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Abstract

This paper defines a new machine learning problem to which standard machine
learning algorithms cannot easily be applied. The problem occurs in the domain of
lexical acquisition. The ambiguous and synonymous nature of words causes the diffi-
culty of using standard induction techniques to learn a lexicon. Additionally, negative
examples are typically unavailable or difficult to construct in this domain. One ap-
proach to solve the lexical acquisition problem is presented, along with preliminary
experimental results on an artificial corpus. Future work includes extending the algo-
rithm and performing tests on a more realistic corpus.



1 Introduction

Most work in concept learning assumes a single concept is to be learned. Even when multiple
concepts can be handled, it is usually assumed that the concepts do not overlap. This
assumption is false in some domains, such as lexicons for natural language processing and
speech recognition, where two words can have the same representation, or two different
representations can be associated with one word. Traditional machine learning methods
do not account for these phenomena. The approach presented in this paper is a first step
towards adequately learning multiple, overlapping concepts.

In the lexical acquisition task, the concepts (words) and their definitions are extracted
from a unique type of example. Examples are not in the traditional form of positive and
negative examples of each concept. Instead, training examples are pairs of sentences and
their description(s) in the target representation language. The target representation language
might be a database query or case-role representation. Concept definitions must be learned
for some of the words in the sentences. The task is to choose which word(s) in the sentences
correspond to which part(s) of the representations. The lexicon thus learned can then be
used to assist in parsing sentences into their correct representation.

The remainder of the paper is organized as follows. The next section gives some back-
ground on the lexical acquisition problem, followed in the next section by a formal definition
of the problem. Next, the algorithm description is presented. This is followed by experimen-
tal results and future work. After a brief discussion of related work, the paper concludes.

2 Background

The approach described in this paper was developed in the context of learning lexicons for
semantic parsing. The definition of lexicon as it is used here is a mapping from words to
representations of their semantic meanings. The particular representation is determined by
the domain at hand and the representation of entire sentences. The initial motivation for
learning lexicons was so they could be used to bootstrap a parser acquisition system, CHILL
(Zelle & Mooney, 1993, 1994; Zelle, 1995); they could then be used by the parser to map
novel sentences into representations of their meanings.

A major assumption of our research has been the assumption of compositionality. This as-
sumption states that the meaning representation of a sentence is composed from the meaning
representations of the individual words and phrases in that sentence, in addition, perhaps,
to some “connecting” information specific to the representation at hand. Conversely, each
portion of the sentence representation is generated by the meaning of only one word in the
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Figure 1: The Compositionality Assumption

sentence. Thus, during lexical acquisition, word meanings are derived from the components
of the representations of sentences in which each word appears.

The compositional assumption allows the same learning method to be used for many
different representation formalisms. One only needs to specify for each new representation
the manner in which individual word meanings are built up (composed together) to form
the meaning of sentences. A useful analogy is Lego blocks. First, for each representation
formalism, there is a fixed set of “connector” Lego blocks, which hold together the structure
of a sentence’s meaning representation. Next, each word in the language may have several
possible meanings, corresponding to different Lego blocks. For each sentence, one of these
Lego blocks is chosen for each word, along with some of the “connector” Lego blocks; together
these construct a meaning for the sentence. Figure 1 illustrates how the meanings of the
words in a sentence fit together to form the meaning of the sentence.



3 The Lexical Acquisition Problem

The definition of the lexical acquisition problem as we view it is as follows:
Given:

o [ ={(s1,72),(82,72),...,(Sn,7s)}, aset of (sentence, representation) pairs, where each
sentence contains an ordered list of words, and R = {ry,ry,...,r,} is a set of strings
of simple or structured symbols.

o P, the set of all components of the elements of R.

o C C 27 x R, a constructor relation from elements of the power set of P to elements of

R.
Find:

M, a set of (word, meaning) pairs, where the words and their meanings are extracted
from the sentences and their representations, respectively, such that the total number of
(word, meaning) pairs is minimized. For each pair (s;,r;) € I, where s; = (w;,, wiy, ..., w;, ),
it must be the case that if p; is chosen from M such that (w;;,p;) € M for 1 < j < m, then
{p1sp2y- s Pmt,mi) € C. O

Less formally, a learner is presented with a set of sentences paired with their meanings,
and a procedure for breaking down sentence meanings into their components and building
up sentence meanings given their components. The goal is to find a lexicon which will
simplify parsing. We hypothesize that minimizing the number of (word, meaning) pairs in
the learned lexicon will achieve this objective. The elements of M must also satisfy the
constraint that the meaning representation of a sentence can be built up from the meanings
of the words in the sentence, using the constructor relation, C'.

