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A long-standing goal for the �eld of arti�cial intelligence is to enable computer understanding

of human languages. A core requirement in reaching this goal is the ability to transform individual

sentences into a form better suited for computer manipulation. This ability, called semantic parsing,

requires several knowledge sources, such as a grammar, lexicon, and parsing mechanism.

Building natural language parsing systems by hand is a tedious, error-prone undertaking. We

build on previous research in automating the construction of such systems using machine learning

techniques. The result is a combined system that learns semantic lexicons and semantic parsers from

one common set of training examples. The input required is a corpus of sentence/representation

pairs, where the representations are in the output format desired. A new system, Wolfie, learns

semantic lexicons to be used as background knowledge by a previously developed parser acquisition

system, Chill. The combined system is tested on a real world domain of answering database

queries. We also compare this combination to a combination of Chill with a previously developed

lexicon learner, demonstrating superior performance with our system. In addition, we show the

ability of the system to learn to process natural languages other than English. Finally, we test

the system on an alternate sentence representation, and on a set of large, arti�cial corpora with

varying levels of ambiguity and synonymy.

One di�culty in using machine learning methods for building natural language interfaces

is building the required annotated corpus. Therefore, we also address this issue by using active

learning to reduce the number of training examples required by both Wolfie and Chill. Experi-

mental results show that the number of examples needed to reach a given level of performance can

be signi�cantly reduced with this method.
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Chapter 1

Introduction

A long-standing goal for the �eld of arti�cial intelligence is to enable computer understanding of

human languages. Much progress has been made in reaching this goal, but much also remains to

be done. Before arti�cial intelligence systems can meet this goal, they �rst need the ability to

parse sentences, or transform them into a representation that can be more easily manipulated by

computers. Several knowledge sources are required for parsing, such as a grammar, lexicon, and

parsing mechanism.

Natural language processing (NLP) researchers have traditionally attempted to build these

knowledge sources by hand, often resulting in brittle, ine�cient systems that take many hundreds

of hours to build. Overcoming this \knowledge acquisition bottleneck" by applying methods from

machine learning is the main goal of this dissertation. We apply methods from empirical or corpus-

based NLP to learn a semantic lexicon, and from active learning to reduce the annotation e�ort

required to learn both semantic parsers and lexicons.

The \knowledge acquisition bottleneck" is particularly di�cult in the case of knowledge

needed for natural language processing, where the amount of information to encode is particularly

large, and it is particularly di�cult to make such knowledge complete and correct. To attack this

problem, recent years have seen the explosion of various computational techniques applied towards

the goal of automatically acquiring the knowledge and tools needed to process language (see Brill

and Mooney (1997) for an overview). These techniques have drawn from various �elds including

statistics, machine learning, connectionism, and information-theoretic methods. Within this larger

context of empirical NLP, our research focuses on machine learning and statistical methods to

automate the construction of semantic lexicons and semantic parsers, from input consisting of

sentences annotated with their appropriate semantic representations.

In the empirical approach to language acquisition, two tasks are performed. First, a training

corpus is built. The type of corpus depends on the type of analysis desired. Typical corpora

consist of sentences paired with parse trees, database queries, or semantic forms such as case-role

representations. Another possible input form is syntactically tagged text. Both semantic and

syntactic knowledge is often present in the sentence representations. Alternatively, unannotated

corpora may be used in the case of systems using unsupervised learning. This dissertation focuses

on supervised learning. Figure 1.1 shows an example of part of a corpus of sentences paired with

database queries, represented in a logical form that can be executed in Prolog.

The second task required in the empirical approach to language acquisition is to design
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What is the capital of the state with the biggest population?
answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What is the highest point of the state with the biggest area?
answer(P, (high point(S,P), largest(A, (state(S), area(S,A))))).

What state is Texarkana located in?
answer(S, (state(S), eq(C,cityid(texarkana, )), loc(C,S))).

What capital is the biggest?
answer(A, largest(A, capital(A))).

What is the area of the United States?
answer(A, (area(C,A), eq(C,countryid(usa)))).

What is the highest point in the state with the capital Des Moines?
answer(C, (high point(B,C), state(B), capital(B,A),

eq(A,cityid('des moines', )))).

Figure 1.1: Sample Annotated Corpus

([capital], capital(_,_)), ([state], state(_)),

([biggest], largest(_,_)), ([in], loc(_,_)),

([highest,point], high_point(_,_)), ([area], area(_,_)),

([population], population(_,_)), ([capital], capital(_)),

Figure 1.2: Sample Semantic Lexicon

and build the acquisition system itself. This system is then trained on the corpus of interest,

and the system learns to map each input sentence into its desired representation(s). By using

such acquisition systems, an application designer need only decide upon and design a suitable

representation, leaving the di�cult issue of constructing a parser (or other grammar formalism) to

the machine learning system. The system described in this dissertation can in turn aid the parser

acquisition system by learning word meanings, thus shortening the inductive leap required.

One knowledge source required by systems that learn to map natural language sentences into

deeper semantic representations is the semantic lexicon. Here we use this term (often shortened to

just lexicon) to refer to a list of words (or multi-word phrases) paired with their meanings. We have

developed a system,Wolfie (WOrd Learning From Interpreted Examples), to automatically learn

semantic lexicons from a corpus of sentences paired with their meanings. Experimental results show

that Wolfie is able to learn correct and useful mappings. The output of the system can be used

to assist a larger language acquisition system; in particular, it is currently used as part of the input

to Chill (Zelle & Mooney, 1993), a parser acquisition system. Chill requires a word-to-meaning

lexicon as background knowledge in order to learn to parse into deep semantic representations. By

usingWolfie, one of the inputs to Chill is automatically provided, thus easing the task of parser

acquisition. Part of a semantic lexicon for the corpus in Figure 1.1 is shown in Figure 1.2.

Though there are existing computational lexicons (e.g., WordNet, (Beckwith, Fellbaum,

Gross, & Miller, 1991)) and on-line dictionaries (e.g., Longman Dictionary of Contemporary English

2



(LDOCE), (Proctor, 1978)), automated lexicon acquisition is important for several reasons. First,

language is constantly changing: new words are created and additional senses are added to existing

words. Second, existing lexicons are often customized to one domain, and new domains require

slightly or even radically di�erent meanings for many words. Finally, the organization of a lexicon

by hand is pain-staking work, and a more logical or useful representation is likely to be found more

quickly by automated methods. The automation of lexicon acquisition would enable lexicons to be

updated continuously for each new domain with no need to hand-code the lexicon entries.

Before we proceed, a brief discussion of words and their meanings is warranted. As in Miller,

Beckwith, Fellbaum, Gross, and Miller (1993), word form (or just word when the use is obvious)

here refers to a \physical utterance or inscription," and word meaning \to the lexicalized concept

that a form can be used to express." Further, in the context of this dissertation, a word meaning is

a symbol, or set of symbols, corresponding to a word form and denoting information about the word

that is in some way useful to the performance of intelligent reasoning in the domain in question.

In other words, a word's meaning is what we want the Natural Language Understanding (NLU)

system to infer (e.g., add to its current knowledge about the sentence being processed), when it

sees the word's form. From this de�nition, it is clear that the meaning (or meanings) of a word

is dependent on the representation used by the NLU system at hand. In some simple cases, for

example, the meaning of man will just be man. In this dissertation, word forms will be set in bold

font (e.g., man), and their meanings in tele-type font (e.g., [person,sex:male,age:adult]).

Many past systems designed to automate semantic lexicon acquisition (Fukumoto & Tsujii,

1995; Haruno, 1995; Johnston, Boguraev, & Pustejovsky, 1995; Webster & Marcus, 1995) focus

only on acquisition of verbs or nouns, rather than all types of words. Also, these either do not

experimentally evaluate their systems, or do not show the usefulness of the learned lexicons. Other

approaches (Berwick & Pilato, 1987; Hastings & Lytinen, 1994) to lexicon acquisition assume access

to an initial lexicon and parser. A related trend (Boguraev & Briscoe, 1989) is the extraction of

lexical knowledge from machine-readable dictionaries such as LDOCE. However, lexicons built in

this way typically need further tailoring in order to be useful in the domain of intended application.

The induction of the semantic lexicon is not straightforward for several reasons. First, there

are a large number of possible meanings that could be induced for each phrase in a sentence: forcing

Chill to also learn a lexicon as it is learning parsers would result in an exponential increase in

the number of hypotheses to consider, as the size of sentence representations increases. Second,

many words have multiple senses, or meanings. Therefore, knowing the meaning of a word for

some sentences does not guarantee knowing its meaning in all situations. Finally, some words may

appear very rarely in a corpus, so that the amount of evidence for inferring the correct meaning

for them is quite sparse.

This dissertation presents a lexicon acquisition system, Wolfie, that learns a mapping of

words to their meanings, that overcomes many of the limitations of previous work, and that cir-

cumvents the di�culties just listed. Although the papers mentioned above and others have also

addressed the lexicon learning problem, our method di�ers from these by combining �ve features.

First, the only background knowledge needed for lexicon learning is in the training examples them-

selves. Second, interaction with a system, Chill, that learns to parse is demonstrated. Third, a

simple, greedy algorithm is used for e�ciency to acquire word meanings. Fourth, the system is

adaptable to di�erent sentence representations. Finally, the mapping problem is eased by mak-

3



ing a compositionality assumption that states that the meaning of a sentence is composed from

the meanings of the individual words and phrases in that sentence, in addition, perhaps to some

\connecting" information speci�c to the representation at hand. This assumption is similar to the

linking rules of Jackendo� (1990).

The Wolfie learning algorithm exploits the compositionality assumption. By assuming

that a sentence meaning is composed from word meanings, we also assume that each component

of the sentence representation can be mapped back to the meaning of only one word or phrase

in the sentence: the one that has that component as part of its meaning representation. Thus,

during lexicon acquisition, word meanings are derived from the components of the representations

of sentences in which each word appears. The compositionality assumption decreases the number

of meanings that need to be considered for each word. While in broad linguistic domains, com-

positionality may not always hold, we are primarily interested in acquiring language processing

information about one domain at a time, rather than a broad-coverage parser. The goal is not to

simply obtain a parse, but to obtain one that is useful for achieving some task, such as answering

a question or performing a command. In these situations, compositionality often does hold. In

addition, since we are able to learn the meanings of multiple-word phrases, some of the arguments

against compositionality (e.g., idioms) may be overcome.

We have tested the utility of the lexicon acquisition algorithm on one real-world corpus and

two arti�cial corpora, with positive results. The ability of the learned lexicons to aid a parser

acquisition program were measured for the real corpus and for one of the arti�cial corpora. The

real-world corpus contains natural language questions about U.S. geography paired with their

logical query representations, that can then be used to extract answers to the questions from a

database. We also show the applicability of the technique to three diverse natural languages other

than English: Spanish, Turkish, and Japanese, using translations of the same corpus. We compared

these results to the results obtained with lexicons learned by a comparable system developed by

Siskind (1996), showing a signi�cant improvement for our system in most circumstances. One of

the arti�cial corpora was based on that of McClelland and Kawamoto (1986), and augmented with

Conceptual Dependency (Schank, 1975) information. Finally, we used a set of arti�cially generated

corpora to test the scalability of our algorithm, with encouraging results.

While building an annotated corpus is arguably less work than building an entire NLP

system, it is still not a simple task. Redundancies and errors can creep into the data. A goal

should be to also minimize the amount of data that is annotated, yet still reach a reasonable level

of generalization performance with the system learned from training on that data. In the case of

natural language, there is frequently a large amount of unannotated text available. We would like

to automatically, but intelligently, choose which of the available sentences to annotate.

We do this here using a technique called active learning. Active learning is an emerging

research area in machine learning that features systems that automatically select the most infor-

mative examples for annotation and training (Cohn, Atlas, & Ladner, 1994). The primary goal of

active learning is to reduce the number of examples that the system is trained on, thereby reduc-

ing the example annotation cost, while maintaining the accuracy of the acquired information. To

demonstrate the usefulness of our active learning techniques, we compared the accuracy of parsers

and lexicons learned using examples chosen by active learning to those learned using randomly

chosen examples, �nding that active learning can save signi�cant annotation cost over training on
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randomly chosen examples. This savings is demonstrated in the U.S. geography domain.

In summary, this thesis demonstrates a machine learning technique for inducing semantic

lexicons; and by building on previous research an entire natural language interface can be acquired

from one training corpus. Further, this thesis demonstrates the application of active learning

techniques to minimize the amount of data required to annotate as training input for the integrated

learning system.

The remainder of the dissertation is organized as follows. Chapter 2 gives more background

information on Chill, and introduces Siskind's lexicon acquisition system, which we will compare

to Wolfie in Chapter 4. Chapter 3 formally de�nes the learning problem and describes the

Wolfie algorithm in detail. In Chapter 4 we present and discuss experiments evaluatingWolfie's

performance in learning lexicons in a database query domain, and Chapter 5 contains experimental

results on two arti�cial corpora. Next, Chapter 6 describes and evaluates our use of active learning

techniques for both Chill and Wolfie. Chapters 7 and 8 discuss related research and future

directions. Finally, Chapter 9 summarizes our research and results.
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Chapter 2

Background

Our approach was developed in the context of learning lexicons to support semantic parsing. As

we mentioned in Chapter 1, we use the word semantic lexicon to refer to a mapping from words

to representations of their meanings. The particular meaning representation is determined by the

domain at hand and the desired form for sentence representations. The initial motivation for

learning lexicons was so they could be used to bootstrap a parser acquisition system, Chill (Zelle,

1995). After Chill acquires a parser, it also uses the lexicons learned to map novel sentences into

representations of their meanings. Section 2.1 describes Chill in more detail.

The most closely related previous research into automated lexicon acquisition is that of

Siskind (1996). As we will be comparing our system to his in Chapter 4, we describe the main

features of his research in Section 2.2.

2.1 Chill

The output produced by Wolfie can be used to assist a larger language acquisition system; in

particular, it is currently used as part of the input to the system Chill. Chill uses inductive

logic programming (Muggleton, 1992; Lavra�c & D�zeroski, 1994) to learn a deterministic shift-

reduce parser written in Prolog. The input to Chill is a corpus of sentences paired with semantic

representations, the same input required by Wolfie. The output is a deterministic parser that

maps sentences into parses.

Figure 2.1 shows the basic components of the Chill system. First, during Parsing Operator

Generation, the training examples are analyzed to formulate an overly-general shift-reduce parser

that is capable of producing parses from sentences. Next, in Example Analysis, the overly-general

parser is used to parse the training examples to extract contexts in which the generated parsing

operators are actually useful. The third step is Control-Rule Induction which employs a general ILP

algorithm to learn rules that characterize these contexts. Finally, Program Specialization \folds"

the learned control-rules back into the overly-general parser to produce the �nal parser.

The component of Chill that will be most relevant to our discussion is the initial overly-

general parser. This parser varies from one domain and representation language to the next, but it

is a straight-forward matter to determine the type of parsing operators needed to parse sentences

into a given representation language. The parser is capable of translating a given sentence into

many parses representing its meaning, including the correct one(s). Therefore, to increase e�ciency,
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Figure 2.1: The Chill Architecture

the search for the correct parse during example analysis is limited by a check for compatibility with

the correct representation(s), given as training input. Given a correct lexicon, the overly-general

parser should be able to parse all of the training examples. The parser is specialized by the learner

to produce a �nal parser that generates only the correct parse(s) for each training sentence, without

requiring any access to those parses.

The workings of the overly-general parser will be relevant to our later discussion. Suppose

we want to produce a case-role analysis (Fillmore, 1968) of the sentence: \The man ate the pasta.",

which we represent as

[ate, agt:[man, det:the], pat:[pasta, det:the]].

The current parse state is represented by the contents of the parse stack and the remaining portion

of the input bu�er (Tomita, 1986). Parsing begins with an empty stack and an input bu�er

containing the entire sentence. At each step of the parse, either a word is shifted from the front

of the input bu�er onto the stack, or the top two elements on the stack are popped and combined

to form a new element that is pushed back onto the stack. A notion of locality is enforced here,

since only the top two elements can be combined, not elements from any arbitrary depth in the

stack. The sequence of actions and stack states for our simple sentence is shown Figure 2.2. The

action notation (x label), indicates that the stack items are combined via the role label with the

item from stack position x being the head. Choosing the correct action to apply at any given point

in the deterministic parse requires a great deal of knowledge. This knowledge is encoded in the

rules learned by Chill.

In this dissertation, we will primarily discuss Chill in the context of acquiring parsers that

map natural-language questions directly into Prolog queries that can be executed to produce an

answer (Zelle & Mooney, 1996). Following are two sample queries for a database on U.S. Geography
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Action Stack Contents
[]

(shift) [the]
(shift) [man, the]
(1 det) [[man, det:the]]
(shift) [ate, [man, det:the]]
(1 agt) [[ate, agt:[man, det:the]]]
(shift) [the, [ate, agt:[man, det:the]]]
(shift) [pasta, the, [ate, agt:[man, det:the]]]
(1 det) [[pasta, det:the], [ate, agt:[man, det:the]]]
(2 obj) [[ate, obj:[pasta, det:the], agt:[man, det:the]]]

Figure 2.2: Shift-Reduce Case-Role Parsing of \The man ate the pasta."

<Sentence, Representation>

<Phrase, Meaning>

Prolog

Training
Examples WOLFIE

LexiconCHILL

Final
Parser

Figure 2.3: The Integrated System

paired with their corresponding Prolog query:

What is the capital of the state with the biggest population?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What state is Texarkana located in?

answer(S, (state(S), eq(C,cityid(texarkana, )), loc(C,S))).

Given a su�cient corpus of such sentence/representation pairs, Chill is able to learn a parser that

correctly parses many novel questions into logical queries.

Chill requires a lexicon as background knowledge in order to learn to parse into deeper

semantic representations. By usingWolfie, the lexicon is provided automatically, easing the task

of parser acquisition. Figure 2.3 illustrates the inputs and outputs of the complete system. The

output of Wolfie is a lexicon of (phrase, meaning) pairs, where the phrases contain one or two

words, and the meanings are derived from the representations of sentences in which the phrase

appears. Wolfie will be discussed in more detail in Chapter 3 and throughout the dissertation.
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2.2 The Work of Je� Siskind

Siskind (1996, 1994, 1992) describes a system that learns word to meaning mappings from corpora

similar to those we employ. The main di�erence in the input is that in his training examples, each

sentence may be paired with multiple hypothesized meanings, a problem he refers to as referential

uncertainty, while we assume that each sentence is paired with only one meaning. A second minor

di�erence is that his system requires the representation of a sentence to be variable free, e.g., \John

walked to school." would be represented as go(john, to(school)). His claim is that sentences do

not contain un�lled argument positions. While this may be true for declarative sentences, questions

may contain un�lled argument positions. As demonstrated by the queries in the previous section,

we do allow variables in the sentence representations presented to Chill and Wolfie.

The motivational focus for his system is di�erent than for ours. He primarily hopes to

gain insight into the cognitive processes used by children in learning the lexicon, while we focus

on learning a lexicon that will be useful for parsing. Because of this focus, his algorithm encodes

some cognitive principles. First, a learner can �lter out impossible meanings of a sentence based on

partial knowledge of the meanings of the words in the sentence. This principle, the utilizing partial

knowledge principle, is primarily focused towards handling referential uncertainty. Second is the

principle of cross-situational inference, in which a learner can determine the meaning of a word by

�nding something in common across several uses of that word.

The third principle is that of covering constraints, which is based on the assumption that

all components of the sentence meaning must be derived from the meanings of the words in that

sentence. This, together with previously learned information, helps the learner determine which

meaning fragments must be contained in a word's meaning. For example, if the learner sees the

sentence \John runs." paired with the meaning run(john), and knows that John means john,

then it can infer that runs must mean run( ) since that portion of the sentence meaning must be

derived from some word in the sentence, and John is already accounted for.

Finally is the principle of exclusivity, which states that each fragment of a sentence repre-

sentation is due to only one word or contiguous phrase in the sentence. In the previous example,

if the learner knows that John means john, this principle lets us infer that runs does not mean

john.

