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Abstract

This paper describes a system, Wolfie (WOrd Learn-
ing From Interpreted Examples), that learns a seman-
tic lexicon from a corpus of sentences paired with rep-
resentations of their meaning. The lexicon learned
consists of words paired with representations of their
meaning, and allows for both synonymy and polysemy.
Wolfie is part of an integrated system that learns
to parse novel sentences into their meaning representa-
tions. Experimental results are presented that demon-
strate Wolfie's ability to learn useful lexicons for a
realistic domain. The lexicons learned by Wolfie are
also compared to those learned by another lexical ac-
quisition system, that of [Siskind, 1996].

Introduction

There is increasing interest in automating the process
of building natural language processing (NLP) systems
using training corpora. The semantic lexicon, or the
mapping from words to meanings, is one component
that is typically di�cult to construct and update, and
changes from one domain to the next. Constructing
a lexicon by hand is di�cult and time consuming, as
noted by [Copestake, 1995] and [Walker and Amsler,
1986]. Also, [Johnston et al., 1995] discuss the need
for systems that can learn the meanings of novel words.
Therefore, automating the acquisition of the semantic
lexicon is an important task in automating the develop-
ment of NLP systems. This paper describes a system,
Wolfie (WOrd Learning From Interpreted Examples),
that learns a semantic lexicon from input consisting of
sentences paired with representations of their meanings.

Although a few others [Siskind, 1996; Hastings and
Lytinen, 1994; Brent, 1991] have presented systems for
lexical acquisition, this work is unique in combining
several features. First, arbitrary amounts of both pol-
ysemy and synonymy can be handled. Second, inter-
action with a system, Chill [Zelle, 1995], that learns
to parse database queries directly into logical form is

demonstrated. Third, it uses a fairly simple batch,
greedy algorithm that is quite fast and accurate.
The system makes only a few fairly straightforward

assumptions about the problem, some of which will
be removed in future work. First is compositionality,
i.e., the meaning of a sentence is composed from pos-
sible meanings of words and phrases in that sentence.
Second, the sentence representations contain no noise.
Third, the meaning for each occurrence of a word in a
sentence appears only once in the sentence's represen-
tation. The second and third of these assumptions are
preliminary, and methods for removing them will be in-
vestigated in future work. In the following, we will use
phrase to refer to phrases of one or more words.
Wolfie has been tested on acquiring a semantic lex-

icon for the task of answering geographical database
queries using a corpus of queries collected from hu-
man subjects and annotated with their executable log-
ical form. In this process, it has been integrated with
Chill which learns parsers but requires a semantic
lexicon (previously built manually). Results demon-
strate that the �nal application system performs only
slightly worse at accurately answering questions when
using a learned lexicon compared to a correct hand-built
one. The system is also compared to an alternative
lexical acquisition system developed by [Siskind, 1994;
Siskind, 1996], demonstrating superior performance on
this task.

Chill and the Geoquery Domain

The output produced by Wolfie can be used to assist
a larger language acquisition system; in particular, it is
currently used as part of the input to Chill, a parser
acquisition system. Chill learns parsers from a corpus
of sentences paired with their semantic meanings, the
same type of corpus required by Wolfie. Currently,
Chill requires a lexicon as background knowledge in
order to learn to parse into deep semantic representa-
tions. By using Wolfie, one of the inputs to Chill is
automatically provided, thus easing the task of parser



acquisition.
In this paper, we will limit our discussion of Chill

to its ability to learn parsers that can map natural lan-
guage database queries about geography directly into
an executable Prolog query that answers the question
[Zelle and Mooney, 1996]. Following are two exam-
ples of sentences for this domain, the geoquery domain,
paired with their corresponding Prolog query:

What is the capital of the state with the biggest
population?

answer(C, (capital(S,C), largest(P,

(state(S), population(S,P))))).

What state is texarkana located in?
answer(S, (state(S),

eq(C,cityid(texarkana, )), loc(C,S))).

Given a corpus of sentence-representation pairs in this
format, Chill is able to learn a parser that can
parse novel sentences into the database query format.
Wolfie assists Chill by learning mappings between
words and the predicates and terms in these queries.