To give a simple example of the lexical learning problem with a Conceptual Dependency

(CD) representation (Schank, 1975), let I be:

{ ([the,man,ate], [ingest,agt:[person,sex:male,age:adult]]),
([the,woman,ate], [ingest,agl:[person,sex:female,age:adult]]),
([the,sheep,ate], [ingest,agt:[animal type:sheep]])}.

One M which satisfies the above criteria is

{ (ate, [ingest]), (man, [person,sex:male,age:adull]),
(woman, [person,sex:female,age:adull]),

(sheep, [animal, type:sheep]), (the, []) }.



This is better than an alternative such as

{ (ate, [ingest]), (the, [person,age:adult]), (the, []),
(man, [male]), (woman, [female]), (sheep, [animal type:sheep]) }.

The first alternative has five (word, meaning) pairs and the second has six, so the first is
preferred. In this example, the symbol agt is ignored, since it is one of the “connectors” in
the representation formalism. Another possibility is to pair ate with [ingest,agt:X], instead
of ignoring this information.

For a first-order logical representation, an example of I might be

{ ([the,man,ate], {ingest(manl1,X), person(mani), male(manl), adull(mani)}},
([the,woman,ate], {ingest(womanl1,X), person(womant), female(womani),

adult(womani)}) }
In this case, an appropriate choice for M is

{ (ate, {ingest(X,Y)}), (the, {}), (man, {person(X), male(X), adult(X)}),
(woman, {person(X), female(X), adult(X)}) }.

In a representation in which each word in the sentence is mapped in the same order as,
and one-to-one onto, the symbols in the representation, the above problem would be trivial.
For example, an element of I could be the pair ([the,man,ate],/the,man,ate]). The problem
takes on greater complexity as soon as the symbol order is permuted, or if some words
in the sentence map to no symbol or to multiple symbols in the representation. Further
complexity is introduced when a group of words in a sentence can map to one symbol. For
example, a phrase can have its own atomic meaning, such as “kick the bucket,” meaning
to die. Finally, some representations can have complex representations in which a word’s
meaning is embedded within a (larger) structure. An example of the last type is one in
which [person,sex:male,age:adull], the meaning for man above, is embedded in the second
element of the larger list [ingest,agt:[person,sex:male,age:adult]]. This is in contrast to a
representation in which each word meaning corresponds to one or more elements in a simple
list representing the meaning of a sentence, as in the first-order logical representation above.

Part of the input to the problem is the procedure, C', for building up and breaking down
sentence meanings. The semantic representation currently used is a tree-based representa-
tion, derived from the CD representational theory and using case-role structures (Fillmore,
1968). For this representation, the method for breaking down sentence meanings is to enu-
merate all connected subgraphs of the sentence-representation tree. Because of the compo-
sitional assumption, these subgraphs are possible meanings for the individual words in the



sentence. The number of these is exponential in the size of the representation tree, so some
method is needed to eliminate many of the possibilities. This is done by initially insisting
that a subgraph can only be one of the hypothesized meanings for a word if it appears in at
least two representations of sentences in which the word appears. This result of finding com-
mon subgraphs is called a Tree Least General Generalization (TLGG), due to its similarity
to the Least General Generalizations of (Plotkin, 1970).

4 Algorithm Description

Standard machine learning methods do not directly apply to this problem for two main
reasons, synonymy (multiple words mapping to the same meaning) and polysemy (one word
mapping to multiple meanings). Current systems which learn multiple concepts commonly
use examples for other concepts as negative examples of the concept currently being learned.
The implicit assumption is that concepts are disjoint, an unwarranted assumption in the
lexical domain.

One attempt to apply standard machine learning techniques to the lexical acquisition
problem might proceed as follows. First, it is noticed that only positive examples are avail-
able. One might think of using most specific conjunctive learning, or finding the intersection
of all the representations for each word, as proposed by Anderson (1977). However, because
of polysemy, the meaning for each word is potentially disjunctive, and this intersection may
be empty.

Another attempt might involve analyzing the usage of different words to determine their
respective definitions. For example, a list of hypothesized meanings for each word could be
formed by enumerating the representations of all sentences in which the word appears, along
with all components of these representations. A standard induction algorithm could then
attempt to use this list as a source of training examples for each word. However, any attempt
to use the list of one word as negative examples for another would be flawed. The learner
could not know in advance which words are possibly synonymous, and thus which word lists
to use as negative examples of other word meanings. Also, many representation components
would be present in the lists of more than one word. This is a source of conflicting evidence
for a learner, even without the presence of synonymy.

