logic clauses bottom-up
instead of via top-down greedy search. In addition, we
are planning to test the algorithms on real data.

Acknowledgments

This research is sponsored by the Defense Advanced
Research Projects Agency (DARPA) and managed by
the Air Force Research Laboratory (AFRL) under con-
tract FA8750-05-2-0283. The views and conclusions
contained in this document are those of the authors
and should not be interpreted as necessarily repre-
senting the official policies, either expressed or implied
of DARPA, AFRL, or the United States Government.
Most of the experiments were run on the Mastodon
Cluster, provided by NSF Grant EIA-0303609.

References

Kok, S., & Domingos, P. (2005). Learning the structure
of Markov logic networks. Proceedings of 22nd Interna-
tional Conference on Machine Learning (ICML-2005).
Bonn,Germany.

Kok, S., Singla, P., Richardson, M., & Domingos, P.
(2005). The Alchemy system for statistical relational
AI (Technical Report). Department of Computer
Science and Engineering, University of Washington.
http://www.cs.washington.edu/ai/alchemy.

Niculescu-Mizil, A., & Caruana, R. (2005). Learning the
structure of related tasks. Proceedings of NIPS-2005
Workshop on Inductive Transfer: 10 Years Later.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. San Mateo,CA:
Morgan Kaufmann.

Richards, B. L., & Mooney, R. J. (1995). Automated re-
finement of first-order Horn-clause domain theories. Ma-
chine Learning, 19, 95-131.

Richardson, M., & Domingos, P. (2006). Markov logic net-
works. Machine Learning, 62, 107-136.

Torrey, L., Walker, T., Shavlik, J., & Maclin, R. (2005).
Using advice to transfer knowledge acquired in one re-
inforcement learning task to another. Proceedings of
the 16th European Conference on Machine Learning
(ECML-05). Porto, Portugal.

