
ELIXIR: A library for writing wrappers in Java

Edward Wild

Undergraduate Honors Thesis, Fall 2001

Supervising Professor: Raymond J. Mooney

Introduction

The use of information from the Internet is becoming more prevalent in applications. LIBRA (Mooney and

Roy, 1999), WhizBang!Labs (http://www.whizbanglabs.com), and mySimon (http://www.mysimon.com)

are examples of applications and companies that use information from the Internet. LIBRA uses book data

from Amazon.com to recommend books to users, and mySimon uses information taken from various online

stores to help users �nd the lowest price for an item. Available tools to help extract information from the

Internet include the WysiWig Web Wrapper Factory (Sahuguet and Azavant, 1998), WebL (Kistler and

Marais, 1998), and SPHINX (Miller and Bharat, 1998). This paper presents ELIXIR, a set of utilities that

helps users to write programs that extract information from the Internet.

Wrappers are programs that retrieve documents from the Internet and extract information from them.

They are a way to translate information on a web page designed to be seen into a format that can be used

by a computer program. Typically it is easy for a programmer to describe how to �nd information on a

page by using pattern matching or regular expressions. The di�culty with writing wrappers in programming

languages such as Java lies in the fact that, in the �nished wrappers, the description of where the information

is located is often hidden inside a routine that is concerned with the string operations necessary to �nd and

extract that information. This makes large wrappers di�cult to write, understand, and maintain.

A solution to the problem mentioned in the above paragraph would be to �nd a way to separate the

description of where information is from the operations needed to extract that information through the use of

a library. Such a separation would allow the programmer writing or maintaining the wrapper to focus on the

location of information, rather than the steps needed to extract information. For example, the programmer

only needs to encode descriptions such as �the string between 'Capital:' and '
',� rather than algorithms

like ��nd the string 'Capital:' and extract everything from the end of that string until the string '
'.�

To separate the description of where information is from the algorithm used to access it the library must

clearly indicate how the description is used to form an algorithm. For example, does the description �the

string between 'Capital:' and '
�' mean to �nd the �rst occurrence of 'Capital:' and extract everything

until the �nal occurrence of '
'? Or does the description mean to �nd the �rst occurrence of '
'

and then extract everything from the closest preceding occurrence of 'Capital:' until that point?

The library should also give the user enough power to describe the location of the information to be

extracted. If there is information that the library cannot extract, it should allow the user to de�ne the

algorithm to extract that information in such a way that the separation between the description and the

algorithm is maintained.

The Extensible Library for Information Extraction on Internet Resources (ELIXIR) is a library for writing

1

Figure 1: CIA World Factbook country listing

wrappers that can extract text from a web page and follow links on that page. It contains a set of objects

that the user combines to describe the location of information on a web site. Those objects automatically

perform the operations necessary to extract information.

Description

Text on the Internet can be described by its position on a web page, and that web page's location on

the Internet. It is useful to describe both locations in terms of a hierarchy rooted at some page. For ex-

ample, consider the CIA World Factbook. The capital of the United States can be described as the string

found by downloading the country listing from http://www.cia.gov/cia/publications/factbook/menugeo.html

(see �gure 1), following the link with anchor text �United States,� and extracting the text that ap-

pears after the string �Capital:� and before the next new line. This method generalizes to �nd the

capital of every country listed in the CIA World Factbook by following each link to a country from

http://www.cia.gov/cia/publications/factbook/menugeo.html instead of only following the link for the

United States. One can also �nd additional information about each country by specifying the appropri-

ate patterns.

ELIXIR allows users to construct a tree model of the data they wish to extract. Each node in the tree has

a function that maps a string to a new string. At each node, an input string is received from the parent, the

2

Country

CoordinatesCapitalName

Latitude Longitude

Countries

Figure 2: Rule tree for World Factbook

<table width="100%" cellspacing="6">
<tr>
<td valign="top" width="20%" align="right">Capital:</td>
<td valign="top">
Washington, DC
</td>
</tr>
</table>

Figure 3: HTML source from the CIA World Factbook containting the capital of the United States (from
http://www.cia.gov/cia/publications/factbook/geos/us.html)

function is applied to that string, and the output is passed along to the children. At the leaf nodes, the result

of the function is stored as the value of the node. The tree thus represents the structure of the data and

the instructions needed to extract the data. Consider a task that requires that a database be built that has

records for each country's name, capital, and geographic coordinates (see �gure 2). The root node of a tree

for this task downloads the country listing at http://www.cia.gov/cia/publications/factbook/menugeo.html.

The root node has a child node which takes the country listing and extracts the URL to each country. The

page referenced by this URL is downloaded and passed along to the current node's children. There is a

child that extracts the country's name, a child that extracts the country's capital, and one that extracts the

countries geographic coordinates.

The function associated with each node is represented as a stack of functions called item extractors. Each

item extractor maps a string to a (string, integer) pair where the string is used as input to the next item

extractor on the stack and the integer is the position in the input string following where the string matched.