The current approach eliminates these problems by allowing the definitions of multiple
words to overlap and by allowing multiple definitions to be learned for one word. Because of
the compositionality assumption, constraints are imposed on the learned word meanings, so
that the final lexicon is not overly general. Otherwise, one could hypothesize a lexicon such
that each word maps to the entire representation of each sentence in which it appears. Due



to compositionality, the learned meaning of one word in a sentence constrains the possible
meanings of the other words.

Our algorithm uses a combination of TLGGs and greedy covering to solve the lexical
acquisition problem. The choices to make at each iteration are which concept (word) to learn
next and what a likely definition (meaning) for the word could be. TLGGs between pairs of
sentence representations are used to help narrow down the number of hypothesized meanings
for a word. The maximum number of pairings per word is a parameter provided by the user.
This effectively builds generalizations of sentence representations, in a manner similar to
GOLEM (Muggleton & Feng, 1992). Each choice of a (word, meaning) pair eliminates some
possible meanings for other words in I, by removing elements from their TLGG list.

A sample corpus that could be used as input to the learning problem is as follows:

1. The boy hit the bat.
[propel,agt:[person,sex:male,age:child],pat:[obj,type:baseball-bat]]
2. The boy hit the bat.
[propel,agt:[person,sex:male,age:child],pat:[animal type:flying-bat]]
3. The hammer hit the pasta.
[propel,inst:[obj],type:hammer],pat:[food,type:pastal]
4. The hammer moved.
[ptrans,pat:[obj,type:hammer]]
5. The boy ate the pasta with the cheese.
[ingest,agt:[person,sex:male,age:child],pat:[food,type:pasta,accomp:[food,type:cheese]]]
6. The boy ate the pasta with the fork.
[ingest,agt:[person,sex:male,age:child],pat:[food,type:pastal,inst:[inst, type:fork]]
7. The man ate the pasta with the cheese.
[ingest,agt:[person,sex:male,age:adult],pat:[food,type:pasta,accomp:[food,type:cheesel]]|]
8. The man ate the pasta with the fork.
[ingest,agt:[person,sex:male,age:adult],pat:[food,type:pastal,inst:[inst,type:fork]]
9. The bat ate.
[ingest,agt:[animal type:flying-bat]]
10. The bat hit the pasta.
[propel,inst:[ob],type:baseball-bat],pat:[food,type:pastal]
11. The bat hit the pasta.
[propel,agt:[animal type:flying-bat],pat:[food,type:pastal]

Our system utilizes a simple, greedy algorithm, illustrated in Figure 2. First, a table T
is built from the training input. Each word, w, in S is entered into T, along with pointers



Build a table, 7', from the input, consisting of each word, w in 5, its TLGGs,
and pointers, wp, to the representations of sentences in which it appears.
Loop doing
Add to the output and remove from T the (word, meaning) pair which covers the
highest percentage of sentences in which word appears;
break ties within a word by choosing the largest meaning;
break ties between words by choosing the least ambiguous word so far.
Remove from wordp entries to representations in which meaning appears.
Mark meaning in these representations as being covered by word.
Check and rederive if needed the TLGGs for words that appeared in
sentences marked in this iteration.
Until no entries have potential meanings associated with them.

Figure 2: Algorithm Overview

(wp) to the representations of the sentences in [ in which it appears (wg). Next, for each
word, TLGGs of a random sample of pairs from wg are derived and entered into 7.

Then, the main loop is entered and greedy selection of the best word-TLGG (meaning)
pair is performed. A TLGG is a good candidate for a word’s meaning if it is part of the
representation of a large percentage of sentences in which the word appears. The best word-
TLGG pair in T, denoted (w, ), is the one with the highest percentage of this overlap. In
some cases, multiple pairs have the same percentage overlap. First, if two TLGGs for one
word have the same coverage, the one containing the most nodes is preferred. Second, if two
different words have pairs with equal coverage, words which have fewer meanings up to this
point are preferred.

Given the sample corpus above, a portion of 7' at this stage of the algorithm follows,
with percentages added and TLGGs given in their preferred order.