An incremental, version-space approach is taken by Siskind's system. Lexicon acquisition

proceeds in two stages. The �rst stage learns which symbols in the representation are to be used in

the �nal conceptual expression that represents the meaning of a word. The second stage learns how

these symbols are put together to form the �nal representation. For example, when learning the

meaning of the word raise, the algorithm may learn the set fCAUSE, GO, UPg during the �rst stage

and put them together to form the expression CAUSE(x, GO(y, UP)) during the second stage.

During the �rst stage, the algorithm maintains two sets of conceptual symbols for each

word. One, the necessary conceptual-symbol set, contains conceptual symbols that the algorithm

has determined must be a part of a word's meaning. The other, the possible conceptual-symbol set,

contains conceptual symbols that the algorithm has determined can be a part of a word's meaning.

These sets form the lower and upper bounds on the actual (learned) conceptual-symbol set for that

word form. The �rst stage of learning uses the above principles and each sentence/representation

pair in turn to loosen the lower bound and constrain the upper bound. Conceptual symbols are

added to the initially empty necessary set, and removed from the initially unconstrained possible
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set, until the two have converged. To handle ambiguity, the algorithm allows these sets to be split

so that there are multiple such \version spaces" for each word, one for each word-sense.

Once a word-sense has converged in stage one, learning for that sense proceeds to stage two.

During this stage, the algorithm maintains a set of conceptual expressions for each word sense.

This set is initialized to all possible expressions that can be formed out of the symbols appearing

in the converged set arrived at in stage one. Expressions that can not be recombined to form the

meaning of a sentence in which a word appears are removed from this set until it contains a single

expression, at which point learning stops for the word. Note that since the algorithm is incremental,

only the current and future uses of a word are checked in this way. As the algorithm is processing

input sentence/representation pairs, some words that it is learning might be in stage one, while

others have reached stage two, while yet others might be completely learned.

Siskind (1996) shows the e�ectiveness of his approach on a series of arti�cial corpora. While

the system handles noise, ambiguity, referential uncertainty, and very large corpora, the usefulness

of lexicons learned is only compared to the \correct," arti�cial lexicon. No demonstration of the

system's usefulness in real natural language domains has been performed until now. From time to

time throughout this dissertation, we will provide further elaboration on various aspects of Siskind's

work, to compare and contrast it with our own.
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Chapter 3

Lexicon Learning and Wolfie

3.1 Problem De�nition

Although in the end our goal is to acquire an entire natural language interface, we currently divide

the task into two parts, the lexicon acquisition component and the parser acquisition component.

In this section, we discuss the problem of acquiring semantic lexicons that assist parsing and the

acquisition of parsers. The training input consists of natural language sentences paired with their

meaning representations. From these pairs we want to extract a lexicon consisting of phrases

paired with their meaning representations. Some example training pairs and lexicons were shown

in Figures 1.1 and 1.2. To present the learning problem more formally, some de�nitions are needed.

While in the following we use the terms \string" and \substring," these extend in a straight-forward

way to natural language sentences and phrases, respectively. The labeled trees are just our meaning

representations.

De�nition: Let �V , �E be �nite alphabets of vertex labels and edge labels, respectively. Let V

be a set of vertices, E � V ��E � V a set of labeled edges, and l a total function l : V ! �V . l is

called a \vertex labeling." The triple G = (V;E; l) is a labeled graph.

De�nition: A labeled tree is a connected, acyclic labeled graph.

Figure 3.1 shows the labeled tree t1 associated with the meaning of the sentence s1: \The

girl ate the pasta with the cheese." In Prolog list form, the meaning is:

[ingest, agent:[person,sex:female,age:child],

patient:[food,type:pasta, accomp:[food,type:cheese]]].

In this example, the function l is:

f(1, ingest), (2, person), (3, food), (4, female), (5, child), (6, pasta), (7, food), (8, cheese)g.

De�nition: An interpretation f of a string s to a labeled, rooted tree t is a one-to-one function

mapping some of the substrings of s into nodes(t) such that root(t) 2 range(f). The substrings in

the domain of f must be disjoint.

The interpretation provides information on what parts of the meaning of a sentence come

from which of its phrases. This information is only about phrases that have meaning at the \lowest

level," or at the terminal nodes of a semantic grammar that is then used to construct the meanings

of longer phrases and sentences. In Figure 3.1, we show an interpretation of s1 to t1 where f maps
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with its node and edge labels:t1 t1

t1An Interpretation from "The girl ate the pasta with the cheese." to :

Figure 3.1: Labeled Graphs and Interpretations

\girl" to node 2, \ate" to node 1, \pasta" to node 3, and \the cheese" to node 7. Note that \with"

is not in the domain of f . Because we disallow overlapping substrings in the domain, both \cheese"

and \the cheese" could not map to nodes in t1.

De�nition: Given an interpretation f of string s to tree t, and an element p of domain(f), the

meaning of p relative to s, f , t is the connected subgraph of t whose nodes include f(p) and all

its descendents except any other nodes of range(f) and their descendents. This subgraph is also a

tree, and let us assign f(p) as its root. For p =2 domain(f), the meaning of p is the \empty tree."

Figure 3.2 shows the meanings of each phrase in the domain of the interpretation function

shown in Figure 3.1. Here we have shown only the labels on the nodes and arcs for readability.

De�nition: Given a set of strings S = fs1; : : : ; si; : : : ; sng, a set of trees T = ft1; : : : ; ti; : : : ; tng,

and a set of interpretation functions F = ff1; : : : ; fi; : : : ; fng, where fi maps si to ti, let the language

L = fp1; : : : ; pkg of S be the union of all possible substrings1 of each element in S. For each pj 2 L,

the meaning set of pj , denoted MS;T;F (pj)
2, is the set of all meanings of pj relative to si; ti; fi for

1 � i � n. We consider two meanings to be the same if they are isomorphic trees taking labels into

account.

For example, given the second sentence s2: \The man ate the cheese." with associated

meaning t2 pictured in Figure 3.3, and f2(\the cheese") = 3, the meaning set for \the cheese"

with respect to S = fs1; s2g, T = ft1; t2g, F = ff; f2g, would be f[food, type:cheese]g, just

1We consider two substrings to be the same string if they contain the same characters in the same order, irrespective
of their positions within the larger string in which they occur.

2We omit the subscript on M when the sets S, T , and F that the meanings are relative to are obvious from
context.

12



"girl":

"the cheese":

"pasta":

"ate": ingest

cheese

food
type

food
type

pasta

person
sex age

childfemale

Figure 3.2: Meanings

Tree    :

ingest

agent

person
sex age

patient

food

type

cheese

1

2 3

4 5 6

with its node and edge labels:t2
t2

male adult

String: "The man ate the cheese."

Figure 3.3: A Second Tree

one meaning though f and f2 map \the cheese" to di�erent nodes in the two trees, because the

subgraphs denoting the meaning of \the cheese" for the two functions are isomorphic.

De�nition: The size of F given S and T is the sum of the sizes of the meaning sets of all pj 2 L,

or
PjLj

j=1 jM(pj) j.

For example, the size of F = ff; f2g given S = fs1; s2g and T = ft1; t2g, and restricting

ourselves to substrings of length two, is 16, as shown in Figure 3.4. In the �gure, the symbol ? is

used to indicate the empty tree.

De�nition: Given a set of strings S = fs1; : : : ; si; : : : ; sng, a set of trees T = ft1; : : : ; ti; : : : ; tng,

and a set of interpretation functions F = ff1; : : : ; fi; : : : ; fng, the covering lexicon expressed by S,

T , F is

f(p;m) : p 2
[

1�i�n

domain(fi);m 2M(p)g:

The covering lexicon expressed by our ongoing example is

f (\girl", [person, sex:female, age:child]), (\ate", [ingest]),

(\pasta", [food,type:pasta]), (\the cheese", [food,type:cheese]) g.

Because we only include in the covering lexicon phrases (substrings) that are in the domains of the
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fi's, words with the empty tree as meaning are not included in the covering lexicon. Note also that

we will in general use \phrase" to mean substrings of sentences, whether they consist of one word,

or more than one.

The Lexicon Acquisition Problem:

Given: a set of strings S = fs1; : : : ; sng and a set of trees T = ft1; : : : ; tng,

Find: a set of interpretation functions, F = ff1; : : : ; fng, such that the size of F is minimized. If

such a set is found, we say we have found a minimal set of interpretations (or a minimal covering

lexicon). 2

Less formally, a learner is presented with a set of sentences (S) paired with their meanings3

(T ); the goal of learning is to �nd the smallest lexicon possible. This lexicon is the paired listing

of all phrases in domain(F ) (where F is the set of interpretation functions found) with each of the

elements in their meaning sets. The motivation for �nding an interpretation set of minimal size

is the usual bias towards simplicity of representation. While this de�nition allows for phrases of

any length, we will usually want to limit the length of phrases to be considered for inclusion in the

domain of the interpretation functions, for e�ciency purposes.

This de�nition of the lexicon acquisition problem di�ers from that given by other authors,

including Rilo� and Sheperd (1997), Siskind (1996), Manning (1993), Brent (1991) and others. For

example, Rilo� and Sheperd (1997) de�ne semantic lexicons as the clustering into groups of similar

words. Manning (1993) and Brent (1991) describe work on learning selectional restrictions. Our

de�nition focuses on deriving a word's meaning from representations of the sentences in which it

appears.

Our de�nition of the problem makes some assumptions about the training input. Discussion

of the implications of these assumptions and thoughts on removing some of them in the future is

postponed to later in this chapter and to Chapter 8. First, by making f a function instead of

a relation, the de�nition assumes that the meaning for each phrase in a sentence appears once in

3assumed to be represented as trees
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the representation of that sentence, the single-use assumption. Second, by making f one-to-one,

it assumes exclusivity, that each node in a sentence's representation is due to only one phrase in

the sentence. Third, it assumes that a phrase's meaning is a connected subgraph of a sentence's

representation, not a more distributed representation, the connectedness assumption. While the

�rst assumption may not hold for some representation languages, it does not present a problem in

the domains we have considered. The second and third assumptions are perhaps less problematic

with respect to general language use. The single-use assumption is not made by Siskind (see

Section 2.2), and it is not clear whether or not he could handle word meanings distributed over a

representation. He does also assume exclusivity.

Our de�nition also assumes compositionality: that the meaning of a sentence is derived from

the meanings of the phrases it contains, but is not derived from external sources such as noise. In

other words, all the nodes of a sentence's representation are included within the meaning of some

word or phrase in that sentence. Since we allow multi-word phrases in the lexicon (e.g., ([kick

the bucket], die( ))), this assumption seems fairly unproblematic. In addition, future versions

could allow a loosening of this restriction to allow for information about the context of surrounding

sentences or of the situation to be included in the meaning of a sentence, and for noisy input.

Compositionality is also assumed by Siskind.

This de�nition also allows training input in which:

1. Sentences may be ambiguous (be paired with more than one meaning).

2. Words and phrases may have multiple meanings. That is, ambiguity (polysemy) may occur

in the lexicon.

3. Several phrases may map to the same meaning. That is, synonymy may occur in the lexicon.

4. Some words in a sentence may map to the empty tree, leaving them unused in the assignment

of words to meanings.4

5. Phrases of contiguous multiple words can indicate a meaning of part of a sentence's represen-

tation.

This de�nition of the lexicon acquisition problem does not �t cleanly into the traditional

de�nition of learning for classi�cation. For each phrase, we are given examples of concepts (the

meaning of the sentence in which the phrase appears) that contain the meaning of the phrase, and

we are trying to pick out the relevant \features," or nodes of the representation, corresponding

to the correct meaning. However, there are additional constraints imposed by our assumptions

of single-use, connectedness, and compositionality. To complicate matters further, each training

example may contain information about multiple classes (phrases), and negative examples are not

available.

In some ways the problem is related to clustering, which is also capable of learning multiple,

potentially non-disjoint categories. However, the clusters to learn are not necessarily related to

each other in a hierarchical taxonomy. Also, it is not clear how a clustering system could be made

to learn the phrase to meaning mappings needed for parsing. Finally, current systems that learn

multiple concepts commonly use examples for other concepts as negative examples of the concept

4These words may, however, serve as cues to a parser on how to assemble sentence meanings from word meanings.
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currently being learned. The implicit assumption made by doing this is that concepts are disjoint,

an unwarranted assumption when there is synonymy.

In the next section, we discuss several possible ways to attempt to solve the lexicon acqui-

sition problem, and their strengths and weaknesses. The �nal section describes the approach we

took to solve the problem, and its implementation in Wolfie.

3.2 Potential Approaches

A �rst attempt to solve the Lexicon Acquisition Problem might be to examine all interpretation

functions across the corpus, then choose the one(s) with minimal size. The number of possible

interpretation functions for an input pair is dependent on both the size of the sentence and its

representation. In a sentence with w words, there are �(w2) possible phrases, not a particular

challenge. However, the number of possible interpretation functions grows extremely quickly with

the size of the input. For a sentence with p phrases and associated tree with n nodes, the number

of possible interpretation functions is:

p!(n� 1)!

min(p;n)X
i=1

1

(i� 1)!(n� i)!(p� i)!
: (3.1)

The derivation of the above formula is as follows. We must choose which phrases to use in

the domain of f , and we can choose one phrase, or two, or any number up to min(p; n) (if n < p

we can only assign n phrases since f is one-to-one), or

 
p

i

!
=

p!

i!(p� i)!

where i is the number of phrases chosen. But we can also permute these phrases, so that the

\order" in which they are assigned to the nodes is di�erent. There are i! such permutations. We

must also choose which nodes to include in the range of the interpretation function. We have to

choose the root each time, so if we are choosing i nodes, we have n� 1 choose i� 1 nodes left after

choosing the root, or  
n� 1

i� 1

!
=

(n� 1)!

(i� 1)!(n� i)!
:

The full number of possible interpretation functions is then

min(p;n)X
i=1

(n� 1)!

(i� 1)!(n� i)!
�

p!

i!(p� i)!
� i!;

which simpli�es to Equation 3.1.

When n = p, the largest term of the summation in Equation 3.1 is p!, which grows faster

than exponentially with p, so in general the number of interpretation functions is too large to allow

enumeration. Therefore, �nding a lexicon by examining all interpretations across the corpus, then

choosing the one(s) with minimal size, is clearly not tractable.

Instead of �nding all interpretations, one could �nd a set of candidate meanings for each

phrase, from which the �nal meaning(s) for that phrase could be chosen. One way to do this is
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("girl", [person,sex:female]),
("ate", [ingest]),
("cheese", [cheese])

Figure 3.5: Covering Example

to fracture (Siskind, 1992) the meanings of sentences in which a phrase appears, which in the tree

representation formalism corresponds to �nding all possible connected subgraphs. This would also

lead to an exponential blowup in the number of candidate meanings for a phrase: A lower bound

on the number of connected subgraphs for a full binary tree with N nodes is obtained by noting

that any subset of the L = (N + 1)=2 leaves may be deleted and still maintain connectivity of the

remaining tree. Thus, counting all of the ways that leaves can be deleted gives us a lower bound

of 2(N+1)=2 fractures.5 While in practice we have not encountered very large trees, this could limit

the scalability of an approach that uses fractures.

This exponential blowup would also be a barrier if we were to force Chill to induce the

lexicon on its own. One would have to let each phrase potentially map to all fractures of all

representations of sentences in which it appears. Even with small representations, this would likely

lead to a system with poor generalization ability.

Another di�culty with fracturing is that though it may generate candidate lexicon entries,

the lexicon is no longer guaranteed to be a covering lexicon as de�ned in Section 3.1. For example,

Figure 3.5 shows an example of a sentence/representation pair and two lexicons, one that does

cover the pair and one that does not. Either of these lexicons might be generated by a scheme that

uses fracturing alone.

If we could e�ciently �nd some good candidates, a standard induction algorithm could then

attempt to use this list as a source of training examples for each phrase. However, any attempt to

use the list of candidate meanings of one phrase as negative examples for another phrase would be


awed. The learner could not know in advance which phrases are possibly synonymous, and thus

which phrase lists to use as negative examples of other phrase meanings. Also, many representation

5Thanks to net-citizen Dan Hirshberg for help with this analysis
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components would be present in the lists of more than one phrase. This is a source of con
icting

evidence for a learner, even without the presence of synonymy. Since only positive examples are

available, one might think of using most speci�c conjunctive learning, or �nding the intersection

of all the representations for each phrase, as proposed by Anderson (1977). However, because of

polysemy, the meaning for a given phrase is potentially disjunctive, and then this intersection would

be empty.

Because of the above obstacles, we do not use a standard induction algorithm to �nd a

lexicon. Instead, we generate a set of candidate lexicon entries, from which the �nal learned lexicon

is derived by greedily choosing the \best" lexicon item at each point, in the hopes of �nding

a �nal covering lexicon. This method \carve outs" one subgraph at a time from a sentence's

representation and assigns it to the meaning of a phrase in that sentence. We are �nding meanings,

not interpretation functions. Therefore, simply checking whether the root is in the range of the

interpretation function does not ensure that all portions of the representation (nodes in the tree)

have been accounted for by phrase meanings. In other words, it does not guarantee that we �nd

a covering lexicon. Even without this constraint, using a greedy search would also not guarantee

covering of the input, and of course it also does not guarantee that a minimal lexicon is found. As we

will discuss, however, there is more to our search than just a greedy choice of lexicon entries; further,

our experimental results demonstrate that our greedy search performs well, and that learning is

quite fast.

The problem we address is that of �nding a \good" set of candidate meanings for each

phrase, and then manipulating them as needed to form a �nal lexicon that covers the input. We

try to ensure the former by using the Largest Isomorphic Connected Subgraphs (LICS) between

pairs of representations of sentences in which a phrase appears as initial candidate meanings for

the phrase. We will describe LICS more thoroughly in Section 3.3. We then attempt to ensure the

latter by further restricting the candidate meanings as needed, by appealing to our assumptions of

single-use, connectedness, and exclusivity, before adding them to the �nal learned lexicon.

Choosing good �nal lexicon items from the candidate set could be attempted in several

ways. One is the \histogram" paradigm, in which a count is made of the number of times each

candidate meaning appears with each phrase and the pair with the largest count is chosen �rst.6

However, this does not discriminate well between common and rare words. A second way, the

one we use, is to maximize the prediction of meanings given phrases. We attempt to �nd the

\maximally common" meaning for each phrase while still allowing coverage of most of the input.

The next section expands on these ideas to describe our implemented algorithm, Wolfie.

3.3 The Wolfie Algorithm and an Example

This section describes theWolfie algorithm, implemented in Prolog and outlined in Figure 3.6. In

the current implementation, we only consider learning phrases of at most two words for e�ciency

reasons. Future work includes e�ciently including potentially meaningful phrases of more than

two words. First, the initial list of candidate meanings for a phrase is formed by �nding the LICS

6Thanks to J. Siskind for initial discussions of this paradigm
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For each phrase, p (of at most two words):
1.1) Collect the training examples in which p appears
1.2) Calculate LICS from (sampled) pairs of these examples' representations
1.3) For each l in the LICS, add (p; l) to the set of candidate lexicon entries

Until the input representations are covered,
or there are no remaining candidate lexicon entries do:

2.1) Add the \best" (phrase, meaning) pair to the lexicon
2.2) Update candidate meanings of phrases occurring in the same sentences

as the phrase just learned
Return the lexicon of learned (phrase, meaning) pairs

Figure 3.6: Wolfie Algorithm Overview

between sampled pairs of representations of the sentences in which the phrase appears.7 Using the

LICS between representations is a bottom-up (i.e., speci�c to general) method; bottom-up methods

have proven their success in previous machine learning research. For this problem, it is a useful

technique that helps limit the number of candidates to be considered. We later demonstrate that

with enough training examples, the candidates it generates are good ones. As we will explain,

we use the exclusivity assumption explicitly in the algorithm to help avoid over-specialization, a

potential problem with using bottom-up methods.