The output of the function for an input is obtained by iterating through the stack of item extractors. The

input for each item extractor is the output from the previous item extractor. The output of the function is

the value of the last, or bottom, item extractor. A function is said to match when its output is not the empty

3

Countries

Longitude
 97 00 W

Latitude
 38 00 N

Name
 United States

Coordinates

Capital
 Washington, DC

Country

Longitude
 56 00 W

Latitude
 33 00 S

Name
 Uruguay

Coordinates

Capital
 Montevideo

Country

......

Figure 4: Attribute tree for World Factbook

string. Take, for example, a function that takes as input a page with information on a country and outputs

the capital of that country (see �gure 3). The function may be de�ned using two item extractors. The item

extractor on the top of the stack extracts the string between the strings �Capital:� and �</table>.�

This value is the input to the item extractor on the bottom of the stack, which extracts the string between

�� and �� and returns the capital of the country. When this function

is applied to the country information for the United States, the top item extractor returns �</td>

<td valign="top"> Washington, DC </td> </tr>� and the bottom

one applied to this string returns �Washington, DC.�

Each node in the tree is called a rule. Associated with each rule is a name, a stack of item extractors,

a cardinality, and a list of children. In our example, one rule is named �country.� This rule has item

extractors that extract the part of the page containing the desired information, a cardinality that speci�es

that as many countries as possible should be extracted, and child rules that extract the capital, name, and

geographic coordinates of the country. The output of a rule is determined by trying to match the stack

of item extractors to an input string until the item extractor at the top of the stack fails to match, or the

rule has matched as many times as its cardinality will allow. The cardinality of a rule can be any integer

greater than zero, or a special value that indicates that the top item extractor should match as many times

as possible. The output of a rule is passed on to its children each time that the item extractors match.

Since a rule may match more than once, it is necessary to distinguish between the tree of rules and the

tree de�ned by the output of the rules. Consider the rules to extract information about countries from the

CIA World Factbook. Rather than specify a separate rule for each country, the user can construct a rule

that works for all the countries, and then indicate that the rule should be applied several times. Thus the

tree of rules will contain only the rule to specify how to get information about a country, but the result of

4

that rule will be a tree of attributes that contains information on many countries. An attribute has a name,

a value, and a list of children. Its name is the name of the rule that generated it. Its value is the output

of the rule that generated it, and its children correspond to the children of the rule that generated it. Thus

each time a rule matches a new attribute is created for that rule. and each attribute will have its own set of

children. If a rule does not match, no attribute will be generated for it. A portion of the attribute tree for

the CIA World Factbook is shown in �gure 4.

In order to create a method for conditional matching, a new kind of rule is necessary. This new kind of

rule will have no extractors of its own, and will always have cardinality of one. It will try to match each of

its children on a given input until one child matches. That child will take its parent's place in the resulting

attribute hierarchy. Using this method, the user can specify a way to conditionally choose a branch based

on the matching of item extractors.

Implementation

Figure 5 is a wrapper for the CIA World Factbook country listing written using ELIXIR. This section de-

scribes the implementation of ELIXIR and uses the CIA World Factbook wrapper (WorldFactbookExample)

to show how ELIXIR can be used to write wrappers.

The basic string matching facilities are provided by classes that implement the ItemExtractor inter-

face. The ItemExtractor interface consists of two methods, extract() and item(), which allow the

ItemExtractor to match strings. The extract() method takes a string as input and returns an inte-

ger that corresponds to the position in the input string where the next attempt to match the string should

begin. This method must also guarantee that subsequent calls to item() will return the extracted string

itself. ItemExtractor implementations exist to perform basic string matching (ForwardItemExtractor and

ReverseItemExtractor), perform regular expression matching (RegexItemExtractor), and retrieve web

pages from URLs (LinkFollower).

WorldFactbookExample uses ForwarItemExtractors and LinkFollowers. The LinkFollower in line 19

will follow links relative to its argument. For example, for input "geos/us.html" the LinkFollower will re-

turn the page at http://www.cia.gov/cia/publications/factbook/geos/us.html. The ForwardItemExtractor

in lines 28 and 29 �nds the �rst occurence of the string "Capital:" in its input, then the next

occurence of the string "</table>" and returns the string in between.