The Lexical Learning Problem

We now de�ne the Lexical Learning Problem solved by
Wolfie, after introducing some de�nitions and termi-
nology. Let S be fs1; s2; : : : ; sng, a set of sentences
each containing an ordered list of words. We will de-
note the list for the ith sentence, containing m words,
as (wi1 ; wi2; : : : ; wim). Let R be fr1; r2; : : : ; rng, a set
of meaning representations for the corresponding sen-
tences in S; and I be f(s1; r1); (s2; r2); : : : ; (sn; rn)g, a
set of (sentence, representation) pairs drawn from S
and R. An element of R can be fractured into all of
its subcomponents, denoted pj , and the method for do-
ing so depends upon R. [Siskind, 1992] was the �rst to
utilize this notion of fracturing within a lexical learning
procedure. For each valid set of these subcomponents,
we can build them back into a valid sentence meaning
using a relation we will call compose.
The goal of Lexical Learning is to �nd a semantic

lexicon that will simplify both parsing and the acqui-
sition of parsers. The learner is given I as input, and
either an implementation of fracture is given or it is
implicit in the learning algorithm. The goal is to �nd
a lexicon, M , of (phrase, meaning) pairs, where the
phrases and their meanings are extracted from the sen-
tences and their representations, respectively, and for
each pair (si; ri) 2 I, where si = (wi1 ; wi2; : : : ; wim),
it must be the case that we can choose a set of j
pairs from M , 1 � j � m, where each pair is of the
form ([wik; wik+1 ; : : : ; wik+q ]; pj), 1 � k � k + q � m.
The phrases in one pair of the set do not intersect the
phrases in any other, and compose(fp1; p2; : : : ; pjg; ri)

must be valid. In other words, each sentence's repre-
sentation can be composed from the possible meanings
of the (unique) phrases in the sentence. Ideally, we
would like to minimize the size and ambiguity of the
learned lexicon, since we hypothesize that this will ease
the parser acquisition task for Chill. Therefore, our
learner will also try to minimize these.
We make no assumption that each phrase has a sin-

gle meaning (i.e., homonymy is allowed), or that each
meaning is associated with one phrase only (i.e., syn-
onymy is allowed). Also, some phrases in S may have
a null meaning associated with them.
Such learning is possible under our compositional-

ity assumption. This allows the initially hypothesized
meanings of a phrase to consist of pieces of the repre-
sentations of sentences in which the phrase appears. To
look for the best meaning for a phrase, one could collect
the fractured representations of all sentences in which
the phrase appears. Then, the one with the best cover-
age for that phrase could be chosen as the meaning for
the phrase.
This method would be computationally expensive

and would not take advantage of the constraints be-
tween phrase meanings. Such constraints exist because
of our assumption that each portion of the representa-
tion is due to only one phrase in the sentence. There-
fore, once part of a sentence's representation is covered
by the meaning of one of the phrases in the sentence,
we know that no other phrases in the sentence can have
that meaning, for that sentence. This will be illustrated
more clearly in the next section.

The Wolfie Algorithm and an Example

In order to limit the search for phrase meanings, a
greedy algorithm is used. At each step, the best phrase-
meaning pair is chosen, according to a heuristic de-
scribed below, and added to the lexicon. The list of
potential meanings for a phrase is formed by fracturing
the representation of the sentences in which the phrase
appears and computing the common substructure be-
tween sampled pairs of the resulting components.
One of the key ideas of the algorithm is that each

choice of a lexical item may constrain the possible
meanings of phrases not yet learned. This can best
be illustrated by an example. Let us assume we have
the sentence-representation pairs given in the previous
column, plus the additional pair:

What is the highest point of the state with the
biggest area?

answer(P, (high-point(S,P), largest(A,

(state(S), area(S,A))))).

Let us assume for the purpose of this example that



Derive possible phrase-meaning pairs by sampling
the input sentence-representation pairs that
have phrases in common, and deriving the common
substructure in their representations.

Until all input representations can be composed
from their phrase meanings do:

Add the best phrase-meaning pair to the lexicon.
Constrain the remaining possible phrase-meaning

pairs to reect the pair just learned.
Return the lexicon of learned phrase-meaning pairs.