After generating an initial set of candidate lexicon entries, a greedy covering search is started

to choose the entries to be included in the �nal learned lexicon. We use a greedy algorithm to limit

the time and space complexity of our algorithm. At each step of the search, the best (phrase,

meaning) pair is chosen from the candidates, according to a heuristic described below, and added

to the �nal lexicon. Each choice of a lexicon item can constrain the candidate meanings for other

phrases, since each subgraph of the representation can be accounted for by only one phrase in the

sentence. This is because we assume that the interpretations mapping sentences to representations

are functions, not relations. The algorithm is described in more detail in the next several sections.

If any of the assumptions made by the problem de�nition are violated, we do not guarantee that a

covering lexicon will be found; however, the system can still be run and learn a potentially useful

lexicon.

The Wolfie algorithm has been implemented to handle two kinds of semantic representa-

tions. First is a case-role representation augmented with Conceptual Dependency (CD)(Schank,

1975) information; examples were shown in Figures 3.1 and 3.3. Experimental results using this

representation will be discussed in Section 5.1. The second representation handled is a logical query

representation; examples were shown in Figure 1.1. This representation is also tree structured as

is shown in Figure 3.7.

Since we will use the logical query representation in the algorithm example, we now describe

the algorithm for �nding the Largest Isomorphic Connected Subgraphs (LICS) for this representa-

tion. The LICS algorithm for the CD representation will be discussed in Section 5.1. The LICS is

7As discussed in the example, phrases that appear in only one sentence have as their candidate meaning the
representation of the sentence in which they appear.

19



answer

C

capital largest

state population

S C P

S PS

and

and

answer(C, (capital(S,C), largest(P, (state(S), population(S,P)))))

                           Represents the query:
"What is the capital of the state with the largest population?"

Figure 3.7: Database Queries as Trees

just what it says: the problem is that we are given two labeled graphs, and we want to �nd the

LICS of the two graphs, where isomorphism takes the labels of the two graphs into account. The

Largest Common Subgraph problem is solvable in polynomial time if both inputs are trees (Garey

& Johnson, 1979), which they will be in our representations.

Finding common meanings between two trees in the logical query representation is compli-

cated by variable renaming and conjunction. Therefore, to �nd the LICS between pairs of query

representations, we use LICS plus a method similar to �nding the Least General Generalization

(LGG) of �rst-order clauses (Plotkin, 1970). Summarizing that work, the LGG of two clauses is the

least general clause that subsumes both clauses; our version of LGGs simply operates over terms

instead of clauses. To �nd common meanings then, we �nd the LICS between two trees, forming a

rooted tree with root labeled r in each tree. Then for the subtrees rooted at r in the input trees,

we �nd their LGG.

For example, given the trees in Figures 3.7 and 3.8, or in Prolog form:

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

answer(S, largest(S, state(S))).,

the common meaning is largest( ,state( )).8 The steps are illustrated in Figures 3.7, 3.8, and

3.9. The LICS between the two trees (again, excluding answer) is just largest, but we use the

subtree rooted at largest in each tree as each input to the LGG. A second example, demonstrating

8Since Chill initializes the parse stack with the answer/2 predicate, it is �rst stripped from the input given to
Wolfie. While this means that representations are forests, not trees, the learning problem still holds, as the root
(answer) is implicitly assigned a meaning.
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answer

largest

state

S

answer(S, largest(S, state(S)))

S

S

     Represents the query:
"What is the largest state?"

Figure 3.8: A Second Database Query

largest largest

largest

P and

state population

S P

largest

state

S

S

for the tree in Figure 3.8:for the tree in Figure 3.7:
Subtree rooted at

LGG: largest(_,state(_))

Subtree rooted at

S

Figure 3.9: LICS Plus LGGs
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a result with common variables, are the trees

(state(S), loc(C,S))

(high point(B,C),loc(C,B),state(B),capital(B,A))

with a common meaning of (state(N), loc( ,N)). Other systems that deal with �nding gener-

alizations of structured objects include Occam (Pazzani, 1985), UNIMEM (Lebowitz, 1987), and

Labyrinth (Thompson & Langley, 1991).

3.4 Generating Candidate Lexicon Items

We now describe the algorithm in more detail with the help of an example from the U.S. Geography

query domain. The �rst step is to derive an initial set of candidate meanings for each one and two

word phrase. For example, let us suppose we have the following pairs as input:

1. What is the capital of the state with the biggest population?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

2. What is the highest point of the state with the biggest area?

answer(P, (high point(S,P), largest(A, (state(S), area(S,A))))).

3. What state is Texarkana located in?

answer(S, (state(S), eq(C,cityid(texarkana, )), loc(C,S))).

4. What capital is the biggest?

answer(A, largest(A, capital(A))).

5. What is the area of the United States?

answer(A, (area(C,A), eq(C,countryid(usa)))).

6. What is the population of a state bordering Minnesota?

answer(P, (population(S,P), state(S), next to(S,M),

eq(M,stateid(minnesota)))).

7. What is the highest point in the state with the capital Des Moines?

answer(C, (high point(B,C), loc(C,B), state(B), capital(B,A),

eq(A,cityid('des moines', )))).

As a simpli�cation, assume that sentences are stripped of phrases that we know a priori have

empty meanings (although in general this is not required). In the example sentences, these phrases

are [what], [is], [with], and [the]. We will also assume that database constants (location names)

are given to the learning algorithm as background knowledge, in order to keep the explanation

simpler. We generate candidate lexicon entries for a phrase by �nding the LICS between pairs

of representations of the sentences in which that phrase appears. The sets of initial candidate

meanings for some of the phrases in this corpus are:
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Phrase LICS Derived from Sentences

[capital]: largest( , ) 1,4

(capital(A, ),state(A)) 1,7

[biggest]: largest( ,state( )) 1,2

largest( , ) 1,4;2,4

[state]: largest( ,state( )) 1,2

state( ) 1,3;2,3

(capital(A, ),state(A)) 1,7

(high point(B, ),state(B)) 2,7

(state(S),loc( ,S)) 3,7

[highest,point]: (high point(B, ),state(B)) 2,7

[located]: (state(S),loc( ,S)) 3

[in]: (state(S),loc( ,S)) 3,7

Note that [state] has �ve candidate meanings, each generated from di�erent pairs of sentences in

which it appears. Also, [capital] and [biggest] each have two candidate meanings. For phrases that

only appear in one sentence, we use the entire representation of the sentence in which they appear

as an initial candidate meaning. In this corpus, such phrases include [located] and [bordering].

As we will see, this type of pair typically has a low heuristic score, so the meaning will usually

be generalized (in step 2.2 of the algorithm, described later) to just the correct portion of the

representation, if any, by the time it is added to the �nal lexicon. Finally, if a phrase is ambiguous,

the pairwise matchings to generate multiple candidate items, together with the updating of the

candidate set in step 2.2, enable multiple meanings to be learned for it.

One thing to notice about these candidate meanings, is that the overly-speci�c meanings

(e.g., largest( ,state( )) for state) are typically derived from sentences that have more than

one phrase in common. The algorithm cannot distinguish a priori which phrase corresponds to

which predicate(s), but again candidate generalization and appealing to exclusivity will usually

distinguish which is which. We could force the algorithm to only generate LICS from representations

of sentences that only have one phrase in common, but there are not always such sentences for every

phrase in the corpus.

3.5 Finding the Best Pair

After deriving the candidate lexicon items, the greedy search begins. The heuristic used to evaluate

candidate (phrase, meaning) pairs is the sum of three weighted components, where p stands for

phrase and m stands for meaning:

1. P (mjp)� P (pjm)� P (m) = P (mjp)2 � P (p).

2. The generality of m.

3. The amount of orthographic overlap between p and m.

The �rst measure, meaning utility, is analogous the the cluster evaluation heuristic used by Cobweb

(Fisher, 1987), which measures the utility of clusters based on attribute-value pairs and categories,

instead of meanings and phrases. The goal of this measure is to maximize the probability of
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predicting the correct meaning for a randomly sampled phrase. The equality holds by Bayes

Theorem; looking at the right side of the equation, P (mjp)2 is the expected number of times that

meaning m can be correctly guessed for a given phrase, p. This expectation assumes a guessing

strategy that is probability matching. In other words, it assumes that a meaning m for p is guessed

with probability P (mjp) and that this guess is correct with the same probability. The second term,

P (p), biases the term by how common the phrase is.

Looking at the left side of the equation, the �rst term helps bias the learner towards lexicons

with low ambiguity, by preferring phrases that indicate a particular meaning with high probability.

The second term helps reduce unneeded synonymy in a similar way. Finally, lexicon items with

a large value for P (m) are those for which we would have the most con�dence in having found a

correct mapping, and thus should be chosen �rst. The probabilities are calculated from the training

input and then are updated as learning progresses so that they do not include counts for meanings

and phrases already covered by previously learned items. We will see how this updating works as

we continue through our example of the algorithm.

The formula is calculated as follows:

P (mjp)2 � P (p) =
count(m; p)2

count(p)2
�

count(p)PN
j=1 count(pj)

;

which we can simplify to the following:

count(m; p)2

count(p)�
PN

j=1 count(pj)
(3.2)

Here, count(m; p) is the number of times that m and p appear in a sentence representation pair

where both m and p are as yet uncovered by items in the learned lexicon, and count(pj) is the

number of times that phrase pj remains uncovered in the input. Finally, N is the number of unique

phrases in the input.

The second measure, generality, prefers pairs with general meanings over those with more

speci�c ones, and is the negation of the number of nodes in the tree-structured representation of

the meaning. Learning a meaning with fewer terms helps evenly distribute the predicates in a

sentence's representation among the meanings of the phrases in that sentence, and thus leads to

a lexicon that is more likely to be correct. To see this, we note that some pairs of words tend to

frequently co-occur, and so their joint representation (meaning) is likely to be in the list of candidate

meanings for both words. By preferring a more general meaning, we easily ignore these incorrect

joint meanings. In the candidate set above for example, if all else were equal, the generality portion

of the heuristic would prefer state( ), with generality value -1, over largest( ,state( )) and

(capital(A, ),state(A)), each with generality value -2, as the meaning of state.

The �nal measure, orthographic overlap, is used since in some domains phrases have many

characters in common with their meanings, as in [area] and area( ). To compute this value,

we measure the length, n, of the largest number of characters in common between any pre�x of

the characters in the words in the phrase, and any substring of the characters in the terms and

predicates in the meanings.9 We do not use standard longest common substring because in this

9We actually �nd the largest number of characters in common between pre�xes of each word in the phrase and
the meaning, but ensuring that these do not overlap, by removing the longest common substring from the meaning if
needed and recomputing the number of characters in common between the remaining meaning and the other word(s)
in the phrase.
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domain we typically only realize a bene�t if pre�xes of the words match the meaning. We then

divide n by the number of characters in the phrase and by the number of characters in the term and

predicate names, and average the two. Since orthographic overlap does not occur in all domains,

we demonstrate in our experimental results that this component of the heuristic has a small e�ect

on learning.

For purposes of this example, we will use a weight of 10 for the �rst and third parameters,

and a weight of 1 for the second. The �rst and third components have smaller values than the

second, so they have higher weights. Results are not overly-sensitive to the heuristic weights.

Automatically setting the weights using cross-validation on the training set (Kohavi & John, 1995)

had little e�ect on overall performance. If multiple candidate pairs have the same heuristic value,

we choose less \ambiguous" phrases �rst and prefer short phrases over longer ones. A phrase is

considered more ambiguous than another if it currently has more meanings in the partially learned

lexicon.

We show the calculation of the heuristic measure for some of the above twelve pairs, and the

resulting value for all. In this example, we omit the summation in the denominator in Equation 3.2

since it has the same value for all candidate pairs in each iteration of the loop. However, it is used

in the experimental results presented in the next chapter, since using it equalizes the weight of the

meaning utility portion of the heuristic with increasing numbers of training examples.

([capital], largest( , )): 10(22=3) + 1(�1) + 10 � 0 = 19:25,

([capital], (capital(A, ),state(A))):

10(22=3) + 1(�2) + 10(7=7 + 7=12)=2 = 19:25,

([biggest], largest( , )): 29,

([biggest], largest( ,state( ))): 11:3,

([state], largest( ,state( ))): 15:1,

([state], state( )): 10(42=4) + 1(�1) + 10((5=5 + 5=5)=2) = 49,

([state], (capital(A, ),state(A))): 15:1,

([state], (high point(B, ),state(B))): 14:7,

([state], (state(S),loc( ,S))): 16:1

([highest,point], (high point(B, ), state(B))):

10(22=2) + 1(�2) + 10((9=12 + 9=15)=2) = 24:75,

([located], (state(S), loc( ,S))):

10(12=1) + 1(�2) + 10(3=7 + 3=8)=2 = 12:0,

([in], (state(S), loc( ,S))): 18.

The best pair by our measure is ([state], state( )), so it is added to the lexicon.

3.6 Constraining Remaining Candidates

As noted by Tishby and Gorin (1994), acquisition techniques based only on correlations between

words and their meanings can be unfocused, as the number of possible correlations is very large.

We avoid these problems by using correlational information (our meaning utility measure) together

with the other parts of the heuristic. To further restrict the number of possible correlations,
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For each candidate (phrase, meaning) pair (p;m)
If p occurs in some same input pairs as the lexicon pair just learned then
If the nodes of m overlap the nodes in the meaning of the lexicon pair just learned then
If all occurrences of m are now covered then
Remove (p;m) from the set of candidate pairs

Else
Adjust the heuristic value of (p;m) as needed to account
for newly covered nodes of the input representations

Generalize m to remove covered nodes, obtaining m0, and
Calculate the heuristic value of the new candidate pair (p;m0)

If no candidate meanings remain for an uncovered phrase then
Find new candidate meanings from uncovered representations and
Calculate their heuristic values

Figure 3.10: The Candidate Generalization Phase

we use the principle of exclusivity: one of the key ideas of the algorithm is that each (phrase,

meaning) choice can constrain the candidate meanings of phrases yet to be learned. This happens

in step 2.2 in Figure 3.6. Such constraints exist because of the assumption that each portion of the

representation is due to at most one phrase in the sentence (exclusivity). Therefore, once part of

a sentence's representation is covered by the meaning of one of its phrases, no other phrase in the

sentence can be paired with that meaning (for that sentence).

Here is an example of this concept, not a part of our larger ongoing example. Assume we

have only the following three sentence/representation pairs:

What is the capital of the state with the biggest population?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What state is Texarkana located in?

answer(S, (state(S), eq(C,cityid(texarkana, )), loc(C,S))).

What is the highest point of the state with the biggest area?

answer(P, (high-point(S,P), largest(A, (state(S), area(S,A))))).

From these examples, the meaning of [state], the only phrase (other than closed class words)

common to all three sentences, is determined (by doing pairwise LICS) to be state( ), and the

pair ([state], state( )) is added to the lexicon. Before adding it, the candidate meaning for

[biggest] is largest( , state( )) (the LICS of the representations of the two sentences containing

\biggest"). However, since state( ) is now covered by ([state], state( )), it can be eliminated

from consideration as part of the meaning of [biggest], and the candidate meaning for [biggest]

is generalized to largest( , ). We use an operation analogous to set di�erence when �nding the

remaining uncovered nodes of the representation when generalizing meanings to eliminate covered

nodes from candidate pairs.

The candidate generalization step is described in Figure 3.10. Returning to our running

example, generalizing candidate entries proceeds as follows. First, we note that all occurrences
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of [state] are covered by the (just learned) pair ([state], state( )), so all of its other candidate

meanings are discarded. Next, we search for other candidate pairs whose meanings and heuristic

values might need to be updated. In our example, all of the phrases in the candidate pairs we have

been working with appear in some same input pair as ([state], state( )).

First, for [capital], nodes in (capital(A, ), state(A)) overlap nodes in state( ). Fur-

ther, state( ) is now covered in all sentences, so

(capital(A, ), state(A)) is removed from the set of candidate meanings for [capital], and

generalized to capital( , ), with a heuristic value of 22.3. In a similar manner, the second

candidate meaning for [biggest], largest( ,state( )) becomes largest( , ). But ([biggest],

largest( , )) is is already a candidate pair, so nothing further is done with it. Also, the can-

didate meaning for [highest,point] is generalized to high point( , ), with a heuristic value of

27.3. The candidate meaning for [located] becomes loc( , ), with a heuristic value of 15.1, and

the candidate meaning for [in] becomes loc( , ), with a value of 19.

In the second iteration of the greedy loop, the best pair (of those we show here) is ([biggest],

largest( , )). This would cause largest( , ) to be eliminated from consideration as a candidate

meaning for [capital], since largest( , ) is now covered by [biggest]. Therefore, new candidate

meanings are derived for [capital], using LICS, resulting in capital( , ). Since this is already a

candidate meaning, we continue the search. The best pair in the next iteration, ([highest,point],

high point( , )), would not e�ect any other candidate pairs. In the next iteration of the greedy

loop, the best pair is ([capital],capital( , )). This would leave sentence 4 as the only uncovered

occurrence of [capital], so the entire uncovered representation of the sentence, capital( ), is

used as a candidate meaning. Had there been two or more uncovered occurrences, we would have

derived new LICS, if possible, from the remaining uncovered representations. The value of the pair

([capital], capital( )) is calculated as 10 � (12=1) + 1(�2) + 10(7=7 + 7=7)=2 = 18. Notice the

denominator of the �rst term is one, because we use the uncovered occurrences of the phrase in the

calculation.

The greedy search continues until the lexicon covers the training corpus, and the entire �nal

learned lexicon is:

([state], state( )),

([area], area( , )),

([population], population( , )),

([biggest], largest( , )),

([highest,point], high point( , )),

([capital], capital( , )),

([in], loc( , )),

([capital], capital( )),

([states], (next to(S, ), state(S))).

The unusual meaning for [states] is due to the fact that states occurs only once in this sample

corpus, in a context with borders, which in reality should map to next to( , ). In a larger

corpus, these two words are much more likely to be paired with their correct meanings in the

learned lexicon.

We can now mention some other distinctions between our system and Siskind's. As described

in Section 2.2, his algorithm has two learning stages, �rst learning which symbols should appear in
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a words meanings, and then learning how those symbols combine together to form one meaning, or

subgraph. By using common subgraphs and exclusivity, we combine these two stages into one in

Wolfie. We return next to the principles embodied in Siskind's system, �rst de�ned in Section 2.2.

First, cross-situational inference is used by both systems, though neither system uses the principle

in its strongest sense such that all occurrences of a word would be required to have some common

meaning, which would preclude ambiguous words. Covering constraints are also used by Wolfie,

though because of its greedy nature, it allows pieces of the representation of a sentence to remain

uncovered. This is as it should be since all representation formalisms may not comply with this

constraint. Finally, both systems use exclusivity.

In summary then, this research and Siskind's share many of the same assumptions; the

main di�erences between the two are computational. First, his system operates in an incremental

or on-line fashion, discarding each sentence after processing it, while ours is batch. Second, his

search for word meanings is most analogous to a version space search, while ours is a greedy search.

While perhaps capable of doing so, his system does not currently learn meanings for multiple-word

phrases, while ours does. His system also does not make any use of the order of the words in a

sentence, while we use this information to construct the phrases that we consider adding to the

lexicon. Finally, and perhaps most signi�cantly, his system does not compute statistical correlations

between words and their possible meanings, while ours does.

In the end, though, our main concern is with the relative learning performance of the

two systems in di�erent circumstances. The above di�erences might help us determine why the

algorithms perform di�erently, but �rst we should examine whether they do perform di�erently.

We turn to this issue in the next chapter.

Implementation

There are some details of the implementation not yet discussed. One consideration is that the

ultimate use of the lexicon learned will be to add it to Chill's overly-general parser, so that the

lexicon will also be included in the �nal, learned parser. It is possible to �nd a lexicon that covers

the input but does not allow the parsing of that input. The training parser that is used by Chill

in most of the experiments in the next chapter enforces a notion of locality, assuming that the

representation of each phrase occurs in a similar position in the sentence as in the representation.