ItemExtractor provides a convenient way to extend the functionality of ELIXIR. TextPage provides a

way to parse a string of text into tokens using an ItemExtractor. This allows ItemExtractor to be a very

5

1 package examples;
2

3 import wrapper.*;
4 import textutils.*;
5 import java.io.*;
6

7 public class WorldFactbookExample {
8

9 public static void main(String[] args) {
10 Wrapper w = new Wrapper() {
11 protected void defineRules() {
12 RuleBuilder rb = new RuleBuilder("countries",
13 new ItemExtractor[] {new LinkFollower()});
14 rb.addRuleToRule("countries",
15 "country",
16 new ItemExtractor[] {
17 new ForwardItemExtractor("<a href=\"",
18 "\">"),
19 new LinkFollower("http://www.cia.gov/cia/publications/factbook/")},
20 Cardinality.MANY);
21 rb.addRuleToRule("country", "name",
22 new ItemExtractor[] {
23 new ForwardItemExtractor("<font face=\"arial\" size=\"5\" " +
24 "color=\"ffffff\">",
25 "")});
26 rb.addRuleToRule("country", "capital",
27 new ItemExtractor[] {
28 new ForwardItemExtractor("Capital:",
29 "</table>"),
30 new ForwardItemExtractor("",
31 "")});
32 rb.addRuleToRule("country", "coordinates",
33 new ItemExtractor[] {
34 new ForwardItemExtractor("Geographic coordinates:",
35 "</tr>")});
36 rb.addRuleToRule("coordinates", "latitude",
37 new ItemExtractor[] {
38 new ForwardItemExtractor("\n", ",")});
39 rb.addRuleToRule("coordinates", "longitude",
40 new ItemExtractor[] {new ForwardItemExtractor(", ", "\n")});
41 addRule(rb.rule());
42 }
43 };
44 Label l = w.label("http://www.cia.gov/cia/publications/factbook/menugeo.html");
45

46 new LabelPrinter().print(l, args[0]);
47 }
48 }

Figure 5: Wrapper for the CIA World Factbook

6

simple interface, while clients of ItemExtractor can use TextPage to avoid having to manipulate strings

directly. Only classes within ELIXIR use TextPage. Users deal directly with ItemExtractors. Note that

TextPage is never mentioned in WorldFactbookExample.

The rules of the wrapper are represented using the Rule interface and its implementors PrimitiveRule,

CompositeRule, and BranchRule. This is an implementation of the Composite design pattern (Gamma

et al., 1994). PrimitiveRules have no children, while CompositeRules and BranchRules do. Each Rule has

a stack of ItemExtractors and a Cardinality object that represents the maximum number of times that

a rule should be matched. The Cardinality object may be initialized to the constant Cardinality.MANY,

in which case the rule should be matched as many times as possible. A Rule matches when the result of

matching each ItemExtractor in its stack to the string, and using the output of one ItemExtractor as the

input for the next one results in a value that is not null. For PrimitiveRules this value becomes the result

of the rule, while for CompositeRules this value is passed on to its children. BranchRules are evaluated

specially. The input string is passed to each child rule until a child matches. Then the output from that

child is considered to be the output of the BranchRule. The output of Rule is a list of Attributes. A list

of Attribute trees are constructed from a Rule tree by the getValue() method of Rule.

To hide the fact that there are three di�erent kinds of rules from the user, the RuleBuilder class is used.

RuleBuilder is an implementation of the Builder design pattern (Gamma et al., 1994). The user may use

the RuleBuilder to design a Rule without having to declare what parts of the tree are PrimitiveRules,

CompositeRules, or BranchRules. This is accomplished by starting each new Rule as a PrimitiveRule and

changing it to a CompositeRule or BranchRule when the user adds a child or branch. To facilitate changing

rules, the MutableRule class is used. MutableRule is an adapter (Gamma et al., 1994) that implements the

Rule interface by delegating all Rule methods to a Rule member. This member can be changed by clients

using the set() method.

In WorldFactbookExample a RuleBuilder is used in the defineRules() method (lines 11�42). When

the RuleBuilder is constructed (line 12) it contains a single PrimitiveRule named �countries� that has one

LinkFollower that will treat its input as a URL and download the page that URL refers to. When the

method addRuleToRule() is used to add a rule named �country� (lines 14�20), the rule named �countries�

is changed to a CompositeRule that has a PrimitiveRule named �country� as a child. Note that the user

does not have to indicate which rules should be PrimitiveRules and which should be CompositeRules.

Wrapper de�nes a framework for writing wrappers. Users create specializations of Wrapper by overriding

the defineRules() method and using a the addRule() method to add rules to the Wrapper. The label()

method of Wrapper uses its input as input to the rules in the Wrapper. This method returns the trees of

7

<?xml version="1.0"?>
<countries>

...

<country>

<name>
United States
</name>
<coordinates>

<longitude>
97 00 W
</longitude>
<latitude>
38 00 N
</latitude>
</coordinates>
<capital>

Washington, DC

</capital>
</country>
<country>

<name>
Uruguay
</name>
<coordinates>

<longitude>
56 00 W
</longitude>
<latitude>
33 00 S
</latitude>
</coordinates>
<capital>

Montevideo

</capital>
</country>

...

</countries>

Figure 6: Section of output from WorldFactbookExample

Attributes returned when the Rules are evaluated in a Label object. A Label can be printed by using

a LabelPrinter and its Attributes can be accessed directly using the Attribute.AttributeIterator.