Figure 1: Wolfie Algorithm Overview

we strip each sentence of phrases that we know, a pri-
ori, will have a null meaning representation in all sen-
tences. In the example sentences, those phrases would
be [what], [is], and [the].
From these three sentences, then, the meaning of

[state], the only phrase common to all sentences, is
uniquely determined as state( ), which is the only
predicate the three representations have in common1.
Before determining this, the list of potential mean-
ings for [biggest] is [largest( , state( ))]. How-
ever, since state( ) is now covered by [state], it can
be eliminated from consideration as part of the mean-
ing of [biggest], and the list of potential meanings for
[biggest] becomes [largest( , )].
The Wolfie algorithm, outlined in Figure 1, has

been implemented to handle sentences paired with two
kinds of representations. First, it can handle sentences
with a case-role semantic representation, such as con-
ceptual dependency [Schank, 1975]. For example, the
sentence \The man ate the cheese" is represented by
[ingest, agent: [person, sex:male, age:adult], patient:
[food, type:cheese]].
The second representation handled is the logical

query representation used in the geoquery domain, the
one focussed on in the remainder of this paper. To
�nd the common substructure between pairs of query
representations, we use a method which is similar to
that of �nding Least General Generalizations (LGGs)
of clauses [Plotkin, 1970]. To summarize, the LGG of
two clauses is the least general clause that subsumes
both clauses. For example, given the queries from the
previous page, the common substructure is state( ).
We now describe the algorithm in more detail. The

�rst step of the algorithm derives common substruc-
ture for a random sample of one and two-word phrases
in the corpus. Future work includes the ability to han-
dle longer phrases. For example, let us suppose the
following pairs as input:

1Since Chill initializes every parse with the answer/2
predicate, it is �rst stripped from the input given to
Wolfie.

What is the capital of the state with the biggest
population?

answer(C, (capital(S,C), largest(P,

(state(S), population(S,P))))).

What is the highest point of the state with the
biggest area?

answer(P, (high-point(S,P), largest(A,

(state(S), area(S,A))))).

What state is texarkana located in?
answer(S, (state(S),

eq(C,cityid(texarkana, )), loc(C,S))).

What is the area of the united states?
answer(A, (area(C,A),

eq(C,countryid(usa)))).

What is the population of the states bordering min-
nesota?

answer(P, (population(S, P), state(S),

next to(S,M),

eq(M,stateid(minnesota)))).

The sets of initial potential meanings for some of the
words in this corpus are:
[biggest]: [largest( ,state( ))],
[state]: [state( ),largest( ,state( ))],
[area]: [area( )],
[population]: [(population( , ), state( ))],
[capital]: [(capital(S, ), largest(P, (state(S),

population(S,P))))].
After deriving these initial meanings, the greedy

search begins. At each step of the search, the best
phrase-meaning pair is added to the lexicon. We use a
heuristic to estimate the value of each phrase-meaning
pair. The heuristic has �ve weighted components as
follows:

1. Ratio of the number of times the phrase appears with
the meaning to the number of times the phrase ap-
pears, or coverage.

2. Ratio of the number of times the phrase appears with
the meaning to the number of times the meaning ap-
pears.

3. Percent of orthographic overlap between the phrase
and its meaning.

4. Percent rank of the phrase's frequency out of all
phrases in the corpus.

5. The generality of the meaning.

The intuition behind the �rst measure is that high
coverage should help lead to a small lexicon. The sec-
ond measure helps reduce the ambiguity of the learned
lexicon. The third measure is used for this corpus since
often phrases have many characters in common with



their meanings, as in area and area( ). It measures
the maximumnumber of consecutive characters in com-
mon between the phrase and the terms and predicates
in the meanings, as an average of the percent of both
the number of characters in the phrase and in the term
and predicate names. Fourth, common words are more
likely to be paired with a correct meaning, so preferring
them should lead to a better learned lexicon. The �nal
measure, generality, measures the number of terms and
predicates in the meaning. Learning a phrase mean-
ing with fewer terms should lead to a lexicon with less
ambiguity.