More precisely, only contiguous elements on the parse stack can be combined.

For example, in \The girl ate the pasta with the cheese." with meaning as shown in Fig-

ure 3.1, an alternate interpretation function is f1(\girl") = 8, f1(\ate") = 1, f1(\pasta") = 3,

f1(\the cheese") = 2, with lexicon

f(\girl", [cheese]), (\ate", [ingest]), (\pasta", [food, type:pasta, accomp:food]),

(\the cheese", [person, sex:female, age:child])g. This would not allow parsing: due to

the parser's locality constraints, [cheese] could not be embedded into [food, type:pasta,

accomp:food] as needed because of the intervening structure that would be present on the parse

stack during the (attempted) parse. Figure 3.11 shows the sequence of parse states. It is slightly

more complicated than the simple shift-reduce sequence shown previously in Figure 2.2, because

instead of shifting words onto the stack, we shift their meaning. We use \intro" instead of \shift"

as the name of the associated action to highlight this di�erence. Note that some intro's simply

move a word o� of the input string with now associated change to the parse stack.
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Action Stack Contents Input String
[] [the,girl,ate,the,pasta,with,the,cheese]

(intro) [] [girl,ate,the,pasta,with,the,cheese]
(intro) [[cheese]] [ate,the,pasta,with,the,cheese]
(intro) [[ingest], [cheese]] [the,pasta,with,the,cheese]
(intro) [[ingest], [cheese]] [pasta,with,the,cheese]
(intro) [[food, type:pasta,accomp:food], [ingest],

[cheese]] [with,the,cheese]
(2 accomp) [[ingest,accomp:[food,type:pasta,accomp:food]],

[cheese]] [with,the,cheese]
(intro) [[ingest,accomp:[food,type:pasta,accomp:food]],

[cheese]] [the,cheese]
(intro) [[ingest,accomp:[food,type:pasta,accomp:food]],

[cheese]] [cheese]
(intro) [[person,sex:female,age:child], [ingest,

accomp:[food,type:pasta,accomp:food]],
[cheese]] []

(2 agt) [ingest,agt:[[person,sex:female,age:child],
accomp:[food,type:pasta,accomp:food]],
[cheese]] []

(No more actions resulting in consistent parse states)

Figure 3.11: Unsuccessful Parse of \The girl ate the pasta with the cheese."

In order to help bias Wolfie's search towards �nding covering lexicons that also allow

parsing of the training input, we added a component to the search that checks to con�rm that

covered sentences are parsable by Chill's overly-general parser. If this is not the case, we know

that some phrase in the sentence has a meaning that is not useful to Chill. Therefore, whenever

a sentence is covered, we check whether it can be parsed. If not, we retract the most recently

learned pair, and adjust that phrase's candidate meanings to omit that meaning. We call this the

parsability heuristic. This heuristic is another facet of our system that di�ers from the work of

Siskind. While it is not crucial to learning good lexicons, it exploits information that Siskind's

algorithm does not currently take advantage of, and could be very useful in domains with complex

sentences.

As demonstrated by the example in this chapter, Wolfie is able to initialize the lexicon

with background knowledge such as closed class words or database constants. This enables the

search to focus on phrases and portions of the representation that are uncovered by this knowledge.

The only search parameter other then the weights on the heuristic components is the maximum

number of pairings to consider between representations when �nding LICS, which we set to 3 in our

experiments, except where otherwise noted. We could �nd all pairings, as we did in the example,

but this leads to excessive duplication in the LICS found, and we have found that a small sample

is all that is needed to �nd good candidates.
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Chapter 4

Wolfie Experimental Results:

Learning for Database-Query Parsing

Our hypothesis is that useful and correct semantic lexicons can be learned byWolfie. One way to

test this is by comparing the learned lexicons to hand-built lexicons for the same domain. Another

is to calculate the percentage of training or test sentences for which a covering lexicon has been

learned. Finally, we could use the learned lexicons to assist a larger language learning system. We

will discuss results from the latter two perspectives in this chapter, and from all three in the next.

4.1 Methodology and Data

For experiments in this chapter, we used the following experimental methodology. We split the

data into disjoint training and test sets, and repeated this split for 10 di�erent sets. To test the

e�ectiveness of the lexicons learned by Wolfie in assisting a larger language learner, we did the

following. After using the training set to learn a lexicon with Wolfie, that lexicon was then used

as background knowledge for Chill, which used the same training set to learn a parser. The test

examples were parsed using the learned parser, the resulting queries submitted to the database,

the answers compared to those generated by the correct representation, and the percentage of

correct answers recorded. By linkingWolfie and Chill, we demonstrate the utility of the learned

lexicons for a real-world performance task. The gold standard for evaluating parsers for database

queries is whether the system produces the correct answer to a given question; by comparing the

answers retrieved from the database by a derived parse to the correct answer, we compare to this

gold standard.

For all signi�cance tests we used a two-tailed, paired t-test and a signi�cance level of p �

0:05. The weights on the portions of the heuristic measure for Wolfie were as follows, except

where otherwise noted: meaning utility: 10, generality: 1.0, orthographic overlap: 10. We used a

maximum of 3 paired LICS per phrase except where otherwise noted, after �nding that increasing

the number of pairs does not signi�cantly e�ect the results.

This chapter describes our experimental results on a database query application. The �rst

corpus we discuss contains 250 questions about U.S. geography paired with logical representations.

This domain was chosen due to the availability of an existing hand-build natural language interface

to a simple geography database containing about 800 facts. The original interface, Geobase, was
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supplied with Turbo Prolog 2:0 (Borland International, 1988). The questions were collected from

uninformed undergraduates and mapped into logical form by an expert. Examples from the corpus

were given in the previous chapter. This corpus contains 71 words excluding closed class words and

database constants. To broaden the test, we had the same 250 sentences translated into Spanish,

Turkish, and Japanese. The Japanese translations are in word-segmented Roman orthography.

Translated questions were paired with the appropriate logical queries from the English corpus.

Appendix A shows examples of the input. The learning curves that follow were generated by

choosing a random set of 25 test examples and then creating lexicons and parsers using increasingly

larger subsets of the remaining 225 examples.

We compared our system to that developed by Siskind (1996). As discussed in Section 2.2,

Siskind's system is an on-line (incremental) learner, while ours is batch. To make a closer compari-

son between the two, we ran his in a \simulated" batch mode, by repeatedly presenting the corpus

500 times, analogous to running 500 epochs to train a neural network. To use his system, written

in Lisp, we had to modify the input slightly. For example, the representation

largest(P,(capital(C),population(C,P))) was changed to

(largest2 pop (and (capital1 cap) (population2 cap pop))).

The numbers on predicate names are used to distinguish them from their arguments. Tokens were

used in lieu of variables for the predicate arguments, since his system does not accept representa-

tions with variables in predicate arguments.

In this application there are many terms such as state and city names whose meanings are

easily extracted from the database. Therefore, all tests below were run with such names given to

the learner as an initial lexicon, although this is not required for learning in general.

4.2 Comparisons using English

The �rst experiment was a head-to-head comparison between Wolfie and Siskind's system on

the original English corpus. We did not give either system access to background knowledge about

closed class words, such as the, but did give both access to knowledge of database constants, such

as austin. Since Siskind has no measure of orthographic overlap, and it could arguably give our

system an unfair advantage on these data, we ranWolfie with a weight of zero for this component.

We also did not use the parsability heuristic or phrases of more than one word for this test. By

making these adjustments, and by running his system in batch mode, we attempted to obtain the

fairest head-to-head comparison between the two systems.

We also compare Chill's performance using learned lexicons to Chill's performance using

a lexicon built by hand. This lexicon was developed by John Zelle when he tested Chill in this

domain, since at that timeWolfie was not yet available. Our hypothesis is that parser acquisition

will not be signi�cantly adversely a�ected when using lexicons learned by Wolfie as opposed to

the hand-built lexicon. Part of the di�erence between the performance when Chill is given hand-

built versus learned lexicons may be due to the presence of words in the test set that are not in

the training set. In the curves below, we show the e�ect of removing these items from the hand-

built lexicon (labeled CHILL-testlex in all Figures), to show the success of learning as compared to

building a lexicon by hand from the same set of examples.

Figure 4.1 shows learning curves for Chill when using the lexicons learned by the \ablated"

31



0

10

20

30

40

50

60

70

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

CHILL+handbuilt
CHILL-testlex

CHILL+WOLFIE-o2p
CHILL+Siskind

Geobase

Figure 4.1: Accuracy on English Geography Corpus

version ofWolfie (CHILL+WOLFIE-o2p, where \-" stands for the subtraction of features, and o,

2, and p, stand for orthographic overlap, two-word phrases, and the parsability heuristic, respec-

tively) and by Siskind's system (CHILL+Siskind). The uppermost curve (CHILL+handbuilt) is

Chill's performance when given the full hand-built lexicon. Finally, the horizontal line shows the

performance of the Geobase benchmark.

The results show that a lexicon learned by Wolfie led to parsers that were almost as

accurate as those generated using a hand-built lexicon. The best accuracy is achieved by the

hand-built lexicon, followed by the hand-built lexicon with words in the test set removed, followed

by Wolfie, followed by Siskind's system. All the systems do as well or better than Geobase by

225 training examples. The di�erences between Wolfie and Siskind's system are statistically

signi�cant at all training example sizes except 125. These results show that Wolfie can learn

lexicons that lead to successful learning of parsers, and that are better from this perspective than

those learned by a competing system. Also, comparing to the CHILL-testlex curve, we see that

most of the drop in accuracy from a hand-built lexicon is due to words in the test set that the

system has not seen during training.

Finally, we also ran Siskind's system in the standard incremental mode. His system run in

batch mode on this test averaged 58% accuracy at 225 examples, versus incremental mode which

attained 49.2% accuracy, giving evidence that batch mode does improve his system.

As noted above, these tests were run with the meaning of database constants provided

as background knowledge. Next, we examined the e�ect of also providing closed-class words as

background knowledge. Figure 4.2 shows the resulting learning curves. For these tests, we also

show the e�ect of including the orthographic overlap and parsability heuristics for Wolfie, as

well as the ability to learn phrases of both one and two words (CHILL+WOLFIE). Also, for both

versions of Wolfie we increased the maximum number of paired LICS per word to 10. The

additional background knowledge and the parsability heuristic make little di�erence in the overall
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Figure 4.2: Accuracy Given Closed Class Words

performance of the learned parser. The di�erences between Siskind's system and Wolfie without

parsing, phrases, or orthographic overlap are statistically signi�cant at all example set sizes. On

the other hand, the di�erences between the parsers learned when given the hand-built lexicon but

not lexicon items appearing only in the test set (CHILL-testlex), versus parsers learned with the

ablated Wolfie, are not statistically signi�cant at any data point.

One of the implicit hypotheses of our approach is that coverage of the training pairs implies a

good lexicon. We measured the coverage of a sentence/representation pair by counting the percent

of the terms and predicates in the pair's representation that could be covered by learned meanings

of the phrases in its sentence. We now compare the coverage of Wolfie's lexicons to those of

Siskind's and verify thatWolfie's have better coverage. For the �rst experiment above, Wolfie's

lexicons covered 100% of the 225 training examples on average, while Siskind's covered 78.1%.

For the second experiment, the coverages were 100% (for the best version of Wolfie) and 94.5%,

respectively. This may account for some of the performance di�erence between the two systems.

Further di�erences may be explained by the percentage of training examples usable by

Chill, which is the percentage parsable by its overly-general parser. For the �rst experiment,

Chill could use 95.7% of the 225 examples when given the lexicons learned by Wolfie but

only 79.5% of the examples when given lexicons learned by Siskind's system. When the lexicon

learners are given closed class words, these percentages rise to 98.7% and 84.6%, respectively. These

di�erences most likely contribute to the di�erences seen in the generalization accuracy of Chill,

since using Siskind's lexicons e�ectively reduces the number of control examples input to Chill's

induction phase (see Figure 2.1). Though this is on the training sentences and the previously

discussed results were on test sentences, these di�erences are comparable to the di�erences on the

�nal accuracy of the parsers learned by Chill.

Finally, we were disappointed that adding the parsability heuristic to Wolfie did not lead

to improved performance of the learned lexicons in aiding Chill: the di�erences between WOLFIE
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and WOLFIE-o2p were not statistically signi�cant at any training set size. We investigated the

performance of the lexicons in aiding the parsing of the training sentences, during Chill's example

analysis phase. Figure 4.3 shows the percent of these sentences that were successfully parsed during

Chill's example analysis stage. The WOLFIE curve shows the accuracy with lexicons learned with

all options added to Wolfie's heuristics, versus WOLFIE-o2p, which shows the accuracy with

lexicons learned without overlap, parsability, or phrases. The accuracy of the training parser using

the lexicons learned byWolfie with all options is statistically signi�cantly better than the ablated

Wolfie at 125 and 225 examples. This indicates that all of the bene�ts of lexicon learning may

not be re
ected in the �nal parser learned by Chill in all cases. However, while the di�erences

were statistically signi�cant, they were very small, and no ultimate advantage is re
ected in the

�nal learned parsers. In sum, the good results for both versions show that the heuristic measures

alone, without parsability, are su�cient to learn a lexicon that is useful for parsing. With a di�erent

corpus, perhaps the parsability heuristic would be needed to help focus the search.

4.3 Comparisons using Spanish

Next, we examined the performance of Wolfie and Siskind's system on the Spanish version of

the corpus. For Spanish, as well as the other languages discussed below, some minor changes were

required in Chill's training parser. As mentioned in Section 2.1, the overly-general parser uses a

compatibility check with the correct parse of a sentence to limit the search for control examples.

The check had to be broadened because of the word-order di�erences among the various languages.

In other words, the locality assumption no longer holds for these languages in general, since we use

the original representation from the English sentences as the basis for our compatibility check.

For the comparison with Siskind's system, we again omitted orthographic overlap, two-word

phrases, and the parsability heuristic from Wolfie. Figure 4.4 shows the results. In these tests,
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we also gave closed class words to the lexicon learners as background knowledge. The performance

di�erence between WOLFIE-o2p and CHILL-testlex are not statistically signi�cant at any training

set size, while the di�erences between WOLFIE-o2p and Siskind are statistically signi�cant except

at 225 examples.

4.4 Accuracy on Other Languages

We also had the geography query sentences translated into Japanese and Turkish, and ran similar

tests to determine how well Wolfie could learn lexicons for these languages, and how well Chill

could learn to parse them. We did not run Siskind's algorithm on the other two languages. Fig-

ure 4.5 shows the results. For all four of these tests, we used the parsability heuristic, but did not

give the learner access to the closed class words of any of the languages. We also set the weight

of the orthographic overlap heuristic to zero for all four languages, since this gives little advantage

in the foreign languages. The performance di�erences among the four languages are quite small,

demonstrating that our methods are not language dependent. This further demonstrates that the

orthographic overlap portion of the heuristic is not needed to learn useful lexicons.

4.5 LICS versus Fracturing

We would like to examine how the various components of the algorithm contribute towards its

success. One component not yet examined is the candidate generation method. As mentioned

in Section 3.2, we could use fractures of representations of sentences in which a phrase appears

to generate the candidate meanings for that phrase. We used this approach and compared it to

using the standard method of using the largest isomorphic connected subgraphs of sampled pairs

of representations as candidate meanings. To attempt a more fair comparison, we also sampled
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representations from which to fracture, using the same number as the number of pairs sampled for

LICS.

The accuracy of Chill when using the resulting learned lexicons as background knowledge

are shown in Figure 4.6. Using fracturing shows a small gain at �rst, but there is little or no

advantage as more training examples are seen; none of the di�erences between the two systems are

statistically signi�cant. In addition, the number of initial candidate lexicon entries from which to

choose is much larger for fracturing than our traditional method, as shown in Figure 4.7. Finally, the

learning time when using fracturing is greater than that when using LICS, as shown in Figure 4.8,

where the CPU time is shown in seconds.

In summary, these di�erences show the utility of LICS as a method for generating candidates:

a more thorough method does not result in better performance, and also results in longer learning

times. In a domain with larger representations, the di�erences in learning time would likely be

even more dramatic.

4.6 A Larger Corpus

We next ran some experiments on a larger, more diverse corpus of sentences from the geography

domain, where the additional sentences were collected from computer science undergraduates. The

set of questions in the experiments discussed up until now was collected from students in the Ger-

man department, with no special instructions on the complexity of queries desired. The computer

science students tended to ask more complex queries than the original questions: their task was

to give 5 sentences and their logical query representation for a homework assignment. They were

requested to give at least one sentence whose representation included a predicate containing embed-

ded predicates, for example largest(S, state(S)), and we asked for variety in their sentences.

There were 221 new sentences, for a total of 471 (including the original 250 sentences). Examples
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of the new queries are given in Appendix A.

For these experiments, we split the data into 425 training sentences and 46 test sentences,

for 10 random splits, then trained Wolfie and then Chill as before. We did not compare our

system to Siskind's in this case, assuming that the results would be comparable to those above.

Our goal was simply to see whether Wolfie was still e�ective for this larger corpus, since there

were approximately 40 novel words in the new sentences. Therefore, we tested against the per-

formance of Chill with an extended hand-built lexicon. For this test, we gave the system access

to background knowledge about closed class words, and gave a weight of zero to the orthographic

overlap component of the heuristic. We also did not use the parsability heuristic or phrases of more

than one word for this test, since these do not seem to make a signi�cant di�erence in this domain.

Figure 4.9 shows the resulting learning curves. None of di�erences between Chill and

Wolfie are statistically signi�cant, probably because the di�culty of parsing overshadows errors

in word learning. Also, the improvement of machine learning methods over the Geobase hand-built

interface is much more dramatic for this corpus than for the smaller one.

4.7 Discussion

These results show that Wolfie can successfully learn lexicons that are useful for real natural

language tasks. The di�erences betweenWolfie and Siskind's system in this domain are probably

due to several factors. First, as Siskind's system does not use constraints between word meanings to

focus its search, it tended to learn lexicon entries that were overly speci�c. It was also more likely

to learn multiple senses for words that were actually not ambiguous in this corpus. His system also

seemed to have di�culty handling the skolemization of the input that we performed in order to

make the representations variable-free. Perhaps additional tuning of the parameters of his system

would improve the results slightly, but we did try several variants and reported the best results
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above. Examples of lexicons learned by each system are given in Appendix B.

Another factor to consider is learning time. While it is di�cult to directly compare the two

systems since one is written in Prolog and the other in Lisp, the learning time of the two systems

is approximately the same if Siskind's system is run in incremental mode, just a few seconds with

225 training examples. If we run Siskind's system in batch mode, the time to learn a lexicon is far

greater with his system than with ours, around 1000 seconds of CPU time for 250 iterations and

225 examples.

Finally, it is gratifying, while a bit surprising, to see that orthographic overlap is not needed

to learn good lexicons. We thought that at least for small numbers of training examples, it would

bene�t the learner. This is not demonstrated in these experiments, perhaps because not all of the

desired lexicon entries have a tight correspondence between the characters in their phrase and the

characters in their meaning.
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Chapter 5

Wolfie Experimental Results:

Arti�cial Corpora

The previous chapter showed that Wolfie successfully learns lexicons for a real-world corpus.

However, this demonstrates success on only a relatively small corpus and with one representation

formalism. We now show that our algorithm scales up well with more lexicon items to learn, more

ambiguity, and more synonymy. This is di�cult to control when using real data as input. Also,

there are no large corpora available that are annotated with semantic parses. We therefore present

here experimental results on two arti�cial corpora.

The �rst corpus demonstrates the ability of Wolfie to learn representations of a di�erent

form than a logical query representation, that of a case-role representation (Fillmore, 1968) aug-

mented with Conceptual Dependency (CD) (Schank, 1975) information. The sentences, however,

are examples of real English sentences. In the second corpus, both the sentences and their represen-

tations are completely arti�cial, and the sentence representation is a variable-free representation,

as suggested by the work of Jackendo� (1990) and others.