The LabelPrinter provides a way for the user to specify the format used to output the data. The default

format is an XML-like document, but it is easy to modify LabelPrinter to produce any kind of structured

document. Attribute.AttributeIterator allows the user to access the values of an Attribute tree directly

in a Java program, which provides an e�cient way to integrate multiple extraction tasks.

In WorldFactbookExample a specialization of wrapper is de�ned (lines 10�43) using an inner class. In

the defineRules() method the rules for the wrapper are de�ned as described above, and the addRule()

method is used to add the rule tree to the wrapper (line 41). A Label is created in by the call in line 44.

8

This Label is printed to a �le given as a command line argument using a LabelPrinter (line 46). Figure 6

contains a section of the output printed by the LabelPrinter.

Evaluation

The number of non-comment source statements (NCSS) is used to determine how much work a developer

has to do in order to implement a wrapper using a given set of tools. The lower the NCSS, the more work

the tools are doing for the user. NCSS provides a way to compare ELIXIR both to an earlier version of

itself, and to SPHINX, another Java library with related goals.

Amazon.com

Data from Amazon.com is used in the LIBRA book recommending system (Mooney and Roy, 1999). The

spider used in LIBRA is now out of date due to changes in the format of Amazon.com's pages, so a new one

was needed. Figure 7 shows the rule tree for the data that is needed from Amazon.com. ELIXIR itself grew

largely out of lessons learned while developing a spider for Amazon.com, and an earlier version of the spider

is compared to the current spider.

To see the bene�ts that ELIXIR gives a user, the Amazon.com spider (AmazonSpider) written with

ELIXIR to is compared to another spider written using a prototype of ELIXIR (OldAmazonSpider). Most of

the facilities of the textutils package (which contains the ItemExtractors) are available in the prototype,

and it makes use of Slots, which are an early version of Attributes and Rules. The most notable di�erence

is that Slots cannot be nested. In addition, Slots contain the rules for extraction and the values output by

the rules, so a Slot is kind of a combination of a Rule and an Attribute. Slots do not support any kind of

conditional branching, and there is no way to download pages from the Internet using an ItemExtractor in

the prototype. Note that the format of Amazon.com has changed between the time that AmazonSpider and

OldAmazonSpider were written, but the information extracted and the di�culty of specifying how to �nd

that information using the facilities of the textutils package are similar.

Amazon.com presents an interesting challenge for the library. In response to a search, a page is returned

with the URLs of the �rst twenty-�ve books. On that page is a pointer to a similar page containing the next

twenty-�ve books, and so on. These search results pages (see �gure 8) appear to be generated dynamically

on a per-session basis. After a long enough time, Amazon.com will stop providing URLs to more search

results pages. For very large crawls a problem arises because the library matches the entire rule, causing it

to download and process each book information page on a search results page before moving on to the next

9

search results page. In practice, this has caused Amazon.com to stop supplying new search results pages

after a few thousand books have been processed. This problem is solved by writing two wrappers and taking

advantage of the fact that the wrappers are Java programs. One wrapper extracts all of the URLs for books

from a page with a list of books from a search, and the wrapper also extracts the URL of the page containing

the next results from that search. This wrapper spends less time on each search results page, and is able

to retrieve the URLs for many more books. A short Java routine is used to apply this wrapper iteratively

starting on the �rst page, then each successive page. The URLs from each page are stored in a list. The

second wrapper extracts book information from a book page and is applied to each of the URLs in the list.

AmazonSpider is contained in the �le AmazonSpider.java. This �le contains a wrapper that extracts

the URLs for book information pages from a search results page (AmazonBookURLWrapper), a wrapper

that extracts book information given a URL to a book information page (AmazonBookWrapper), and

code to combine the two wrappers and print the output. The code for OldAmazonSpider is spread

among three �les. OldAmazonBookPage.java de�nes a class (OldAmazonBookPage) that extracts in-

formation from a book information page. The URLs for book information pages are extracted by

OldAmazonSearchResultsPage, de�ned in OldAmazonSearchResultsPage.java. OldAmazonSpider.java con-

tains methods for running OldAmazonSearchResultsPage and OldAmazonBookPage, and a way to print out

the extracted information.

Table 1: NCSS values for AmazonSpider and OldAmazonSpider wrappers

Spider S
e
a
r
c
h
r
e
s
u
l
t
s
p
a
g
e

B
o
o
k
i
n
f
o
r
m
a
t
i
o
n
p
a
g
e

C
o
m
b
i
n
i
n
g
w
r
a
p
p
e
r
s

AmazonSpider 8 34 23

OldAmazonSpider 40 364 200

The comparison of NCSS values for AmazonSpider and OldAmazonSpider (table 2) illustrates the amount

of work that the library saves the user. Although AmazonSpider and OldAmazonSpider extract approxi-

mately the same number of �elds, AmazonSpider is signi�cantly shorter. The processing of the search results

page is very straightforward, and has the lowest NCSS values in both systems. Most of the additional

complexity in this portion of OldAmazonSpider comes from logic to determine if there are more URLs for

book information pages available, or if the client should be told to use the next search results page. ELIXIR