For purposes of this example, we will use a weight of
25 for each of the �rst four parameters, and a weight of
one for the last. Also, we will assume that closed class
words, such as determiners, and state and city names,
are known in advance and thus removed from the in-
put pairs. Tie breakers between two phrases are learn-
ing less \ambiguous" phrases �rst and learning phrases
with fewer words before phrases with more words. We
count a phrase as more ambiguous than another if there
are more meanings in the learned lexicon for it than the
other. The assumption here is that a less ambiguous
lexicon will make for a better lexicon for parsing.

The heuristic measure for the above �ve pairs is:
[[biggest], largest( ,state( ))]:
25(2=2)+25(2=2)+25((4=12+4=7)=2)+25(2=20)�1�2 =
61:8,
[[area], area( )]:
25(2=2)+25(2=2)+25((4=4+4=4)=2)+25(2=20)�1�1 =
76:5,
[[state], state( )]:
25(3=3)+25(3=4)+25((5=5+5=5)=2)+25(3=20)�1�1 =
71:5,
[[state], largest( ,state( ))]: 61:2,
[[population], (population( , ), state( ))]: 71:3,
[[capital], (capital(S, ), largest(P, (state(S),

population(S,P))))]: 62:8.
The best pair by our measure is [[area], area( )].

The next step in the algorithm is to constrain the re-
maining hypothesized meanings, if any, for the learned
phrase, so as to only consider sentences for which no
meaning has yet been learned for the phrase. In our
example, the learned pair covers all occurrences of
[area]. Next, for the remaining unlearned phrases,
their hypothesized meanings are constrained to take
into account the meaning just learned. In our exam-
ple, learning [area] would not e�ect any of the listed
meanings, but the next best pair, [[state], state( )],
would constrain the meaning for [population] to be-
come population( , ). The greedy search continues
until all representations in the input can be assembled
from learned phrase meanings.

Experimental Results

Experiments were performed measuring the usefulness
of the semantic lexicons learned by Wolfie as back-
ground knowledge for Chill. Wolfie was trained
on subsets of the geoquery corpus, the learned lexi-
cons were used as background knowledge when training
Chill on the same subsets, and the resulting parser was
evaluated on the unseen examples. In addition, the abil-
ity of the learned lexicons to cover the testing corpus
was measured as described below. The corpus consists
of 250 sentences.
We compared our system to that of [Siskind, 1996].

To use his system, the input had to be slightly modi-
�ed. The representation
largest(P,(capital(C),population(C,P))) was
changed to
((largest2 population (and (capital1 capital)

(population2 capital population)))). The num-
bers on predicate names are used to distinguish them
from the variables. Tokens were used in lieu of vari-
ables, since his system does not accept representations
with variables in predicate arguments. Closed class
words and state and city names were also removed from
the training corpora given to Siskind's system.
A random set of training examples was chosen, start-

ing with 25 examples, and incrementing by 50, for each
of 5 trials. We used a weight of one for the general-
ity measure of the heuristic function. To intelligently
choose the weights of the �rst four parameters for the
heuristic, we used 10-fold cross-validation [Kohavi and
John, 1995]. 15 di�erent prede�ned weight sets were
evaluated, in addition to four random weight sets2. To
choose the best weight set, we measured the coverage of
the learned lexicon for the held out training sentences,
and the ambiguity, A, of the lexicon. Coverage of a
sentence-representation pair was measured by the per-
cent of the terms and predicates in its representation
that could be covered by learned meanings of the words
in its sentence. Ambiguity was simply the total num-
ber of phrases in the lexicon divided by the number of
unique phrases in the lexicon. The weight set that re-
sulted in the highest value when averaging coverage and
1=A was chosen to learn a lexicon from the full set of
training examples.
Since Siskind has no measure of orthographic overlap,

and it could arguably give our system an unfair advan-
tage in this domain, we ran a second set of tests without
using this part of the heuristic. The weights of the other
heuristics were again chosen by cross-validation.
Figure 2 shows the results of using the lexicons

2We are currently working on the implementation of a
version which uses a best �rst search for the weight sets, as
in [Kohavi and John, 1995]
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Figure 2: Accuracy of chill with Learned vs. Correct
Lexicons

System 125 225
Wol�e 91.7% 97.3%
Wol�e-NoOrtho 83.2% 91.2%
Siskind 82.6% 89.5%

Table 1: Coverage Results

learned by the two systems as background knowl-
edge for Chill. The �gure shows accuracy of the
parsers learned by Chill with the learned and a hand-
generated lexicon as background knowledge. The accu-
racy is the percentage of test sentences for which the
correct answer to the query was produced. The hori-
zontal line is the accuracy for a hand-built application,
Geobase, supplied with a commercial Prolog system,
Turbo Prolog 2:0 [Borland International, 1988].