5.1 Case-Role Plus Conceptual Dependency

In a traditional case-role representation the sentence \The man ate the cheese." is represented by

[ate, agt:[man, det:the], pat:[cheese, det:the]].

where agt denotes the agent of the action ate and pat the patient. But in the CD-like represen-

tations used here, the same sentence is represented by

[ingest,agt:[person,sex:male,age:adult],pat:[food,type:cheese]].

This representation was chosen to demonstrate the learning of complicated structures as word

meanings. The corpus used here is based on that of McClelland and Kawamoto (1986). This cor-

pus consists of 1475 sentence/case-structure pairs containing 30 unique words. The sentences were

arti�cially produced from a set of 19 templates. The case-structure portion of the original pairs

was modi�ed as illustrated above. The resulting corpus is hereafter referred to as the modi�ed M

& K corpus.

Finding LICS for two sentence representation in the modi�ed M & K representation is the

same as �nding them for standard labeled trees, taking into account that both the nodes and the

arcs are labeled. For example, given the representations
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[ingest, agt:[person,sex:male,age:adult], pat:[food,type:cheese]]

and

[propel, instr:[inst,type:ball], pat:[person,sex:male,age:child]],

the LICS is [person, sex:male].

In the following experiments, a random set of 650 unique training sentences was chosen,

starting with 50 examples, and incrementing by 100, for each of �ve trials. The weights on the

portions of the heuristic measure for Wolfie were 20 for meaning utility, zero for orthographic

overlap, and 2 for generality. For this test, we gave the system information about closed class

words, and did not use the parsability heuristic or two word phrases. Finally, we used a maximum

of 3 paired LICS per word.

The �rst evaluation of the success of the system was made by measuring the percentage of

\correct" word meanings learned, when compared to a hand-built lexicon. There are several ways

to calculate this metric. The one used here is as follows. First, a partial correctness score is given to

each learned pair. This is done by measuring how similar the learned representation for a word is to

a correct one. For example, if a correct meaning for a word is [person, sex:female, age:adult],

the learned meaning [person, sex:female] is closer to being correct than [person]. There are

several ways to measure this similarity. Our approach is the following. Each meaning learned for a

word is compared to each correct meaning for that word, and the following score is computed. If the

roots match, this contributes 1=3 credit towards the score. Assuming the roots match, then if all arc

labels from the root match, this contributes another 1=3 towards the score. Correct children under

all these matching labels contribute the �nal 1/3. If these children do not completely match, their

partial correctness is computed recursively. For example, a learned meaning of [person,sex:male]

compared to a correct meaning of [person,sex:female,age:adult] scores 1/3 for the matching

root, (1/2*1/3) for one correct label out of two possible, and scores zero for no matching children

under the matching label, for a total score of 0.5. The best such score when compared to all correct

meanings is the partial correctness score for each (word;meaning) pair learned.

Next, for each word in the hand-built lexicon, the partial intersection accuracy for that word

is calculated. The formula for calculating this is (P=N+P=C)=2, where P is the partial correctness

score calculated as in the previous paragraph summed over all learned meanings for the word, N

is the number of meanings learned for the word, and C is the number of correct meanings for

the word. This intersection accuracy takes into account two types of errors: learning an incorrect

meaning for a word, and failing to learn a correct meaning for a word. It is the average of precision

and recall, with respect to the partial correctness score. These are two measures commonly used

in the Computational Linguistics community. Precision measures the percentage of the lexicon

entries (i.e., (word, meaning) pairs) that the system learns that are correct. Recall measures the

percentage of the lexicon entries in the hand-built lexicon that are correctly learned by the system.

precision =
# correct pairs

# pairs learned

recall =
# correct pairs

# pairs in hand-built lexicon

The intersection accuracy of a learned lexicon is the average intersection accuracy of all word forms

in the corpus.
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Figure 5.1: Intersection Accuracy for the Modi�ed M & K Corpus

Figure 5.1 shows the average intersection accuracy of the lexicons learned by Wolfie for

the modi�ed M & K corpus. In four of the trials 100% accuracy was obtained at 450 examples,

o�set by a trial with 93.3% accuracy.

Next, the learned lexicons were used to assist Chill in its learning process. With the

original M & K corpus, the shift operation speci�ed a shift of each word token directly onto the

parse stack from the input stack, as illustrated in Figure 2.2. In the new representation, as a word

token is shifted o� the input stack, its meaning is shifted onto the parse stack, as in Figure 3.11.

In the past, these \introduce" operations had to be generated by hand. In this study, we use the

lexicons learned byWolfie as the basis of the introduce operators input as background knowledge

by Chill.

As in the geography domain, the the generalization accuracy of the learned parsers was

tested. After training Chill on a subset of the corpus, novel sentences were given to the learned

parsers to determine whether they could be parsed correctly. As with the lexicon, two types of errors

can occur: an incorrect analysis can be generated, or a correct analysis can fail to be generated.

The intersection accuracy can be measured in terms of either the partial or exact correctness

of the produced analyses, where the partial correctness is computed in the same manner as the

partial correctness of word meanings above. In the following, the exact correctness is used. In this

case, intersection accuracy is (C=D + C=A)=2, where C is the number of produced analyses that

completely match a correct analysis, D is the number of distinct analyses produced, and A is the

number of correct analyses.

Figure 5.2 shows the resulting accuracies. The topmost curve shows the accuracies of the

parsers when trained and tested on the original M & K corpus. The next curve shows the results

when Chill is trained and tested on the modi�ed M & K corpus, and given the hand-built lexicon

as background knowledge. Finally, the bottom curve shows the accuracy on the modi�ed M & K

corpus when Chill is given the lexicons learned byWolfie as background knowledge. Chill when

run with the original M & K corpus obtained 97.4% accuracy at 650 examples, whileChill with the

modi�ed M & K corpus had more di�culty. If provided with a correct lexicon, it obtained 92.5%
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Figure 5.2: Chill Accuracy on the M & K Corpus

accuracy, and when provided with the partially correct lexicon learned by Wolfie, it obtained

91.3% accuracy. Chill with the hand-built lexicon is only statistically signi�cantly1 better than

Chill using Wolfie's learned lexicons when given 50 examples, but not at the other points on

the learning curve.

5.2 A Second Set of Arti�cial Corpora

This section discusses results on a series of arti�cially generated corpora.2 For each corpus, a

random lexicon mapping words to simulated meanings was �rst constructed. This original lexicon

was then used to generate a corpus of random utterances each paired with a meaning representation.

After using this corpus as input toWolfie, the learned lexicon was compared to the original lexicon,

and weighted precision and weighted recall were measured. Precision and recall were de�ned in the

previous section. To get weighted measures, we then weight each pair in these formulas by the

word's frequency in the entire corpus (not just the training corpus). This models how likely we are

to have learned the correct meaning for an arbitrarily chosen word in the corpus.

We generated several lexicons and associated corpora, varying the ambiguity rate (number of

meanings per word) and synonymy rate (number of words per meaning). Meaning representations

were generated using a set of \conceptual symbols" that combined to form the meaning for each

word. The number of conceptual symbols used in each lexicon will be noted when we describe each

corpus below. In each lexicon, 47.5% of the senses were variable-free to simulate noun-like meanings,

and 47.5% contained from 1 to 3 variables to denote open argument positions to simulate verb-like

meanings. The remainder of the words (the remaining 5%) had the empty meaning to simulate

function words. In addition, the functors in each meaning could have a depth of up to 2 and an arity

1again, we used a two-tailed, paired t-test and a signi�cance level of p � 0:05.
2Thanks to Je� Siskind for the initial corpus generation software, which we enhanced for these tests.
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Figure 5.3: Baseline Arti�cial Corpus

of up to 2. An example noun-like meaning is f23(f2(f14)), and a verb-meaning f10(A,f15(B));

the conceptual symbols in this example are f23, f2, f14, f10, and f15. By using these multi-level

meaning representations we demonstrate the learning of more complex representations than those

in the geography database domain: none of the hand-built meanings for phrases in that lexicon had

functors embedded in arguments. A grammar was used to generate utterances and their meanings

from each original lexicon, with terminal categories selected using a distribution based on Zipf's

Law (Zipf, 1949). Under Zipf's Law, the occurrence frequency of a word is inversely proportional

to its ranking by occurrence.

We started with a baseline corpus generated from a lexicon of 100 words using 25 conceptual

symbols and no ambiguity or synonymy; 1949 sentence/meaning pairs were generated. We split

this into 5 training sets of 1700 sentences each. NOTE: Talk about the weights of the learning

parameters. Figure 5.3 shows the weighted precision and recall curves for this initial test. This

demonstrates good scalability to a slightly larger corpus and lexicon than that of the U.S. geography

query domain.

A second corpus was generated from a second lexicon, also of 100 words using 25 conceptual

symbols, but increasing the ambiguity to 1.25 meanings per word. This time, 1937 pairs were

generated and the corpus split into 5 sets of 1700 training examples each. Weighted precision

at 1650 examples drops to 65.4% from 99.3%, and weighted recall to 58.9% from 99.3%. The

full learning curve is shown in Figure 5.4. A quick comparison to Siskind's performance on this

corpus con�rmed that his system achieved comparable performance, showing that with current

methods, this is close to the best performance that we are able to obtain on this more di�cult

corpus. One possible explanation for the smaller performance di�erence between the two systems

on this corpus versus the geography domain is that in this domain, the correct meaning for a word

is not necessarily the most \general," in terms of number of nodes, of all its candidate meanings.

Therefore, the generality portion of the heuristic may negatively in
uence the performance of
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Figure 5.4: A More Ambiguous Arti�cial Corpus

Ambiguity Level Number of Examples

1.0 150
1.25 450
2.0 1450

Table 5.1: Number of Examples to Reach 75% Precision

Wolfie in this domain.

Finally, we show the change in performance with increasing ambiguity and increasing syn-

onymy. Figure 5.5 shows the weighted precision and recall at 1050 examples at increasing levels of

ambiguity, holding the synonymy level constant. Figure 5.6 shows the results at increasing levels of

synonymy, holding ambiguity constant. Increasing the level of synonymy does not e�ect the results

as much as increasing the level of ambiguity, which is as we expected. Having multiple competing

meanings for a word decreases the amount of evidence available for each meaning, making the

learning task more di�cult. On the other hand, increasing the level of synonymy does not have

the potential to mislead the learner.

The number of training examples required to reach a certain level of accuracy is also infor-

mative. In Table 5.1, we show the point at which a standard precision of 75% was �rst reached

for each level of ambiguity. Note, however, that we only measured accuracy after each set of 100

training examples, so the numbers in the table are approximate.

A second, more rigorous test of scalability was performed on two corpora generated from

lexicons an order of magnitude larger than those in the above tests. In these tests, we use a lexicon

containing 1000 words and using 250 conceptual symbols. We give results for a corpus with no

ambiguity and a corpus generated from a lexicon with ambiguity and synonymy similar to that
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found in the WordNet (Beckwith et al., 1991) database: the ambiguity there is approximately 1.68

meanings per word and the synonymy 1.3 words per meaning. These corpora contained 9904 and

9948 examples, respectively, and we split the data into �ve sets of 9000 training examples each. For

the easier large corpus, the maximum average of weighted precision and recall was 85.6%, at 8100

training examples, while for the harder corpus, the maximum average was 63.1% at 8600 training

examples.

5.3 Discussion

The results on the modi�ed M & K corpus demonstrate the ability of Wolfie to learn lexicons for

a representation formalism di�erent than the logical query representation of the previous chapter.

We showed both the intersection accuracy of learned lexicons and the e�ectiveness of the learned

lexicons in aiding Chill to learn parsers. Intersection accuracy seems to be a fairly good measure

of how close the learned meanings for a word are to the desired meanings. An alternative is to

measure the percentage of words that were completely correctly learned, which is also high for this

corpus. For example, at 650 examples, an average of 98.1% of the words were completely correct,

compared to an average intersection accuracy of 98.5%.

The results on the second set of arti�cial corpora were more mixed. Ambiguity is di�cult

to handle but not impossible. By increasing the size of the training set, similar accuracies can

by reached when ambiguity is present as compared to when it is not. Increasing the size of the

lexicons to learn also decreases the accuracy of the learned lexicons, but not drastically. In addition,

since for at least one corpus our results were comparable to those of Siskind's system, we feel that

these di�culties exist for any state-of-the-art system. Learning reliably in ambiguous situations may

simply require more information than is available in the data alone. For example, it is hypothesized

that children take advantage of prosody and context when learning word meanings.

Finally, learning times on these arti�cial corpora are quite low. For example, the average

learning time was 11 seconds CPU time for 1050 sentences for the corpus with 2.0 meanings per

word. In summary, these results show that Wolfie scales up reasonably well to large training set

sizes containing synonymy and ambiguity. They also demonstrate that Wolfie is general enough

to apply to more than one kind of semantic representation formalism. Further research is warranted

to investigate improving the accuracy of the system for highly ambiguous corpora.
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Chapter 6

Active Learning

As indicated in the previous chapters, we have built an integrated system for language acquisition

that is 
exible and useful. However, a major di�culty remains: the collection of training corpora.

Though annotating sentences is still arguably less work than building an entire system by hand, the

annotation task is also time-consuming and error-prone. Further, the training pairs often contain

redundant information. We would like to minimize the amount of annotation required while still

maintaining good generalization accuracy.

To do this, we turned to methods in active learning. Active learning is an emerging research

area in machine learning that features systems that automatically select the most informative

examples for annotation and training (Cohn et al., 1994). The primary goal of active learning is

to reduce the number of examples that the system is trained on, while maintaining the accuracy

of the acquired information. Active learning is particularly attractive in natural language learning

tasks, since there is an abundance of unannotated text, and we would like to only annotate the

most informative sentences.

In this chapter, we explore the use of active learning for natural language interfaces, and

demonstrate that with active learning, fewer examples are required to achieve the same accuracy

obtained by training on randomly chosen examples. By turning to active learning, we change the

focus of discussion, which until now has been primarily on lexicon acquisition. We investigate active

learning methods for parser acquisition, lexicon acquisition, and the combination of both.

6.1 Background

There are only a few NLP tasks to which active learning methods have been applied previously

in the literature, including part of speech tagging (Dagan & Engelson, 1995), text categorization

(Lewis & Catlett, 1994; Liere & Tadepalli, 1997), and information extraction (Cali�, 1998). The

�rst two of these are traditional classi�cation tasks, while the tasks we address here, and those

in Cali� (1998) are more complex. The application of active learning to tasks requiring complex

outputs has only been brie
y investigated. Our goal with this research is to investigate whether

and how active learning methods can be useful in non-classi�cation domains.

Active learning includes two general approaches, the �rst using membership queries, and the

second using selective sampling. When membership queries are used, the learner constructs exam-

ples that are then labeled by an expert (Angluin, 1988). Because of the di�culty of constructing
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such examples in the case of natural language systems, and the ease of obtaining text, we focus

here on selective sampling methods. In selective sampling, we attempt to choose for annotation,

from unlabeled examples, those that are most informative for learning. Past work in this area has

emphasized two approaches, certainty-based methods (Lewis & Catlett, 1994; Cohn et al., 1994),

and committee-based methods (Liere & Tadepalli, 1997; Dagan & Engelson, 1995; Freund, Seung,

Shamir, & Tishby, 1997).

In the certainty-based paradigm, the system is trained on a small number of annotated

examples to learn an initial classi�er. Next, the system examines unannotated examples and

attaches certainties to the predicted annotation of those examples, based on the estimates of this

initial classi�er. The k examples with the lowest certainties are then presented to the user for

annotation, and then to the system for retraining. Several methods for attaching certainties have

been used, but they typically attempt to estimate the probability that a classi�er consistent with

the prior training data will classify a new example correctly.

In the committee-based paradigm, a diverse committee of classi�ers is created, again from a

small number of examples. Next, each committee member attempts to annotate additional exam-

ples. The examples most informative to the learner are those with the most con
ict in committee

annotation, so they are presented to the user for annotation, and to the system for retraining. A

diverse committee, but one in which each member is consistent with the prior training data, will

produce the highest disagreement on examples that are most uncertain with respect to the possible

classi�ers that could be obtained by training on that data.

Figure 6.1 gives the high level pseudocode for both certainty-based and committee-based

selective sampling. In an ideal situation, k would be set to one to make the most informed decisions

in future choices, but to maintain e�ciency in application to batch learning systems, it is typically

set higher than one.

Apply the learner to n annotated bootstrap examples,
creating one classi�er or a committee of them.

Until there are no more unannotated examples or
the expert is unwilling to annotate more examples, do:
Use the most recently learned classi�er/committee to analyze each unannotated example.
Find the k examples with the lowest annotation
certainty/most disagreement among committee members

Have the expert annotate these examples
Train the learner on the bootstrap examples and all examples annotated to this point

Figure 6.1: Selective Sampling Algorithm

6.2 Application to Parser Learning

We �rst investigated the application of active learning to the acquisition of parsers by Chill. While

Chill's training examples are sentence's paired with their representation, the examples given to

the control-rule induction algorithm (Section 2.1) are much more speci�c. They are created by
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Learn a parser with the examples annotated so far
Attempt to parse each unannotated sentence
Unparsed sentences have the lowest annotation certainty
To rank within these use:
# of operators used in attempted parse

length of sentence
Parsed sentences have a higher annotation certainty
To rank within these use:
Total certainty of operators used in parse

# of operators used
The certainty of an operator is the number of annotated examples
that were used to induce its control information

Figure 6.2: Active Learning for Chill

the overly-general parser, which analyzes the input pairs to extract contexts in which each parsing

operator (e.g., shift, reduce) should and should not be employed. The control-rule induction phase

then employs a general ILP algorithm to learn rules that characterize these contexts, and these rules

are then incorporated into the �nal learned parser. The data that our active learning component

chooses examples from is in the form of sentences, not these more speci�c examples of contexts for

parsing operators. Further, the information needed for the classi�cation task is not available by

directly examining the parse obtained on a new, unannotated, sentence.

To attempt to choose the most informative sentences to annotate, we use certainty-based

techniques. Because of the indirectness of the classi�cation task, we �rst analyze the certainty of

the operators used in the attempted parse of a sentence, then use this to actually choose which

sentences to request for annotation in the next round of training. The technique used by Chill's

active learner is summarized in Figure 6.2 and discussed in the next few paragraphs.

Given an unannotated example, that is, a natural-language sentence, the parser learned by

Chill may or may not be able to derive a parse for the sentence. Sentences may be unparsable for

a variety of reasons. For example, the context learned to allow the application of an operator may

be overly speci�c, disallowing the operator's (correct) application in a novel sentence. Or, it could

be that an operator instance has not been seen in any of the training examples annotated to date,

so that the learned parser contains no information at all about it.

If a sentence cannot be parsed, obviously it would be a good candidate for annotation and

inclusion in the next round of training. However, there are often more unparsable sentences than

the desired batch size (k) for a round of active learning, so we need a method for distinguishing

between them, and choose for annotation those that would be most useful to Chill. To do this,

we simply measure the maximum number of operator clauses that were successfully applied while

attempting to parse the sentence. We then divide this by the number of words in the sentence,

to give us an estimate of how close the parser got to obtaining a complete parse. The sentences

obtaining the lowest value are chosen �rst for annotation.

If the number of unparsable examples is less than the total number of examples to choose,
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k, then we choose for annotation the most informative sentences from the parsable ones. To do

this, we assign a measure of con�dence to each parse obtained, by looking at the operator clauses

used during the parse. Recall that the control rules to select each operator clause are induced from

positive and negative examples of the context in which the operator can be applied. Note that each

operator clause is a speci�c instantiation of one of the more general operators (e.g., shift, reduce)

used by the parser. The number of examples used to induce the control rules for an operator is

our measure of con�dence in the clause: operators that are induced from few training examples are

more likely to be in error. We use the number of examples as a measure of con�dence because, as

pointed out by Holte, Acker, and Porter (1989), small disjuncts (those that cover few examples)

are more error prone than large ones. We then average this con�dence over all operators used in

the parse of the sentence to obtain the measure used to rank the entire sentence.