10

encapsulates this complexity. For the new AmazonSpider, AmazonBookURLWrapper contains only rules to

extract the URLs for book information pages and the URL for the next search results page. Extracting book

information is the most complicated task, and thus its NCSS value is the highest in both systems. Since

Slots cannot be nested, OldAmazonSpider needs logic to use the value of one Slot as input to another

Slot. In ELIXIR, these values are passed along automatically. The NCSS value for the logic for combining

wrappers in OldAmazonSpider is particularly high because of the fact that functions had to be written to

print out the �nal extracted values. AmazonSpider uses LabelPrinter to handle the printing. In addition,

OldAmazonSpiderwas originally designed to be multi-threaded, while ELIXIR is not. Thus the NCSS values

for combining the wrappers should be closer together. However, the smaller NCSS values that ELIXIR needs

to process the search results pages and the book information pages demonstrate the amount of work that

the library can save the user.

ResearchIndex

SPHINX (Miller and Bharat, 1998) is a Java toolkit and development environment for writing Web

crawlers. Noppadon Kamolvilassatian used SPHINX to create a spider that extracted name and

homepage URLs from the second page of the ResearchIndex most cited author list, available at

http://citeseer.nj.nec.com/cited2.html (�gure 9). SPHINX is more suited to writing crawlers that focus

on retrieving entire �les, for example all of the images found on a page, rather than extracting speci�c

substrings from languages. Since SPHINX crawlers are written in Java, however, there is an opportunity

to compare the amount of work it takes to write a wrapper for the second page of the ResearchIndex most

cited author list using SPHINX, and a wrapper for the same page using ELIXIR.

Table 2: NCSS of wrappers for the second page of the ResearchIndex most cited author list
Library NCSS for wrapper

SPHINX 158
ELIXIR 15

Although neither wrapper requires a lot of work, ELIXIR was designed for this kind of extraction task.

The results are in table 2. Most of the extra work needed to write a wrapper using SPHINX involves writing

the operations needed to combine and present the extracted data, since the wrapper extracts the names and

URLs separately and they are combined later. ELIXIR allows the user to describe more of the structure of

the document, so the wrapper written using ELIXIR automatically associates the names and URLs in its

XML-like output, which is generated automatically by a LabelPrinter. However, if a di�erent output was

desired, the wrapper written using ELIXIR would need to specify a way to generate that output, such as a

11

new specialization of LabelPrinter. This task of generating a di�erent output would add to the amount of

work required to write a wrapper using ELIXIR.

Related Work

ELIXIR provides a way to combine text extraction and spidering in wrappers. Wrappers are written in Java

and are thus easy to integrate into Java programs, and wrappers can also be used to output a structured

text document. By implementing new ItemExtractors, the user can easily extend the functionality of the

ELIXIR. The model for wrappers is similar to that presented in (Hammer et al., 1997), in which extracted

values may be used as input for later extractions. ELIXIR also adopts the cascade design from (Sahuguet

and Azavant, 1998), in which extracted values are passed as input to the next extractors in the hierarchy.

The text extraction tools presented in (Hammer et al., 1997) are intended to retrieve data in Object

Exchange Model format of the TSIMMIS system. Extractors are written in a declarative speci�cation

language. The extractor speci�cation is used to parse a web page or set of web pages, and the results are

returned in a format that can be queried using tools from the TSIMMIS project. Users specify rules to

extract text into variables. Once a variable has been extracted, its value may be used as the input to the

extraction rules for another value. However, the user must explicitly specify that a variable should take

another value as its input. Thus extractors may use the values of previously extracted �elds, including

following extracted URLs, but must do so explicitly.

In the WysiWyg Web Wrapper Factory (Sahuguet and Azavant, 1998), wrapper speci�cations are written

in a declarative language with the assistance of a GUI interface. The values to extract can be speci�ed using a

combination of the HTML tree and regular expressions. Extracted values are passed to embedded extractors

in a cascade fashion. This cascading is the only way that previously extracted values can be used elsewhere

in the extractor. The output of the wrapper is a Java object to be used in a higher level application that

controls the wrapper. There is no way to follow URLs extracted by a wrapper except through a higher

level application that uses one wrapper to extract the URLs and another for the pages the URLs point to.

ELIXIR does not provide support for navigating a document as a tree, although support could be added

by providing an appropriate set of ItemExtractors. Also, RuleBuilder provides a natural way for a GUI

builder to construct wrappers on the �y.

WebL (Kistler and Marais, 1998) is a general purpose programming language for web document process-

ing. Operators for retrieving web pages and performing extraction on HTML documents are provided by

WebL. WebL is implemented in Java, and it is possible to use the functionality of WebL directly from Java

12

programs. Writing wrappers in WebL involves writing a program that explicitly performs the extraction by

manipulating the document rather than writing a speci�cation in a declarative language.