The results show that a lexicon learned by Wolfie

with cross-validation considering all heuristic measures
led to learned parsers that were slightly worse than
parsers learned from the hand-built lexicon. The results
at 25 examples were mixed, but for higher numbers of
training examples, the best accuracy is the hand-built
lexicon, followed by Wolfie with all heuristics consid-
ered, followed by Wolfie without orthographic over-
lap, followed by Siskind's system. All the systems ex-
cept Siskind's and Wolfie without orthographic over-
lap do better than Geobase after 225 training examples.

These results show that Wolfie can learn lexicons
that lead to successful learning of parsers by Chill.
Though not as valid a metric as the accuracy of learned
parsers, the ability of the learned lexicons to cover
the testing sentences is also useful to examine. This
is the same notion of coverage as was used in the

cross-validation experiment described previously. Ta-
ble 1 shows these percentages. Wol�e is Wolfie using
all heuristics in the cross-validation, Wol�e-NoOrtho is
Wolfie without orthographic overlap, and the third
line is Siskind's system. Both versions ofWolfie have
better coverage than Siskind's system.
The weight sets chosen by the cross-validation

method were not consistent across the �ve runs. How-
ever, the �rst measure, coverage, was given at least a
weight of 25 on all of the runs with 175 examples or
more.

Future Work

The results to date are promising, but we intend to
continue to improve the system and perform additional
experiments. Enhancing the search heuristic and ex-
panding the search may improve the learned lexicons.
Active learning, where the system chooses which ex-
amples can be most usefully annotated, will be exam-
ined. We also plan to investigate the use of background
knowledge, such as WordNet [Beckwith et al., 1991],
by adding to the heuristic a preference for matching
a word to terms in the representation that are seman-
tically related. Methods for handling noisy data are
also needed. Additional comparisons using the current
corpus are needed to establish statistical signi�cance.
Also, we are currently in the process of running experi-
ments on a version of the geoquery corpus relabelled in
Spanish, and constructing corpora of natural language
queries about jobs from information extracted from the
newsgroup misc.jobs.offerred.

Related Work

A method for acquiring syntactic and semantic fea-
tures of an unknown word is described by [Pedersen
and Chen, 1995]. They assume access to an initial con-
cept hierarchy, and show no experimental results. Many
systems [Fukumoto and Tsujii, 1995; Haruno, 1995;
Johnston et al., 1995] focus only on the acquisition
of verbs or nouns, rather than both. [Manning, 1993;
Brent, 1991] acquire subcategorization information for
verbs.
The most closely related work is that of Siskind. His

system handles some situations that ours cannot. For
example, it handles noise and referential uncertainty
(multiple possible meanings for a sentence). While his
system is more general in this sense, our system is spe-
cialized for applications where a single correct meaning
for each sentence can be given. His system does not cur-
rently handle multiple-word phrases. Also, his system
operates in an incremental or on-line fashion, discard-
ing each sentence as it processes it, while ours is batch.
While he argues for psychological plausibility, we do



not.

Conclusion

Acquiring a semantic lexicon from a corpus of sentences
labelled with representations of their meaning is an
important problem that has not been widely studied.
Wolfie demonstrates that a fairly simple greedy sym-
bolic learning algorithmperforms fairly well on this task
and superior to a previous lexicon acquisition system on
a corpus of geography queries.
Most experiments in corpus-based natural language

have presented results on some subtask of natural lan-
guage, and there are little if any results on whether the
learned subsystems can be successfully integrated to
build a complete system. The experiments presented
in this paper demonstrate how two learning systems,
Wolfie and Chill can be successfully integrated to
learn a complete NLP system for parsing database
queries into executable logical form given only a cor-
pus of annotated queries.
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