To further decrease annotation e�ort in the database query domain, we do not request

annotations for sentences that vary only in database constant names from others that have been

chosen for annotation in the current round, nor for sentences that contain a subset of the words

present in a sentence already chosen for annotation in the current round. This screening process

will increase the diversity of the examples chosen in each round, and thereby increase the amount

of information to be gained in each round of choosing examples for annotation. In the future, we

could avoid this by choosing one example at a time. Making this computationally e�cient would

necessitate making Chill an incremental learner, to avoid redundant work during each round of

learning.

6.3 Experimental Results for Parser Acquisition

We tested the e�ectiveness of active learning on the U.S. geography query domain described in

Chapter 4. We choose a random set of test examples and train on actively or randomly chosen

subsets of the remaining examples, for each of 10 trials. We compare the accuracy obtained using

active learning to that obtained without active learning. We (randomly) choose n = 25 bootstrap

examples from the training examples, then either actively or randomly choose k = 25 examples at

a time to add to the training examples for the next round of learning. The result of learning is

evaluated after each round, using the same accuracy measure as used in the previous experiments

with this corpus.

The results, in Figure 6.3, show an advantage in intelligently choosing examples, with the

advantage starting out small, increasing as more evidence is gathered, then decreasing again as

the available training examples are exhausted. The advantage starts out small because at �rst

the active learner does not have very much information on which to base its decision for choosing

examples. We see the decrease in advantage at maximum number of examples because with our

limited amount of data, the amount of information that can be learned from it eventually reaches

its limit, around 70% accuracy; active learning and random learning are eventually training on

the same set of examples. However, the number of examples required to reach the maximum

level of accuracy is signi�cantly reduced when using active learning. To get within 5% of this

accuracy requires around 125 examples when using active learning, but 175 examples when they

are randomly selected, a savings of 22%. Also, to surpass the performance of Geobase requires 100

examples when using active learning, versus 125 when examples are chosen randomly, a savings of
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Figure 6.3: Active Learning on the Geography Corpus

11%. The di�erences between active and random choice are statistically signi�cant at 125 and 175

training examples.

We also performed some experiments with the larger geography corpus discussed in Sec-

tion 4.6. We trained Chill with actively chosen versus random examples, as for the smaller

corpus. For this corpus we used n = 50 bootstrap examples and a batch size of 25. The results

are shown in Figure 6.4. Here the savings with active learning is about 150 examples to reach an

accuracy close to the maximum accuracy obtained by randomly sampling, or about a 35% anno-

tation savings. Obviously this is a more di�cult corpus, but still we are able to choose examples

that allow some savings in annotation cost. We also noticed that the proportion of errors made

by the system when it was trained with the examples chosen by active learning was lower at the

top of the learning curve than for randomly chosen examples, as shown in Figure 6.5. The error is

calculated by measuring the number of sentences in the test set that were parsed, but whose parse

retrieved incorrect answers from the database, and dividing this by the total number of sentences

in the test set.

6.4 Application to Lexicon Acquisition

The above experiments examined parser acquisition in isolation, assuming that a correct lexicon

was available. One would like to choose examples that allow good generalization when learning

both semantic lexicons and parsers. We �rst examined certainty-based active learning techniques

to choose examples for annotation when learning lexicons in isolation. There are again two levels

of certainty, at the level of the individual lexicon entries, and at the sentence level. The value of

the heuristic measure for a given lexicon entry is a useful metric by which to estimate how sure we

are of the correctness of the entry.

To choose the sentences to be annotated in each round, we �rst bootstrapped an initial
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Figure 6.4: Active Learning on Larger Geography Corpus
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Learn a lexicon with the examples annotated so far
1) For each phrase in an unannotated sentence:
If it has entries in the learned lexicon,
then its certainty is the average of the heuristic values of those entries

Else, if it is a one-word phrase
then its certainty is zero

Else, do not count other multi-word phrases
2) To rank sentences use:
Total certainty of phrases from step 1

# of phrases counted in step 1

Figure 6.6: Active Learning for Wolfie

lexicon from a small corpus, keeping track of the heuristic values of the learned items. For each

unannotated sentence, we took an average of the heuristic values of the lexicon entries learned for

phrases in that sentence, giving a value of zero to unknown words, and eliminating from consider-

ation any words that we assume are known in advance, such as database constants. The sentences

with the lowest values were chosen for annotation, added to the bootstrap corpus, and a new lexicon

learned. This scheme is summarized in Figure 6.6.

6.5 Experimental Results for Lexicon Acquisition

We applied active learning for lexicon acquisition to the smaller geography query corpus. An initial

lexicon was learned using 25 bootstrap examples. The method described in the previous section

was used to choose 10 additional examples per round, and lexicons and parsers were learned from

these examples using Wolfie then Chill, the latter using the learned lexicons as background

knowledge. To simplify the trials, we used Wolfie without overlap, two-word phrases, or the

parsability heuristic. The accuracy of the resulting learned parsers was compared to the accuracy

of those learned using randomly chosen examples to learn lexicons and parsers, as in Chapter 4.

Figure 6.7 shows the accuracy on unseen data of parsers learned using the lexicons learned by

Wolfie when examples are chosen randomly and actively.

There is an annotation savings of around 110 examples by using active learning: the max-

imum accuracy is reached after 115 examples, versus 225 with random examples. While the ad-

vantage of using active learning is clear once enough examples have been seen, the learning curve

for active learning does show a dip below the random curve at 75, 85, and 95 examples. Since we

are learning both lexicons and parsers, but only choosing examples based on Wolfie's certainty

measures, the chosen sentences may not necessarily also help Chill in achieving better accuracy.

We investigate the integration of the two active learners in the next section.
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Figure 6.7: Using Lexicon Certainty for Active Learning

6.6 Active Learning for the Integrated System

When learning both lexicons and parsers, we would like our active learning component to choose

examples that are useful for both. We are using the same training data for two di�erent tasks, each

of which may �nd a di�erent set of sentences most useful towards improving its own learning. The

results in the previous section show that concentrating on active learning for Wolfie alone may

not ensure that the examples chosen are useful from the point of view of parser acquisition.

The simplest method to combine the two systems for choosing useful examples is to let

the two systems alternate in choosing the uncertain examples from the point of view of their own

uncertainty. We did this in each iteration of choosing examples: each system ranked the sentences

according to its certainty in their annotation, as described above. To choose a batch size of 10, for

example, the most uncertain example according to Chill was �rst chosen for annotation; then, the

most uncertain example according toWolfie was compared to the previously chosen example, and

chosen for annotation if it was not a variant (with respect to database constants) of that example;

if the example was a variant, the next most uncertain example that was not a variant was chosen.

This alternate choosing of examples continued until 10 examples were chosen, 5 from each system.

6.7 Experimental Results: Full System Active Learning

We tested this method on the smaller U.S. geography query corpus, using 25 bootstrap examples

and a batch size of 10. Figure 6.8 shows the results, including a curve, labeled ActiveChill, in

which the examples were chosen using only Chill's certainty metric. The results here are also

rather mixed. Using both systems for actively choosing examples shows a clear example early in

the learning curve, but later dips below the curve for using Chill alone to actively choose examples.

However, using both systems does outperform the random choice of examples. Using both systems

55



0

10

20

30

40

50

60

70

0 50 100 150 200 250

A
cc

ur
ac

y

Training Examples

ActiveBoth
ActiveChill
ActiveWolf

Random

Figure 6.8: Active Learning for Lexicon and Parser Learning

is statistically signi�cantly better than using just Chill at 45, 55, and 75 training examples,

and statistically signi�cantly better than using just Wolfie at 45,55, 75, and 85 examples. On

the other hand, using just Chill is statistically signi�cantly better than using just Wolfie at

105,115,125, and 135 examples. The experiments on random data were only run at 25,75,125,175,

and 225 examples, so we can only compare the di�erence at these points. Given that, using both

systems to actively choose examples signi�cantly outperformed the random choice of examples at

75 examples, and using Chill signi�cantly outperformed random choice at 125 examples. Further,

using both systems to actively choose examples requires annotating about 60 fewer examples than

using random examples, for a savings of 26%.

6.8 Discussion

Our hypothesis was that combining Chill's active learner with Wolfie's active learner would

improve on the results of either system choosing examples on their own. Our results only partially

con�rmed this hypothesis: for smaller numbers of training examples, the hypothesis holds, but when

there are few examples left to choose from, it does not. In hindsight there are some reasons why

it might have failed. First, when both lexicons and parsers are being learned, the lexicons learned

a�ect the success of parser acquisition. When Chill's learned parser evaluates new sentences to

choose for active learning, it will have trouble both with sentences that contain unseen structure, and

sentences with words that are not in the lexicon (or not learned correctly by Wolfie). Therefore,

it is also choosing sentences based on unknown words. So perhaps learning is boosted early on

just by collecting more information about unknown words, which both systems e�ectively do in

the beginning. On the other hand, Wolfie alone is not as successful, in the middle portions of

the learning curve, at choosing examples that are useful from the point of view of parser learning,

but Chill's uncertainty metric is successful, so the combined system loses its advantage, due to
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Wolfie's poor choice of examples. Future work should investigate more e�ective ways of combining

the two learners.

6.9 Committee-based Active Learning

When we began exploring active learning for parser acquisition, we �rst investigated several tech-

niques to generate a committee of parsers, so as to use committee-based active learning. These

techniques included: varying the learner's induction parameters, randomizing the order of presenta-

tion of the training examples, stopping induction at di�erent points, and even trying to force Chill

to learn more general and more speci�c parsers based on a version space-like approach (Cohn et al.,

1994). These attempts did not generate very diverse committees, partially perhaps because of the

small number of examples available for each speci�c parsing operator, and also probably because

Chill's learner is robust against many of the above variations.

Another attempt at a committee-based learner that was partially successful was a method

inspired by the version space approach, but instead of forcing the learner to be biased, we used the

learned parser as a starting point and biased it, as follows. From the learned parser we generate a

more speci�c parser that parses only the training examples (or sentences varying from the training

sentences only in constant names such as \Austin" or \Mississippi"). In other words, each operator

is restricted so that it is only applicable in contexts in which it was applied during example analysis.

The second, more general, committee member was also formed by modifying the original learned

parser, but this time to allow the application of an operator in any contexts except those that led

to inconsistent states during example analysis. In addition, it is given background knowledge of the

names of the predicates of the query language, and which predicates could possibly be embedded

in the others as arguments. This information is used to derive additional variants of the basic

operators using predicate combinations not seen during training.

Examples were then chosen for annotation by measuring the amount of disagreement be-

tween the committee members in the operators used during the parse of the examples. In more

detail, for each sentence, we �rst attempt to parse it with each committee member (the most gen-

eral parser, the most speci�c parser, and the original learned parser), and note the operators used

during the attempted parse, whether a �nal interpretation is found or not. For each pair of commit-

tee members, we next measure the number of operator applications that the two attempted parses

had in common, calling this jIABj, where the subscript indicates which pair of parses are being

compared, the general parse (G), the speci�c parse (S), and the original parse (O). The formula to

�nd the disagreement is then the average of:

1. (jISGj=jSj+ jISGj=jGj)=2

2. (jISOj=jSj + jISOj=jOj)=2

3. (jIGOj=jGj+ jIGOj=jOj)=2,

where jSj, for example, is the number of operator applications in the most speci�c parse. The

sentences with the smallest resulting value are those that the three parsers disagree on the most in

terms of valid operator application, so could potentially contain the most new useful information if

annotated, so these were chosen �rst for annotation in this scheme. Any ties are broken by choosing
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the examples with the smallest average number of operators used by the committee members during

parsing.

This approach did not perform as well as the certainty based method described above. This

technique attempts to �nd training examples that \narrow the distance" between a speci�c and a

general parser. However, the learner also needs to see several examples of the use of each operator.

The certainty-based method, at least during the early stages, at least ensures that something new

is learned for each newly annotated example, without overwhelming the learner with too much

new information at once. Further, the committee-based approach has only been implemented and

brie
y tested with one query representation, and it is not clear how well or easily it could be applied

to a di�erent representation formalism, because of the overhead of generalizing and specializing the

learned parser. The certainty-based approach, on the other hand, is easily applicable to new

representations.

Another approach could be to combine the certainty-based method in Section 6.2 with the

most general parser. For each unannotated example, we could use the most general parser to

generate all possible operators that it may provide information about. This could be used as a

measure of the amount of new information to be gained by annotating each example. This measure

could then be combined with the certainty measure in Section 6.2, to generate an even more useful

active learner.

We �nally tried to generate a committee by giving di�erent committee members di�erent sets

of training examples as suggested in Matan (1995). Instead of using completely disjoint training sets

however, we used bagging (Breiman, 1996) to divide the annotated examples into groups for each

committee member. Then, to choose examples for annotation, each committee member attempts

to parse the example, and the amount of disagreement among the members with respect to this

attempted parse is then measured, as described earlier in this section. The examples with the most

disagreement are chosen for annotation.

However, there are three disadvantages to this approach. First, this forces us to run the

learner multiple times, increasing the learning time, which perhaps may overshadow the gains of

active learning. The fact that each learner is given a smaller number of examples than it would

otherwise, however, could partially overcome this objection. On the other hand, most researchers

who have investigated committee-based active learning have done so using a committee of simpler

learners than Chill. A second disadvantage of this method is that the committee members are

likely to disagree on examples for which the parsing operators are \uncertain" anyway (because the

rare operators will be those appearing only in some examples, so only some committee members, so

will lead to disagreement), which is estimated by certainty-based active learning with less training

e�ort.

Finally, there is no straight-forward, principled way to combine the votes of the committee

members in the case of learning a parser; even the method described earlier in this section is

quite ad hoc. The di�culty comes because each sentence yields multiple training examples (for

parsing operator application), and measuring the committee member disagreement over multiple

categorizations is not as straightforward as for one. One option is to use vote entropy as in Engelson

and Dagan (1996), but it is not clear what to measure. They use

�
1

logk
�
X
c
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k
log
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where V (c; e) denotes the number of members assigning example e to class c, and k is the number

of committee members. However, parses do not contain information about just one class. One

could look at the entropy between the operators applied in a speci�c parse state, treating these

as the classes, but di�erent committee members would have di�erent parse states, resulting in

little overlap between classes. Alternatively, one could look at the entropy between the operators

applied during the parse of each example for each committee member (instead of entropy between

classi�cation as in the above equation). But then the \probabilities" would not sum to one, because

multiple operators are applied in an example. Therefore, perhaps the best way to combine votes is

to use the agreement measure described earlier in this section.

Initial attempts at using this kind of committee-based active learning resulted in improve-

ments very similar to those obtained using the certainty-based active learning discussed above, and

so were abandoned for now due to higher run times.
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Chapter 7

Related Work

This dissertation research draws from many subdisciplines within arti�cial intelligence. These

include machine learning, computational linguistics, and inductive logic programming. Some of

these connections have been mentioned in previous chapters, while here we more extensively review

the literature in lexicon learning, active learning, and related areas. While we may have omitted

some tangentially related research, we have attempted a comprehensive summary of the most closely

related work.

7.1 Lexicon Learning

There are two predominant views of the semantic lexicon acquisition task to be found in the related

literature. First, techniques for �nding the meaning of a word can be based on the company it

keeps. This has also been called collocative meaning, �rst by Leech (1974). This view is the basis

of the statistical paradigm, which is exempli�ed by Church and Hanks (1990), Zernick (1991), Dyer

(1991), and others. Second, techniques for �nding the meaning of a word can be based on the

semantic properties associated with its use, also called conceptual meaning by Leech (1974). The

latter is the approach taken by this dissertation.

Focusing on systems that base word meanings on the semantics of their use, the work can

be further subdivided. First are systems that learn semantic categories for words. These include

distributional clustering systems such as those of Pereira, Tishby, and Lee (1993) and Lund, Burgess,

and Atchley (1995). Systems such as that of Rilo� and Sheperd (1997), that group semantically

similar words together, also fall into this category. While these methods are perhaps useful for

�nding synonym sets and other word groupings, the learned knowledge is not directly applicable

for aiding the transformation of sentences into their representations.

A second focus of semantic lexicon learning systems is the acquisition of relations between

words or categories of words. For example, several systems (Grimshaw, 1981; Brent, 1991; Manning,

1993; Basili, Pazienza, & Velardi, 1996) acquire information about words' subcategorization or

selectional restrictions. Another example of this type of system is that of Brent (1990). His system

is restricted to learning only verb meanings, and assumes a simple parser is available to the learner.

He demonstrates the ability to learn to distinguish between stative and non-stative verbs; while

this is a useful kind of semantic information to learn, he demonstrates no ability to learn other

types of semantic information. Although this information may aid a semantic parser, it does not
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directly contribute to transforming words into a representation of their meaning.

Finally, the lexicon learning task can be grounded in the representations presented to the

learner, where understanding is demonstrated by the ability to parse, answer questions, or perform

a similar linguistic analysis. This latter is the approach that this research, and that of several

others (discussed below), have taken. Most of the early systems taking this approach were given

access to a large amount of background knowledge and pre-existing parsing capabilities, while more

recent work has moved more in the other direction, for example with the use of large corpora and

statistical methods. Wolfie's approach is between these two extremes, assuming access to parses

but not parsers, and using statistics in its heuristic measure. Exploring this category of systems

further, the type of knowledge and representations used can be further subdivided into learning to

execute actions, learning mappings to visual input, and learning a representation to enable semantic

parses of sentences.

7.1.1 Learning to Execute Actions

First, the task of lexicon learning can be grounded in learning to take actions in the world. In

other words, to demonstrate understanding, an agent's performance is analyzed. Suppes, Liang,

and B�ottner (1991) use this approach. A robot is trained on cognitive and perceptual concepts

and their associated actions, and learns to execute simple commands. Along similar lines, Tishby

and Gorin (1994) have a system that learns associations between words and actions, but they use

a statistical framework to learn these associations, and do not handle structured representations.

7.1.2 Learning Mappings to Visual Input

One of the earliest to explore a kind of language and lexicon acquisition was Siklossy (1972). The

input to the system is sentences paired with \pictures" in a functional language (FL). The system

is also given a procedure for representing relations among the objects in the input; this structure

helps program discover structure in the sentence. The system learns patterns for transforming FL

back to natural language. The algorithm is incremental, with some dependence on the order in

which sentences are presented; it also seems to depend on the ordering of words to be somewhat

synchronized with the ordering of their meanings in the FL.

Moran (Salveter, 1979, 1982) incrementally learns frame-like conceptual structures for verb

meanings from simulated perceptual input paired with linguistic input. However, unlike ours, the

system is given world knowledge in the form of isa and superset/subset links, which provides much

information. Also, the linguistic input is in the form of a set of pairs in the form (casename,

value), instead of natural language sentences. However, the system learns somewhat complex

representations in the form of case-frame-like representations describing change of state information,

as opposed to the one-to-one representations learned by Wolfie.

Feldman and his colleagues at Berkeley (Feldman, Lako�, & Shastri, 1995) are actively

pursuing neural network models to acquire semantic concepts. The latest system by Bailey (1997)

is given examples of pictures paired with natural language descriptions that apply to the picture,

and learns to judge whether a new sentence is true of a given picture. The focus in their work is

on the acquisition of spatial terms and verbs. In a similar vein, Nenov and Dyer (1994) describe a

neural network model to map between visual and verbal/motor commands.

61



While our research currently restricts itself to text input, this simpli�es the learning task so

that vision or speech recognition does not have to be learned in addition to language. In principle,

a system converting paired sentences and line drawings into a semantic representation of that

sentence could be used as a front end to Wolfie.

7.1.3 Learning for Semantic Parsing

The systems most closely related to Wolfie learn mappings from text input to semantic repre-

sentations, usually in support of further processing such as parsing. In other words, there is an

implicit procedural semantics associated with the acquired knowledge. For example, an early sys-

tem, RINA (Zernik, 1987), acquires verb-particle combinations that can later be used by a parser.