The SPHINX toolkit (Miller and Bharat, 1998) provides a framework and interactive development en-

vironment for site-speci�c crawlers. SPHINX provides many ways to specify which pages to download and

which URLs should be followed on each page. Part of the framework supports text extraction on pages,

but SPHINX does not provide any libraries that assist extraction. One of the experiments discussed earlier

shows that using ELIXIR instead of SPHINX to write a wrapper resulted in a 90% reduction in the number

of non-comment source statements.

Some people have looked at ways to automatically generate wrappers using machine learning techniques.

A survey of systems that learn a wrapper from a set of examples is provided in (Kushmerick et al., 1997)

and also (Muslea, 1999). ELIXIR does not provide any support for learning from examples, although it

would not be di�cult for learning programs to either create wrappers through a RuleBuilder or by directly

writing a Java �le.

Future Work

The amount of code that has to be written to combine the two wrappers for the AmazonSpider suggests a need

for a method to control the way ELIXIR processes data, and an improved model for iteration and conditional

matching of rules. Ideally, there would only be one wrapper in AmazonSpider, and that wrapper would have

approximately the combined complexity of the current AmazonBookWrapper and AmazonBookURLWrapper.

However, more cases should be considered so that the solutions to these problems are generally useful.

A richer set of ItemExtractors would enhance the convenience and �exibility of ELIXIR. HTML aware

ItemExtractors could be written to get attributes from a speci�c tag, or to write extractors that make

use of the DOM trees of documents. Also, the ItemExtractor interface itself could be generalized to work

with arbitrary objects. This generalization might be useful for combining text and non-text extraction and

retrieval. A subclass called StringItemExtractor could take the place of the current ItemExtractor.

Improvements could also be made in ways to assist the user in writing wrappers. One way would be

to develop a special purpose speci�cation language for wrappers. Users could then write their wrappers in

a text �le that could be compiled into a Java source �le, or interpreted. Another improvement would be

a graphical user interface to help the user design and test wrappers. Such a system could generate a Java

source �le containing the wrapper de�nition, build the wrapper directly using a RuleBuilder, or both. A

third improvement would be applying machine learning techniques to automatically generate wrappers for

13

a given site.

Conclusion

ELIXIR is a library for writing wrappers in Java. ELIXIR provides a way to combine text extraction and

spidering in wrappers. Since wrappers written using ELIXIR are Java programs, they are easy to integrate

with other Java programs. The user can also extend the functionality of ELIXIR by implementing new

ItemExtractors. In an experiment, a wrapper written using ELIXIR showed an 89% reduction in non-

comment source statements from a wrapper written using a prototype of ELIXIR. In another experiment, a

wrapper written using ELIXIR showed a 90% reduction in non-comment source statements from a wrapper

written using SPHINX (Miller and Bharat, 1998), a Java toolkit for writing spiders.

Acknowledgements

Noppadon Kamolvilassatian provided the wrapper for ResearchIndex that uses SPHINX. Thanks are also

due to Dr. Ray Mooney, who supervised this work, and Dr. Inderjit Dhillon for agreeing to be the second

reader.

14

B
ook

S
ubjects

A
uthors

C
om

m
ents

R
eview

s
R

elated-authors
V

ersions

S
ynopses

Table-of-contents
D

im
ensions

Isbn
B

ook-length
A

uthor-url
P

ublication-date
C

ategory
List-price

Title

V
ersion

R
elated-author

R
eview

S
ubject

A
uthor

C
om

m
ent

Text
Title

D
ate

A
uthor

Text
R

ating

Figure 7: Rule tree for AmazonSpider
15

Figure 8: Search results page for �java� on Amazon.com

Figure 9: Second page of the ResearchIndex most cited author list

16

Bibliography

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA.

Hammer, J., Garcia-Molina, H., Cho, J., Crespo, A., and Aranha, R. (1997). Extracting semistructured

information from the web. In Proceedings of the Workshop on Management for Semistructured Data.

Kistler, T. and Marais, H. (1998). Webl: a programming language for the web. In WWW7, Brisbane,

Australia.

Kushmerick, N., Weld, D. S., and Doorenbos, R. B. (1997). Wrapper induction for information extraction.

In Intl. Joint Conference on Arti�cial Intelligence (IJCAI), pages 729�737.

Miller, R. C. and Bharat, K. (1998). Sphinx: A framework for creating personal, site-speci�c web crawlers.

In WWW7, Brisbane, Australia.

Mooney, R. J. and Roy, L. (1999). Content-based book recommending using learning for text categoriza-

tion. In Proceedings of the SIGIR-99 Workshop on Recommender Systems: Algorithms and Evaluation,

Berkeley, CA.

Muslea, I. (1999). Extraction patterns for information extraction tasks: a survey. In AAAI'99 Workshop on

Machine Learning for Information Extraction. AAAI Press.

Sahuguet, A. and Azavant, F. (1998). W4f: a wysiwyg web wrapper factory. Technical report, University of

Pennsylvania.