W TLGGs Wp

boy [person,sex:male,age:child] (100%), [male] (100%), [child] (100%), [1,2,5,6]
[ingest,agt:[person,sex:male,age:child],pat:[food,type:pastal]] (50%),
[propel,agt:[person,sex:male,age:child]] (50%)
[food,type:pasta] (50%), [pasta] (50%), [food] (50%),

pasta  [food,type:pasta] (100%), [pasta] (100%), [food] (100%), [3,5,6,7,8,10,11]
[ingest,agt:[person,sex:male|,pat:[food,type:pastal] (57.1%),. ..




ate [ingest] (100%), [5,6,7,8,9]
[ingest,agt:[person,sex:male],pat:[food,type:pastal] (80%),
[food,type:pasta] (80%), [person,sex:male| (80%), [pasta] (80%),. ..

cheese [ingest,agt:[person,sex:male], [5,7]

pat:[food,type:pasta,accomp[food,type:cheesel]] (100%),

[food,type:pasta,accomp:[food,type:cheese]] (100%), [person,sex:male] (100%),
[food,type:cheese] (100%), [male] (100%), [pasta] (100%), [cheese] (100%)

bat [propel] (80%), [animal,type:flying-bat] (60%), [flying-bat] (60%), [1,2,9,10,11]
[propel,agt:[person,sex:male,age:child]] (40%), [person,sex:male,age:child] (40%),
[propel,pat:[food,type:pastal]] (40%), [ob],type:baseball-bat] (40%), [male] (40%),. ..

The meanings [person,sex:male,age:child], [child], and [male] all have 100% coverage for boy,
since they appear in every sentence in which boy appears. [person,sex:male,age:child] is
preferred over the others since it contains more nodes. In the first iteration, many of the
above words (and several others, not included in the partial table shown) have a TLGG
that covers 100% of the sentence representations for that word. Given more examples there
would be fewer such cases. To preserve clarity in the remainder of the example, let us choose
(boy,/person,sex:male,age:child]) as the best (w,t) pair for the first iteration.

In the second step of each iteration, some sentence representations are marked to reflect
the meaning just learned. For each element r in wg, the portion of r that matches ¢, if any,
is marked off as being covered. The meaning, ¢, may not occur in some elements of wg since
w may be a polysemous word.

The representations for sentences one, two, five, and six get marked as follows, where the
portion in typeface is the portion marked off as being learned:

1. [propel,agt: [person,sex:male:age:child],pat:[obj,type:baseball-bat]]

2. [propel,agt:[person,sex:male:age:child],pat:[animal,type:flying-bat]]

5. [ingest,agt: [person,sex:male:age:child], pat:[food,type:pasta,
accomp:[food,type:cheesel]]|]

[ingest,agt: [person,sex:male:age:child],pat:[food,type:pastal,inst:[inst,type:fork]]
After the sentence representations have been marked, w’s entry is modified. Once the

&

meaning for w is chosen for a sentence in which it appears, w’s meaning for this sentence has
been covered, and the representation no longer has to be in wp. This is due to the assumption
that the meaning of each word in a sentence appears at most once in its representation. Thus,
if ¢ occurs n times in one of these representations, the pointer is removed n times. If wp
becomes empty after this step, w is removed from T, since all of its meanings have been
learned.

In our example, boyp becomes empty, since [person,sex:male,age:child] appears in every



sentence pointed to. Therefore, boy is removed from the table.

Finally, for each word € T, if word appears in one of the sentences whose representation
was marked in the second step, the algorithm checks that the TLGG list for word is still
valid with respect to wordg and removed if it is not. A TLGG is valid if it is in an unmarked
part of some representation in wordg. Those TLGGs remaining are reordered if needed.
This step is taken because of the assumption that each part of a sentence representation is
due to the meaning only one word or group of words in the sentence.

Several words occur in sentences whose representations were marked above. The new
entries for ate, bat, cheese, and pasta after removing invalid TLLGGs and reordering those
remaining are:

W TLGGs
ate [ingest] (100%), [ingest,pat:[food,type:pasta]] (80%),
food,type:pasta] (80%), [pasta] (80%),. ..

propel,pat:[food,type:pastal] (40%), [obj,type:baseball-bat] (40%),
food,type:pasta] (40%), [pasta] (40%), [baseball-bat] (40%)

[
pasta  [food,type:pasta] (100%), [food] (100%), [pasta] (100%),
[ingest,pat:[food,type:pastal] (57.1%),
[ingest,pat:[food,type:pasta,accomp:[food,type:cheese]]] (28.6%),. . .
cheese [food,type:pasta,accomp:[food,type:cheese]] (100%), [food,type:cheese] (100%),. ..
bat [propel] (80%), [animal,type:flying-bat] (60%),[flying-bat] (60%),
[
[

If the removal of invalid TLGGs leaves an empty TLGG list, more TLGGs are derived
from the unmarked portion of the representations still pointed to by wordp. If all portions
of all elements of wordr contain fully marked representations, word is removed from T.
[teration continues until all S € [ have all portions of their representations marked, meaning
they can be assembled from learned word meanings.