Unlike Wolfie, the system is an attempt to model the task of a second language learner, and

requires a large amount of user interaction. Because of this focus, extensive background knowledge

is available to the system, including an initial hierarchical lexicon. No real world tests have been

performed on the system. Fukumoto and Tsujii (1995) put forth interesting methods for learning

semantic lexicon information, but demonstrate only verb learning.

We have already discussed the research by Siskind (1996) in detail. While his system was

developed from the point of view of cognitive modeling, the representations learned can be used

to support further processing. He has demonstrated the scalability of his system to input contain-

ing noise, ambiguity, synonymy, and referential uncertainty. As our experiments demonstrated,

Wolfie is more successful at lexicon learning in a domain directly supporting semantic parsing.

Several systems (Russell, 1993; Hastings & Lytinen, 1994; Knight, 1996) learn new words

from context, assuming that a large initial lexicon and parsing system are available. For example,

Hastings and Lytinen (1994) present an incremental learner that searches for word meanings in a

predetermined semantic hierarchy. Haruno (1995) describes a system for learning the semantics of

verbs, but requires background knowledge in the form of a thesaurus. Wolfie focuses on learning

from minimal background knowledge, though it can take advantage of an initial lexicon if one is

available.

7.1.4 Learning Syntax and Semantics

Some lexicon acquisition systems learn information that crosses the boundaries between syntax

and semantics. For example Foul-Up, developed by Granger (1977), starts with an initial lexicon

and parser and hypothesizes the meanings of unknown words in novel sentences based on this

knowledge. Another example is Child (Selfridge, 1986), which tries to model children's acquisition

of language, integrating the acquisition of word meanings and syntax. The syntax learned is in the

form of positional rules, and the semantic representations are derived from Conceptual Dependency.

Limitations ofChild include heavy reliance on careful crafting of the training input and no handling

of ambiguity.

Webster and Marcus's (1995) system learns information only about verbs from sentence/rep-

resentation pairs, where the representation includes both syntax (e.g., phrasal information) and

semantics (e.g., agent and patient). The system learns syntactic properties, predicate/argument

structure, and a mapping between the two. Pedersen and Chen (1995) describe a method for

acquiring syntactic and semantic features of an unknown word. They assume access to an initial
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concept hierarchy, and do not present any experimental results.

In several systems, learning to parse and learning word meanings is more closely coupled

than the Wolfie and Chill combination. For some systems, acquisition of meaning is based on

extensive parsing capabilities (Zernick & Dyer, 1987; Lytinen & Roberts, 1989). Berwick (1983),

Selfridge (1986), Miikkulainen (1993), and Cardie (1993) also integrate the learning of syntax,

semantics, and the lexicon. For example, Berwick's (1983) system is given syntactic constraints from

a parser and uses analogical matching to compare known to unknown verbs. Genesis (Mooney,

1990) integrates some word learning with a larger system for schema acquisition. Acquisition here

is not limited to a single sentence of context, but an entire story.

7.2 Other Related Work

7.2.1 Translation Lexicons

This work also has ties to the work on automatic construction of translation lexicons (Gale &

Church, 1991; Catizone, Russell, & Warwick, 1993; Kumano & Hirakawa, 1994; Wu & Xia, 1995;

Melamed, 1995). These systems use input in the form of aligned pairs of sentences in two di�erent

natural languages. While most of these methods also compute association scores between pairs

(in their case, word/word pairs) and use a greedy algorithm to choose the best translation(s) for

each word, they do not take advantage of the constraints between pairs. One exception is Melamed

(1996); however, his approach does not allow for phrases in the lexicon or for synonymy within one

text segment, while ours does. Finally, the mappings learned for translation lexicons are string to

string mappings, instead of the string to structure mappings learned by Wolfie.

7.2.2 Acquisition from MRDs

Many researchers (Amsler, 1981; Walker & Amsler, 1986; Byrd, Calzolari, Chodorow, Klavans, Ne�,

& Risk, 1987; Boguraev & Briscoe, 1989; Karov & Edelman, 1996; Rigau, Rodr�iguez, & Agirre,

1998) have investigated the extraction of lexical information from Machine Readable Dictionaries

(MRDs). While these methods may be capable of generating general information, additional infor-

mation is needed from some source to tailor the information to each domain. There is potential,

therefore, for integrating the MRD extraction results with the lexicons learned by Wolfie.

7.3 Active Learning

Cohn et al. (1994) were among the �rst to discuss certainty-based active learning methods in detail.

They focus on a neural network approach to actively searching a version-space of concepts. Liere

and Tadepalli (1997) apply active learning with committees to the problem of text categorization.

They show improvements with active learning similar to those that we obtain, but use a committee

of Winnow-based learners on a traditional classi�cation task. Dagan and Engelson (1995) also

apply committee-based learning to a classi�cation task, that of part-of-speech tagging. In their

work, a committee of Hidden-Markov Models is used to select examples for annotation. Lewis and

Catlett (1994) use heterogeneous certainty-based methods, in which a simple classi�er is used to

select examples that are then annotated and presented to a more powerful classi�er.
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All of these methods are applied only to a simple classi�cation task, while our work applies

active learning to the more di�cult tasks of parser and lexicon acquisition. As discussed in Chap-

ter 6, these tasks are more di�cult because of the indirect nature and complexity of classi�cation.
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Chapter 8

Future Directions

8.1 Lexicon Learning

8.1.1 Improving the Algorithm

With su�cient training data, the current version of the algorithm does a good job of learning a

lexicon that covers the data and is useful to Chill. There are several improvements that could be

made to improve the results on corpora similar to the ambiguous arti�cial one and on other noisy

corpora. First, we could move to a best-�rst search instead of a greedy one. With dependency-

directed backtracking, this could allow the algorithm to correct itself when it �nds that it is unable

to cover the data with the learned lexicon. Improving the search may also allow the algorithm to

better handle noisy inputs, by allowing the use of more intelligent methods than simple thresholding,

which is the best we could do within the framework of a greedy search.

There are additional components that could be added to the lexicon candidate pair evalua-

tion heuristic. One example is a component that would bias the lexicon towards enforcing locality

constraints, when doing so would aid parsing. Locality enables the learner to prefer a situation in

which if two words are \close to" each other in the sentence, then their meanings are also \close"

together in the sentence's representation. For example, in the pair

What is the highest point in the state with the capital Des Moines?

answer(C, (high point(B,C), loc(C,B), state(B),

capital(B,A), eq(A,cityid('des moines', )))).

if (capital, capital( , )) is a lexicon entry, then a locality bias would prefer pairing state with

state( , ) over pairing it with high point( , ).

Another component that could be added to the heuristic may also improve the lexicons

learned for some corpora. In the arti�cial corpora explored in Chapter 5 and also in some real

world domains, the \correct" meaning for each word is not necessarily the most general one in

terms of specifying less information (fewer nodes in trees as in our generality portion of the heuristic

measure). This sense of generality does not necessarily imply generality in the sense of covering

more examples. In this case, a correct meaning for a phrase, p, is more likely to be obtained by

prefering LICS from representations whose sentences have few or no phrases in common other than

p, than by prefering LICS that have fewer nodes. Therefore, adding a component to the heuristic

65



that counts the number of other phrases that source sentences for LICS had in common, and that

prefers meanings generated from sentences containing few phrases in common, would potentially

boost the performance ofWolfie in domains for which correct meanings do not necessarily specify

less information than incorrect ones.

Another possibility is to use knowledge about syntax or morphology to bias the search.

For example, if we know a word is a noun, and have background knowledge about which portions

of the sentence representation correspond to objects, we could prefer mapping nouns to objects.

Another form of background knowledge that could be useful is WordNet (Beckwith et al., 1991),

a hierarchically organized computational lexicon. The distance in the WordNet hierarchy between

words and the names used in a sentence's semantic representation could be measured, and used

as an additional component of the heuristic. This might be similar to the way that Resnik (1995)

uses semantic similarity in WordNet to disambiguate nouns. The method in Brunk and Pazzani

(1995) to compute lexical distance in WordNet might also be adapted to this task; they use it in

the context of theory revision.

As discussed in Chapter 4, fracturing performs slightly better than LICS when the training

set is small; to overcome this, we could fracture in cases where we think it might improve the

results, and use LICS otherwise. Two cases where this would be useful are immediately obvious.

First, if a word appears in only one sentence, there are no pairs of representations to use to generate

a LICS. Our current heuristic of using the entire representation as an initial candidate meaning

for such words, and then using constraints between word meanings to generalize the representation

does not work well in all cases. Fracturing should ensure a greater probability of successfully

learning meanings for such words. Second, a rare word may have only empty trees as the result of

�nding LICS, indicating that the word is ambiguous. It may help to fracture the representations

of sentences in which such a word appears to generate candidate meanings for it. Common words

that have only an empty LICS are more likely to be function words.

The current algorithm is not guaranteed to cover the training set. One di�cult case is

situations in which the node labels of meaning representations for multiple words intersect (usually,

those with similar meanings), and these words appear together in some of the same sentences. For

example, \The boy hit the person." is represented as

[ptrans, agt:[person,sex:male,age:child], pat:[person]]

in the CD representation formalism; if the algorithm �rst determines that person maps to person,

it would not be able to determine which occurrence of person in the representation is accounted

for by this meaning.

A second di�cult case for covering arises when a word is very common but ambiguous, and

one of its uses is as a function word, depending on context. An example in the geography corpus

is in, which can mean either loc( , ) or [] in di�erent situations. Finally, forcing the algorithm

to consider closed class words as candidate lexicon entries also sometimes causes di�culties, or

at least errors in the lexicon. A way to handle these covering di�culties might be to eliminate

consideration or generation of a candidate lexicon entry unless it covers a sentence/representation

pair, when combined with the candidate meanings of the other words in the sentence. Another

possibility is to explicitly include the empty tree in candidate lexicon entries when a LICS is empty.

Handling more 
exible and longer phrases is also desirable. While it would not add much

complexity to consider longer phrases, it is often the case that the words in a meaningful \phrase"
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do not follow one another consecutively in a sentence. These are more like the \patterns" used in

information extraction tasks. If we wanted to consider such patterns, we would have to establish

some arbitrary threshold for the portion of the input in which a pattern should occur to justify its

inclusion in our candidate set, to avoid an exponential blowup in the number of patterns considered.

Even then, our current heuristic may ignore such patterns even when they are meaningful, due to

their sparseness in the input, compared with the words in the pattern. Phrases to add to the

set of candidate pairs to be considered could be generated by statistical evaluation of corpus co-

occurrences. Progress along this front is discussed in Smadja (1991).

8.1.2 Generalizing the Problem De�nition

While the current problem de�nition handles most of the cases that we considered in our exper-

iments, some extensions to the de�nition may be needed in other domains, tasks, or for other

representation formalisms.

First, some representations may require making f , the interpretation function, a relation

instead of a function, as is allowed in Siskind's system. This would eliminate our single-use assump-

tion, allowing a phrase's meaning to appear multiple times in the representation of that sentence.

For example \The man moved." could be represented as

[ptrans, agt:[person,sex:male,age:adult],

pat:[person,sex:male,age:adult]].

Also, the problem de�nition would need more drastic modi�cation if not all components of the

meaning representation were due to the words in the sentence. This may be the case in translation

or dialogue systems; in the latter case, multiple sentence context may be included in a sentence's

meaning. For example, ellipses often occur in dialogue, such as someone asking \What is the largest

city in New York?", and next asking \What about Texas?". Another possibility is to allow a phrase

and the words in it to each map to a di�erent meaning in the sentence representation. For example,

in \What state has the highest elevation?", represented as

answer(B, highest(A, (state(B), high point(B,A)))),

allowing highest to map to highest( , ) and highest elevation to map to high point( , )

may be more useful than mapping elevation to

high point( , ), since questions about elevations can be either about highest or lowest elevations.

Introducing more integration between parser and lexicon acquisition could improve the re-

sults for both. For example, there might be a way to learn to order the lexicon in a way that

increases parser e�ciency. As another possibility, we could give a partial parse to Wolfie when

Chill has problems. This could be used to try to distinguish between errors in learning and am-

biguous words. Collocations could be kept to help Chill with disambiguation. The parsability

heuristic could be improved to determine which word in an unparsable sentence is causing an in-

correct parse, rather than assuming that the most recently learned word is causing the problem.

Another use of syntactic knowledge could be to use the results of a part-of-speech tagger to detect

potentially ambiguous words.

Another desirable extension is to learn more 
exible and structured lexicons, so that the lex-

icons can be used by more complex parsing systems. One possibility here is to combine our method
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with previous research on clustering, thesaurus construction, or learning selectional restrictions.

Perhaps WordNet could be used to help evaluate potential hierarchical organization options for a

learned lexicon. It could also be used to bias the current greedy search, by prefering to associate

the lowest words in the hierarchy with the most speci�c meanings. Another possibility is to use cat-

egories, from WordNet or automatic clustering methods, to learn a general representation beyond

the information explicitly present in the input. A simple technique would be to generate lexicon

items by retrieving synonyms of learned words. For example, in the geography query domain, this

would result in learning that all state names should be mapped to eq( ,stateid(<statename>)),

or in the CD domain, learning that all people are mapped to [person, sex:<?>, age:<?>].

As mentioned in Chapter 7, we could combine this research with the work on extracting

lexical information fromMachine-Readable Dictionaries (MRDs). The learning fromMRD methods

could be used to build the initial (domain-independent) lexicon, then an extension ofWolfie could

be used to build on that lexicon, and specialize it for use in a speci�c domain.

Another avenue to pursue could be to generalize the input beyond a text-based format.

For example, the future may see vision systems capable of mapping from video to some symbolic

representation of what is going on in the scene. Rajagopalan and Kuipers (1994) discusses recent

progress: a system for mapping from diagrams and text to database relations. If this input is

annotated with the audio that accompanied the scene, such inputs could be used in an extension of

Wolfie and Chill. Some of the work by Regier (1991) and others at Berkeley has made related

strides in this direction.

This type of input would require enabling the system to handle a type of referential uncer-

tainty, since there would be many objects in a scene that are not referred to in a sentence. An

alternative to the disjunction of possible meanings used in Siskind's work to represent referential

uncertainty is to represent all of the objects in the scene and their relationships in a large graph-

structured representation. This would be more easily extracted from video input than Siskind's

version of referential uncertainty, and would mesh well with our methods for �nding relevant mean-

ings. The task of the learner would be to determine which subgraph(s) of the representation map

to the meaning of the sentence, then proceed from there to learn word meanings.

Finally, the basic algorithm is potentially applicable to other learning problems involving

multiple, ambiguous concepts. These include learning translation lexicons, learning for diagnosis,

and learning rules.

8.1.3 Handling Unknown Words

There may be situations in which the system has to process a sentence that contains words that it

has not previously seen. It would be advantageous if the system could hypothesize a meaning for

these words, without having access to the meaning of the sentence, but based purely on context. It

should also recognize new meanings for previously seen words when only given a sentence as input.

There are several ways to attack the problem of unknown words, some of which have al-

ready been explored in previous research (Granger, 1977; Russell, 1993; Hastings & Lytinen, 1994;

Knight, 1996), though none have solved the problem completely. One possibility is to integrate

more statistical and co-occurrence knowledge into the lexicons learned by Wolfie, and use this

knowledge to infer the meanings of new words. For example, the context in which the unknown

word occurs could be compared to the contexts in which known words have been used; the sys-
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tem could then learn similar meanings for words appearing in similar contexts. New meanings of

previously seen (but ambiguous) words could be detected by noting their use in an unusual con-

text, and again comparing that context to contexts in which known words have occurred. Adding

part-of-speech tags to the training input could also help constrain the search.

We could also increase the interaction between Wolfie and Chill to help hypothesize

meanings for unknown words. Perhaps we could use the type of parsing error encountered by

Chill to help Wolfie deduce what kind of changes might be needed in the lexicon. Chill could

just shift when it sees an unknown word, and pass a partial parse back to Wolfie. Also, if a

sentence takes a relatively long time for Chill to parse during its example analysis phase, this may

indicate that some word in that sentence has a wrong meaning in the lexicon.

WordNet could help here as well. If we see \The fragle ate", we would tend to associate

the meaning of fragle with concepts that are close, in the WordNet hierarchy, to other words that

acted as the agent of an eating verb.

Finally, we note that the problem of unknown words is also a di�cult one for people. We do

not often correctly deduce the meaning of a novel word from context alone, but instead ask for a

meaning or look it up in a dictionary. Another option is to ignore it and treat it as noise. Even in

the absence of knowledge of the word, we can still usually deduce a partial meaning of the sentence,

and we would like our system to do the same.

8.1.4 Additional Evaluation

After making some of the above improvements, more evaluation than that presented here would

be possible. For example, we could compare our methods to purely statistical approaches such as

Expectation Maximization (Dempster, Laird, & Rubin, 1977). Such methods do not take exclusivity

into account; using a statistical method to help rank correlations and then our method to generalize

and constrain meanings may improve our results. Another possible evaluation technique is to obtain

an unannotated corpus and an existing semantic parser. We could then parse the corpus with the

existing parser and use the results as training input to \reverse engineer" the original lexicon and

parser. The performance of the learned and hand-built lexicon/parser systems could be compared

on novel inputs.

While we show initial success here with a CD-like representation formalism, we would like

to demonstrate the feasibility of our approach more broadly. For example, the method should be

evaluated on corpora of paired sentences and SQL queries. In general, more annotated corpora

are needed as training input for semantic acquisition systems such as ours. Using active learning

should help minimize the annotation burden required to build such corpora.

8.2 Active Learning

We now turn to possible directions in the area of active learning for parser and lexicon acquisition.

While the results obtained to date are promising, there are many areas for potential improvement.

First, the example selection heuristics could be further re�ned. We could incorporate operator

certainty metrics for unparsable sentences, instead of only using them for parsable sentences, as we

do now. In the longer term, we could utilize a probabilistic parser (one that assigns probabilities

to each analysis of a sentence) and use the probabilities to estimate the con�dence in a parse.
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Alternatively, the contexts in which a parsing operator is applicable could be loosened to allow

a sentence to be parsed, and the more loosening needed, the more likely we are to choose that

sentence for annotation.

Second, we would like to further investigate committee-based learners for parser acquisition.

As discussed in our initial studies in Section 6.9, building a good, diverse committee for Chill is

not straightforward. Perhaps a committee of simpler learners could be used to select examples for

annotation and training by Chill; a similar method is presented by Lewis and Catlett (1994).

Using incremental versions of bothWolfie and Chill could allow the use of a smaller batch

size during active learning. One technique to make Wolfie incremental would involve including

the previously learned lexicon items as candidate entries from which the next lexicon is chosen.

They could also be used as a source for LICS from which new candidates are generated, in addition

to the current candidate generation method. By using a full memory incremental system that

remembers training examples from each round of learning, the heuristic value calculation could

remain unchanged from the current version.

Making Chill an incremental learner would likely prove to be more straightforward. Chill

uses a compression approach in its search for the best parser to cover the training input. The

contexts for operators used during the parsing of new input could be added to the the parser

learned from previous input, and this combined parser used to initialize Chill's search. The

compression algorithm could then continue its search in the standard fashion. Cali� (1998) uses a

similar method in an incremental version of a system to learn information extraction rules.

Finally, we would like to test these methods on other data sets and in other domains, such

as the acquisition of control rules for planning (Estlin & Mooney, 1997). Active learning techniques

like those used here may help reduce the annotation burden in this and other complex domains.
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Chapter 9

Conclusion

The ability to understand sentences is crucial to support many higher-level tasks in language

understanding systems. To understand sentences, the system must �rst understand the words in

those sentences. Constructing these resources by hand is laborious and error-prone. The research

in this dissertation makes progress in easing this burden. The main focus of this dissertation has

been the acquisition of semantic lexicons to be used with a system that learns semantic parsers. A

secondary focus has been the application of active learning techniques to minimize the annotation

burden required to learn lexicons and parsers. These achievements are both useful steps towards

our long term goal of automatically building natural language understanding systems.