17

A
p
p
e
n
d
ix

A
:
A
m
a
z
o
n
S
p
id
e
r
so
u
rc
e
listin

g
package amazon;
/*
 * AmazonSpider.java
 * crawls amazon.com to get information about books for the LIBRA system.
 * May 23, 2001
 * Ted Wild
 */

import wrapper.*;
import textutils.*;
import java.util.*;
import java.io.*;

/**
 * <code>AmazonBookWrapper</code> retrieves information starting at a
 * page containing book information from amazon. com.
 *
 * @author Ted Wild */
class AmazonBookWrapper extends Wrapper {
 public AmazonBookWrapper() {

super ();
 }

 protected void defineRules() {
RuleBuilder rb = new RuleBuilder(" book",

 new ItemExtractor[] {
 new LinkFollower(" http://www.amazon.com/exec/obidos/ASIN/")});

rb.addRuleToRule(" book", " title",
 new ItemExtractor[] { new ForwardItemExtractor(" <b class=\"sans\">", " ")});

rb.addRuleToRule(" book", " authors",
 new ItemExtractor[] { new ForwardItemExtractor(" >\n\nby", "
"),

 new ForwardItemExtractor(" >", " ")},
 Cardinality.MANY);

rb.addRuleToRule(" book", " list−price",
 new ItemExtractor[] { new ForwardItemExtractor(" List Price: <strike>", " </strike>")});

rb.addRuleToRule(" book", " category",
 new ItemExtractor[] { new ForwardItemExtractor(" Category:", " "),

 new ForwardItemExtractor(" >", " <")});
rb.addRuleToRule(" book", " publication−date",

 new ItemExtractor[] { new ForwardItemExtractor(" pages", "
"),
 new ForwardItemExtractor(" (", ")")});

rb.addRuleToRule(" book", " book−length",
 new ItemExtractor[] { new ForwardItemExtractor(null , " Editorial Reviews"),

 new ReverseItemExtractor(" −", " pages")});
rb.addRuleToRule(" book", " isbn",

 new ItemExtractor[] { new ForwardItemExtractor(" ISBN:", " \n")});
rb.addRuleToRule(" book", " dimensions",

 new ItemExtractor[] { new ForwardItemExtractor(" ; Dimensions (in inches):", " \n
")});
rb.addRuleToRule(" book", " table−of−contents",

 new ItemExtractor[] {

1
8

 new ForwardItemExtractor(null , " editorial reviews"),
 new ReverseItemExtractor(" table of contents"),
 new LinkFollower(" http://www.amazon.com"),
 new ForwardItemExtractor(" <b class=\"h1\">Table of Contents", " <hr noshade size=1>")});

rb.addRuleToRule(" book", " synopses",
 new ItemExtractor[] {
 new ForwardItemExtractor(
 " Table of Contents",

 " <hr noshade size=1>"),
 new ForwardItemExtractor(" <p>\n\n\n\n", " \n\n")});

rb.addRuleToRule(" book", " author−url",
 new ItemExtractor[] { new ForwardItemExtractor(" all books by ")});

rb.addRuleToRule(" book", " type",
 new ItemExtractor[] { new ReverseItemExtractor(" <br", " pages"),

 new ForwardItemExtractor(" ", " ")});
rb.addRuleToRule(" book", " subjects",

 new ItemExtractor[] { new ForwardItemExtractor(" Search for books by subject:",
 " <input type=submit")});

rb.addRuleToRule(new String[] {" book", " subjects"},
 " subject",
 new ItemExtractor[] { new ForwardItemExtractor(" value=\"", " \">")},
 Cardinality.MANY);

rb.addRuleToRule(" book", " versions",
 new ItemExtractor[] { new ForwardItemExtractor(" Other Editions: ",

 " Amazon.com Sales Rank: ")});
rb.addRuleToRule(new String[] {" book", " versions"},

 " version",
 new ItemExtractor[] { new ForwardItemExtractor(" ASIN/", " /")},
 Cardinality.MANY);

rb.addRuleToRule(" book", " related−authors",
 new ItemExtractor[] { new ForwardItemExtractor(" >Customers who bought titles by",

 " <hr noshade size=1>"),
 new ForwardItemExtractor(" ", " ")});

rb.addRuleToRule(new String[] {" book", " related−authors"},
 " related−author",
 new ItemExtractor[] { new ForwardItemExtractor(" ", " a>"),

 new ForwardItemExtractor(" >", " <")},
 Cardinality.MANY);

rb.addRuleToRule(" book", " reviews",
 new ItemExtractor[] {
 new ReverseItemExtractor(" editorial reviews</td></tr>"),
 new LinkFollower(" http://www.amazon.com"),
 new ForwardItemExtractor(" <b class=\"h1\">Editorial Reviews", " <hr noshade size=1>")});

rb.addRuleToRule(new String[] {" book", " reviews"},
 " review",
 new ItemExtractor[] { new ForwardItemExtractor(" <a name=", " <P>")},
 Cardinality.MANY);

rb.addRuleToRule(new String[] {" book", " reviews", " review"},
 " title",
 new ItemExtractor[] {