The remaining iterations of the algorithm for the running example will not be illustrated
here, but the final learned lexicon for this example, given good choices in tie-breaking situ-
ations, would be:

(boy, [person,sex:male,age:child]), (ate, [ingest]), (pasta, [food,type:pasta]),
(man, [person,sex:male,age:adult]), (hammer, [obj,type:hammer]), (hit, [propel)),
(moved, [ptrans]), (fork, [inst,type:fork]), (cheese, [food, type:cheese)),

(bat, [animal,type:flying-bat)), (bat, [obj,type:baseball-bat]).
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5 Experimental Results

Our system has been tested on a corpus based on that of McClelland and Kawamoto (1986).
This corpus consists of 1475 sentence/case-structure pairs, artificially produced from a set
of 19 sentence templates. The case-structure portion of these pairs was modified to produce
deeper semantic representations. Examples of sentences and their representation are given in
the small corpus of the previous section. The larger corpus was also translated into Japanese,
pairing the Japanese sentences with these same representations.

A different random set of training examples was chosen for each of three trials. To
measure the success of the system, the percentage of correct word meanings learned was
calculated. There are many ways to calculate this metric, and the one used here was based
on a quantification of the similarity between the learned representation(s) for a word and
the correct one(s). For example, if the correct meaning is [person,sex:female,age:adult], the
learned meaning [person,sex:female] is closer to the correct meaning than [person/. The
accuracy results below are based on the percent overlap between the learned lexicon and the
correct one.

For the English corpus, the average accuracy was 91.7% at 950 examples. An attempt
was made to improve this result by artificially introducing more search into the algorithm.
Three tests were run on each training set, causing random permutations in the choices made
in tie-breaking situations. The test which returned the smallest lexicon was the one chosen
as the output for that training set. The accuracy at 650 examples for these trials was 97.5%,
an obvious improvement.

The accuracy for the Japanese corpus was 92.8% at 650 examples. Next, we appended the
Japanese and English versions of the corpus, and ran similar experiments on this combined
corpus. By combining the two corpora, bilingual learning is simulated. After 1900 examples,
the average accuracy was 84%.

In order to determine whether the lexicons learned above were useful, we next used them
as background knowledge for the parser acquisition system, CHILL. The generalization ac-
curacy of the resulting parsers was compared to parsers learned using the correct lexicon
as background knowledge. Figure 3 shows the resulting accuracies with up to 650 train-
ing examples. Again, accuracies were computed by measuring the overlap between parses
generated by the learned parser and the correct parses. The upper curve shows the results
when given the correct lexicon as background knowledge, while the other curve shows the
results when given the lexicons learned in the previous tests. The accuracy at 650 examples
is 92.1% for the former curve and 87.3% for the latter.
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6 Future Work

The experimental results to date have been encouraging, but there are several opportunities
for improvement. The algorithm could be improved, for example, by making better choices
when multiple (word, meaning) pairs have equal coverage. Another possible improvement
is to make the choice of a pair probabilistic rather than deterministic. With enough future
evidence, changes can be made and a different pair may be learned. Finally, incorporating
the ability to use background knowledge into the current technique may prove to be useful.

More tests should be performed on the current domain, as well as with alternate repre-
sentations such as database queries. For this, something analogous to TLGGs will be used
to derive the hypothesized meanings for each word. Another possibility is to attempt to
learn a translation lexicon by using sentences from one language as the concept source and
sentences from another language as the definition source.

Other domains in which an improved version of this technique might be useful include
speech, vision, Optical Character Recognition, planning, diagnosis, or any domain in which
there are multiple, overlapping concepts to be learned.

12



7 Related Work

Within lexical acquisition, the most closely related system is that described by Siskind
(1992, 1994). His system learns both the syntax and semantics of words, but assumes that
a universal grammar is available to the learner. In addition, his system cannot handle
ambiguity as well as ours. It does, however, handle noisy training data in the form of
incorrect meaning representations being paired with some of the input sentences, in addition
to referential uncertainty, which is the assumption that the learner cannot infer a unique
meaning for an utterance based on the environment in which it occurs.

& Conclusion

This paper has presented the problem of lexical acquisition, learning word meanings from
examples of sentences paired with semantic representations, as an interesting problem for
machine learning. Unfortunately, the presence of both synonymy and polysemy prevents the
application of standard inductive learning methods to this problem. However, the assump-
tion of compositionality, i.e. that sentence meanings are constructed by composing selected
meanings for each of its words, can be exploited to usefully constrain the learning process.
We have presented an algorithm for this problem based on greedy covering and demonstrated
it’s ability to acquire an accurate lexicon from an artificial natural-language corpus. The
acquired lexicon has also been shown to be useful in aiding the subsequent learning of a
natural language parser.
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