We have described and evaluated a system, Wolfie, that takes as input a corpus of sen-

tence/representation pairs, and acquires a semantic lexicon that covers, or accounts for, that corpus.

A greedy approach and a compositional assumption are used for e�ciency. The system di�ers from

previous work in its use of bottom-up techniques for generating candidate lexicon pairs, and in its

exclusivity assumption to constrain these candidate pairs. A heuristic measure, based on corpus

statistics and the lexicon learned so far, is also used to evaluate candidates. The learned lexicons

can be used as background knowledge as input to the parser acquisition system, Chill.

We demonstrated the usefulness of the learned lexicons in a real-world domain. Experimental

results involving the U.S. geography query corpus show improvement over a previously developed

lexicon acquisition system. We also demonstrated Wolfie and Chill's applicability to languages

other than English. Experiments on two arti�cial corpora show that the algorithm scales up

reasonably well as more ambiguity and synonymy are added to the language, and that is 
exible

enough to handle multiple representation formalisms. However, further experimentation on larger

real-world corpora is needed.

While this research eases the construction of NLP systems, it does necessitate the construc-

tion of annotated corpora. While this is arguably an easier task than building an entire NLP

system, it is still somewhat di�cult. Therefore, we also investigated certainty-based active learning

techniques to reduce the sentence annotation e�ort. Experimental results demonstrated that the

number of examples required to achieve close to the maximum possible level of performance was

reduced when using actively chosen versus randomly chosen examples. When using active learning

just to learn parsers, a savings of 22% annotation cost was realized over using randomly chosen

examples. When learning both lexicons and parsers, active learning demonstrated a savings of 26%

annotation cost.
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In conclusion, this research has made strides towards the automatic construction of natural

language systems, with demonstrated application to a natural language database interface, and

potential application to translation and dialogue systems. This research holds promise for easing

the construction of natural language interfaces, making the large amount of information stored on

computers world-wide more easily accessible for use by machines and people.
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Appendix A

Sample Training Input

This appendix contains a sampling of the sentence/representation pairs from the U.S. Geography

query domain used in the experiments in this research.

A.1 Original Geography Corpus

The full corpus for the orginal geography corpus in English is given in Zelle (1995). Here we show

some of the sentences in English, Spanish, Japanese, and Turkish, along with the logical query

representation for each sentence.

What is the capital of the state with the largest population?

Que es la capital de el estado con la poblacion mas grande?

Mottomo ookii jinkou ga aru shuu no shuto wa nan desu ka?

Nufusu en fazla olan eyaletin baskenti nedir?

answer(C, (capital(S,C), largest(P, (state(S), population(S,P))))).

What state is Des Moines located in?

En que estado se encuentra Des Moines?

Demoin wa dono shuu ni arimasu ka?

Des Moines hangi eyalettedir?

answer(S, (state(S), eq(C,cityid('des moines', )), loc(C,S))).

What capital is the largest in the US?

Que capital es la mas grande en los US?

Gasshuukoku no mottomo ookii shuto wa nan desu ka?

US deki en genis baskent hangisidir?

answer(A, largest(A, capital(A))).

What is the area of Maine?

Que es la area de Maine?

Meen no chiiki wa nan desu ka?

Maine nin yuzolcumu nedir?

answer(A, (area(C,A), eq(C,stateid(maine)))).

What is the total population of the states that border Texas?

Que es el total de la poblacion de los estados que bordean a Texas?

Tekisasu ni rinsetsu suru shuu no zentai no jinkou wa ikura desu ka?
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Texas a komsu eyaletlerin toplam nufusu nedir?

answer(P, (population(S,P), state(S), next to(S,M), eq(M,stateid(texas)))).

What is the highest point in the state with the capital Des Moines?

Que es el punto mas alto de el estado con la capital Des Moines?

Demoin no shuto ga aru shuu no mottomo takai chiten wa nan desu ka?

Baskenti Des Moines olan eyaletin en yuksek noktasi nedir?

answer(C, (high point(B,C), loc(C,B), state(B), capital(B,A),

eq(A,cityid('des moines', )))).

A.2 New Geography Queries

Below are sample queries from the new sentences collected from computer science students.

What is the longest river that does not run through Texas?

answer(B, longest(B, (river(B), \+ (traverse(B,A), eq(A,stateid(texas)))))).

What is the population density in the state with capital Austin?

answer(C, (density(B,C), state(B), capital(B,A), eq(A,cityid(austin, )))).

Which states have a major city named Austin?

answer(B, (state(B), loc(A,B), major(A), city(A), eq(A,cityid(austin, )))).

How many rivers do not traverse the state with the capital Albany?

answer(A, count(B,(river(B), \+ (traverse(B,C), state(C),

capital(C,D), eq(D,cityid(albany, )))),A))).

How many states border on the state whose capital is Boston?

answer(C, count(N, (state(N), next to(N,W), state(W), capital(W,B), eq(B,cityid(boston, ))),C))).

How many states border at least one other state?

answer(C, count(S, (state(S), next to(S,R), state(R)),C))).

Of the states washed by the Mississippi River which has the lowest point?

answer(B, lowest(L, (state(B), traverse(A,B), eq(A,riverid(mississippi)), low point(B,L))))).

How many states have a higher point than the highest point of the state with the largest capital

city in the US?

answer(M, count(S, (state(S), high point(S,P), higher(P,Q), high point(B,Q),

largest(C, (state(B), capital(B,C)))),M))).

What is the length of the longest river that runs through Texas?

answer(C, longest(R, (len(R,C), river(R), traverse(R,T),

eq(T,stateid(texas)))))).

What is the largest state that borders the state with the lowest point in the USA?

answer(S, largest(S, lowest(P, (state(S), next to(S,L), state(L),

low point(L,P)))))).
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Appendix B

Sample Learned Lexicons

This appendix contains examples of the lexicons learned by Wolfie and by Siskind's system in

the U.S. geography query domain. All lexicons were learned using 225 training examples.

B.1 English

Wolfie's learned lexicon for one split:

[state],[state(_)]. [states],[state(_)].

[rivers],[river(_)]. [border],[next_to(_,_)].

[population],[population(_,_)]. [through],[traverse(_,_)].

[cities],[city(_)]. [largest],[largest(_,_)].

[major],[major(_)]. [lowest],[low_point(_,_)].

[smallest],[smallest(_,_)]. [area],[area(_,_)].

[longest],[longest(_,_)]. [biggest],[largest(_,_)].

[shortest],[shortest(_,_)]. [long],[len(_,_)].

[have],[loc(_,_)]. [large],[size(_,_)].

[length],[len(_,_)]. [points],[high_point(_,_)].

[50],[sum(_,_,_)]. [highest],[largest(_,_)].

[most],[most(_,_,_)]. [high],[elevation(_,_)].

[populations],[population(_,_)].[surround],[next_to(_,_)].

[surrounding],[next_to(_,_)]. [whats],[city(_)].

[not],[\+_]. [elevation],[highest(_,_)].

[lowest],[smallest(_,_)]. [usa],[city(_)].

[total],[sum(_,_,_)]. [point],[highest(_,_)].

[has],[loc(_,_)]. [city],[city(_)].

[highest],[high_point(_,_)]. [in],[loc(_,_)].

[capital],[capital(_,_)]. [river],[river(_)].

[live],[population(_,_)]. [density],[density(_,_)].

[many],[count(_,_,_)]. [borders],[next_to(_,_)].

[bordering],[next_to(_,_)]. [greatest],[largest(_,_)].

[capital],[capital(_)]. [country],[highest(_,_)].

[cross],[traverse(_,_)]. [big],[area(_,_)].

[higher],[higher(_,_)]. [citizens],[population(_,_)].

[has],[largest(_,_)]. [elevation],[elevation(_,_)].

[of],[loc(_,_)]. [most],[(population(_,A),largest(A,_))].
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Siskind's system on the same training input learned the following lexicon. Notice that his

system explicitly lists empty meanings for words.

[how], [count(_,_,_) ]. [how], [].

[how], [state]. [long], [len(_,_)].

[river], [state]. [river], [].

[lowest], [(smallest(_,_), state(_) )]. [lowest], [low_point(_,_)].

[point], [high_point(_,_)]. [point], [].

[point], [(highest(_,_), high_point(_,_))]. [point], [country].

[in], []. [in], [state].

[in], [loc(_,_)]. [in], [city].

[in], []. [in], [( capital(_))].

[population], [population(_,_)]. [population], [].

[of], []. [of], [population(_,_)].

[combined], []. [all], [].

[all], [( state(_))]. [50], [].

[states], [state(_)]. [states], [].

[spot], [state].

[biggest], [(largest(_,_), river(_), loc(_,_))].

[biggest], [(largest(_,_), city(_), loc(_,_))].

[biggest], [(largest(_,_))].

[city], [( state(_), capital(_,_))].

[city], []. [city], [city(_)].

[many], []. [many], [count(_,_,_)].

[citizens], [population(_,_)]. [live], [].

[high], [(elevation(_,_), high_point(_,_))]. [high], [].

[highest], [high_point(_,_)]. [highest], [].

[highest], [capital(_,_)]. [run], [].

[through], [( state)]. [state], [( state(_))].

[state], [(state(_), loc(_,_))]. [state], [].

[largest], [(largest(_,_), state(_))]. [largest], [largest(_,_)].

[largest], [(largest(_,_), city(_), loc(_,_))].

[largest], [(largest(_,_), river(_), loc(_,_))].

[area], [area(_,_)].

[people], [(population(_,_), capital(_,_) )]. [people], [population(_,_)].

[capital], []. [capital], [capital(_,_)].

[rivers], [(count(_,_,_), river(_), loc(_,_))].

[rivers], [(river(_), loc(_,_))].

[rivers], [river(_)]. [border], [next_to(_,_)].

[located], [(state(_), loc(_,_))]. [points], [].

[surrounding], []. [has], [state(_)].

[has], [(state(_), loc(_,_), city(_))].

[has], [(largest(_,_), high_point(_,_), elevation(_,_))].

[greatest], [largest(_,_)].

[density], [(largest(_,_), density(_,_))].

[density], [density(_,_)]. [most], [].

[populated], [(largest(_,_), population(_,_) )].

[bordering], [next_to(_,_)].

[major], [(major(_), loc(_,_))].

[major], [major(_)].

[smallest], [(smallest(_,_), state(_))].

[smallest], [(smallest(_,_), city(_), loc(_,_))].

[smallest], [smallest(_,_)].

[longest], [(longest(_,_), river(_), loc(_,_))].
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[longest], [(longest(_,_), river(_))].

[cities], [(city(_), loc(_,_))]. [go], [state(_)].

[usa], [].

[contains], [(state(_), loc(_,_), high_point(_,_))].

[shortest], [(shortest(_,_), river(_), loc(_,_))].

[shortest], [(shortest(_,_), river(_) )].

[borders], [(state(_), next_to(_,_))].

[borders], [(most(_,_,_), next_to(_,_))].

[peak], []. [country], [].

[have], [state]. [have], [].

[named], []. [us], [].

[us], [capital(_)]. [not], [\+_].

[whats], []. [flow], [].

[length], [len(_,_)]. [total], [sum(_,_,_)].

[elevation], [(highest(_,_))]. [elevation], [state].

[higher], [(state(_), higher(_,_))]. [meters], [state].

[runs], []. [surround], [(next_to(_,_))].

[united], [].

[cross], [(count(_,_,_), traverse(_,_))].

[big], [area(_,_)]. [mountain], [high_point(_,_)].

[large], [size(_,_)].

[large], [(size(_,_), city(_))].

[populations], [].

[populous], [(largest(_,_), population(_,_))].

B.2 Spanish

[estado],[state(_)]. [estados],[state(_)].

[grande],[largest(_,_)]. [alto],[high_point(_,_)].

[bordean],[next_to(_,_)]. [rios],[river(_)].

[poblacion],[population(_,_)]. [por],[traverse(_,_)].

[ciudades],[city(_)]. [capital],[capital(_,_)].

[bajo],[low_point(_,_)]. [viven],[population(_,_)].

[area],[area(_,_)]. [largo],[len(_,_)].

[densidad],[density(_,_)]. [pequeno],[smallest(_,_)].

[cuantos],[count(_,_,_)]. [elevacion],[high_point(_,_)].

[bordea],[next_to(_,_)]. [nombre],[loc(_,_)].

[bordeando],[next_to(_,_)]. [grande],[size(_,_)].

[combinada],[sum(_,_,_)]. [capital],[capital(_)].

[estado],[loc(_,_)]. [contiene],[loc(_,_)].

[cuadrados],[area(_,_)]. [pais],[highest(_,_)].

[rodean],[next_to(_,_)]. [poblaciones],[population(_,_)].

[tamano],[area(_,_)]. [total],[sum(_,_,_)].

[se],[loc(_,_)]. [baja],[smallest(_,_)].

[montana],[high_point(_,_)]. [alta],[largest(_,_)].

[no],[\+_]. [todos],[loc(_,_)].

[alto],[elevation(_,_)]. [alta],[highest(_,_)].

[cuantas],[count(_,_,_)]. [us],[city(_)].

[pequena],[smallest(_,_)]. [us],[river(_)].

[largo],[longest(_,_)]. [corto],[shortest(_,_)].

[rio],[river(_)]. [usa],[city(_)].

[puntos],[high_point(_,_)]. [altos],[next_to(_,_)].

[puntos],[higher(_,_)]. [ciudadanos],[population(_,_)].
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[estados],[highest(_,_)]. [cual],[loc(_,_)].

[ciudad],[city(_)]. [en],[loc(_,_)].

[mayores],[major(_)]. [cruzan],[traverse(_,_)].

[cual],[most(_,_,_)]. [punto],[highest(_,_)].

[personas],[population(_,_)]. [mas],[largest(_,_)].

[poblado],[population(_,_)]. [tiene],[loc(_,_)].

[tiene],[elevation(_,_)]. [de],[loc(_,_)].

B.3 Turkish

[yuksek],[high_point(_,_)]. [ulkedeki],[const(_,countryid(usa))].

[hangi],[state(_)]. [siniri],[next_to(_,_)].

[sehir],[city(_)]. [nufusu],[population(_,_)].

[nehir],[river(_)]. [a],[state(_)].

[buyuk],[largest(_,_)]. [gecer],[traverse(_,_)].

[daki],[loc(_,_)]. [baskenti],[capital(_,_)].

[alcak],[low_point(_,_)]. [nokta],[const(_,countryid(usa))].

[nehirler],[river(_)]. [yasamaktadir],[population(_,_)].

[baslica],[major(_)]. [uzunlugu],[len(_,_)].

[tane],[count(_,_,_)]. [kucuk],[smallest(_,_)].

[sehirler],[city(_)]. [yuzolcumu],[area(_,_)].

[genis],[largest(_,_)]. [vardir],[loc(_,_)].

[uzun],[longest(_,_)]. [eyaletin],[state(_)].

[eyalet,nedir],[state(_)]. [kisa],[shortest(_,_)].

[sehri],[city(_)]. [eyalettedir],[loc(_,_)].

[komsu],[next_to(_,_)]. [yogunlugu],[density(_,_)].

[cok],[most(_,_,_)]. [yuksektir],[elevation(_,_)].

[eyaletinin],[state(_)]. [alana],[area(_,_)].

[yi],[next_to(_,_)]. [nehirlerin],[river(_)].

[50],[sum(_,_,_)]. [gecmektedir],[traverse(_,_)].

[nufusa],[population(_,_)]. [nun,kac],[river(_)].

[nehri,nedir],[river(_)]. [sahiptir],[highest(_,_)].

[deki],[loc(_,_)]. [sehirlerin],[city(_)].

[akar],[traverse(_,_)]. [baskentinde],[capital(_,_)].

[kilometrekaredir],[area(_,_)]. [baskent],[capital(_)].

[alan],[area(_,_)]. [uzundur],[len(_,_)].

[sahiptirler],[higher(_,_)]. [baskentinin],[capital(_,_)].

[eyaletindeki],[loc(_,_)]. [kucuktur],[smallest(_,_)].

[uzunluktadir],[len(_,_)]. [fazla],[largest(_,_)].

[bulunan],[state(_)]. [alani],[area(_,_)].

[taki],[loc(_,_)]. [yusek],[high_point(_,_)].

[aki],[loc(_,_)]. [iceren],[highest(_,_)].

[nehirin],[river(_)]. [vatandas],[population(_,_)].

[genistir],[size(_,_)]. [eyaletlerdeki],[highest(_,_)].

[baskentidir],[capital(_,_)]. [yogunluguna],[density(_,_)].

[genisliktedir],[size(_,_)]. [yuksek],[largest(_,_)].

[eyaletin,en],[loc(_,_)]. [nufus],[population(_,_)].

[bakimindan],[capital(_)]. [sahiptir],[loc(_,_)].

[sehre],[city(_)]. [nehre],[river(_)].

[sahiptir],[largest(_,_)]. [insana],[population(_,_)].

[eyaletten],[state(_)]. [acisindan],[loc(_,_)].

[buyuktur],[area(_,_)]. [buyuktur],[largest(_,_)].

[nehri,kac],[count(_,_,_)]. [eyalete],[state(_)].
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[yukseltiye],[elevation(_,_)]. [toplam],[sum(_,_,_)].

[eyaletlerin],[state(_)]. [icinden],[traverse(_,_)].

[nufuslari],[population(_,_)]. [eyaletlerden],[traverse(_,_)].

[gecen],[state(_)]. [ya],[state(_)].

[nin],[loc(_,_)]. [hangi],[traverse(_,_)].

[gecmez],[\+_]. [en],[largest(_,_)].

[kalabalik],[population(_,_)].

[az],[(smallest(A,_),population(_,A))].

B.4 Japanese

[shuu],[state(_)]. [takai],[high_point(_,_)].

[gasshoukoku],[const(_,countryid(usa))]. [mottomo,ookii],[largest(_,_)].

[rinsetsu],[next_to(_,_)]. [toshi,wa],[city(_)].

[jinkou,wa],[population(_,_)]. [nagarete],[traverse(_,_)].

[kawa,wa],[river(_)].

[yooku],[const(_,stateid('new york'))]. [chiisai],[smallest(_,_)].

[nagasa],[len(_,_)]. [hikui],[low_point(_,_)].

[nannin],[population(_,_)]. [chiiki],[area(_,_)].

[arimasu,ka],[loc(_,_)]. [shuto],[capital(_,_)].

[ikutsu],[count(_,_,_)]. [chuto],[capital(_,_)].

[kawa,ga],[river(_)]. [nagai],[longest(_,_)].

[mitsudo],[density(_,_)]. [desu],[loc(_,_)].

[jinkou,ga],[population(_,_)]. [toshi],[city(_)].

[mijikai],[shortest(_,_)]. [ookina],[major(_)].

[ooku],[most(_,_,_)]. [nagareru],[traverse(_,_)].

[ookisa],[size(_,_)]. [takasa],[elevation(_,_)].

[shuto,wa],[capital(_)]. [jinkou,de],[population(_,_)].

[kawa,wo],[river(_)]. [agete],[loc(_,_)].

[ga,arimasu],[highest(_,_)]. [okisa],[area(_,_)].

[mawari],[next_to(_,_)]. [motto],[higher(_,_)].

[arimsua],[highest(_,_)]. [heihou],[area(_,_)].

[gojuu],[sum(_,_,_)]. [nagai],[largest(_,_)].

[chiten,ga],[highest(_,_)]. [suru,shuu],[highest(_,_)].

[amerika],[river(_)]. [wa,mottomo],[largest(_,_)].

[kaibatsu,ga],[elevation(_,_)]. [wa],[city(_)].

[daitoshi],[major(_)]. [jinkou],[population(_,_)].

[ooi],[largest(_,_)]. [hito],[population(_,_)].

[hotondo],[largest(_,_)]. [donna],[state(_)].

[wo],[traverse(_,_)]. [shimasu],[major(_)].

[suru],[loc(_,_)]. [kawa],[river(_)].

[nan],[size(_,_)]. [no],[loc(_,_)].
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