1
9

 new ForwardItemExtractor(" <i>", " </i>")});
rb.addRuleToRule(new String[] {" book", " reviews", " review"},

 " text",
 new ItemExtractor[] { new ForwardItemExtractor(" ", null)});

rb.addRuleToRule(" book", " comments",
 new ItemExtractor[] {
 new ReverseItemExtractor(" customer reviews</td></tr>"),
 new LinkFollower(" http://www.amazon.com")});

rb.addRuleToRule(new String[] {" book", " comments"},
 " comment",
 new ItemExtractor[] {
 new ForwardItemExtractor(" <p>\n",

 " <form method=\"POST\"")},
 Cardinality.MANY);

rb.addRuleToRule(new String[] {" book", " comments", " comment"},
 " author",
 new ItemExtractor[] { new ForwardItemExtractor(" Reviewer:\n\n\n\n\n\n\n\n\n\n", " \n\n\n\n")});

rb.addRuleToRule(new String[] {" book", " comments", " comment"},
 " date",
 new ItemExtractor[] { new ForwardItemExtractor(" , ", " \n\n<br clear=left>")});

rb.addRuleToRule(new String[] {" book", " comments", " comment"},
 " rating",
 new ItemExtractor[] { new ForwardItemExtractor(" alt=\"", " \">")});

rb.addRuleToRule(new String[] {" book", " comments", " comment"},
 " text",
 new ItemExtractor[] { new ForwardItemExtractor("
\n", " <br clear=left>")});

addRule(rb.rule());
 }
}

class AmazonBookURLWrapper extends Wrapper {
 public AmazonBookURLWrapper() {

super ();
 }

 protected void defineRules() {
RuleBuilder rb = new RuleBuilder(" list−page",

 new ItemExtractor[] {
 new LinkFollower()});

rb.addRuleToRule(" list−page", " next",
 new ItemExtractor[] {
 new ReverseItemExtractor(" <a ", " alt=\"More Results\">"),
 new ForwardItemExtractor(" href=", " >")});

rb.addRuleToRule(" list−page", " url",
 new ItemExtractor[] { new ForwardItemExtractor(" ")},
 Cardinality.MANY);

addRule(rb.rule());
 }
}

2
0

public class AmazonSpider {

 public static void main(String args[]) {
Wrapper w = new AmazonBookURLWrapper();
Label l = w.label(args[0]);
List urls = new LinkedList();
int numberOfBooks = Integer.parseInt(args[2]);

for (int i = 0; i < numberOfBooks; ++i) {
 Attribute.AttributeIterator ai = l.getAttribute(0).iterator();
 ai.child(" url");

 while (ai.hasNext())

urls.add(ai.next().getValue());
 ai = l.getAttribute(0).iterator();
 ai.child(" next");
 l = w.label(" http://www.amazon.com" + ai.next().getValue());
}
System.out.println(" Got urls: " + urls);
w = new AmazonBookWrapper();
LabelPrinter lp = new LabelPrinter();
try {
 Writer fw = new FileWriter(args[1]);

 for (Iterator i = urls.iterator(); i.hasNext();)
lp.print(w.label((String) i.next()), fw);

 fw.close();
}
catch (IOException e) {
 System.err.println(" Problem writing to " + args[1] + " : " + e);
}

 }
}

2
1

A
p
p
e
n
d
ix

B
:
W
ra
p
p
e
r
fo
r
R
e
se
a
rch

In
d
e
x
so
u
rc
e
listin

g
package examples;

import wrapper.*;
import textutils.*;
import java.io.*;

public class ResearchIndexExample extends Wrapper {

 protected void defineRules() {
RuleBuilder rb = new RuleBuilder(" ResearchIndexList",

 new ItemExtractor[] {
 new LinkFollower(),
 new ForwardItemExtractor(" Previous 250", " Next 250")});

rb.addRuleToRule(" ResearchIndexList", " CitedAuthorEntries",
 new ItemExtractor[] {
 new ForwardItemExtractor(" . ", " ")},
 Cardinality.MANY);

rb.addRuleToRule(" CitedAuthorEntries", " CitedAuthorEntry",
 new ItemExtractor[] {
 new ForwardItemExtractor(" onmouseover=", " ")},
 Cardinality.MANY);

rb.addRuleToRule(" CitedAuthorEntry", " name",
 new ItemExtractor[] {
 new ForwardItemExtractor(" >", null)});

rb.addRuleToRule(" CitedAuthorEntry", " url",
 new ItemExtractor[] {
 new ForwardItemExtractor(" \"self.status=\’", " \’; ")});

addRule(rb.rule());
 }

 public static void main(String[] args) {
Label l = new ResearchIndexExample().label(" http://citeseer.nj.nec.com/cited2.html");

new LabelPrinter().print(l, new PrintWriter(System.out));
 }
}

2
2

