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Abstract

This paper describes a system,Wolfie (WOrd Learning
From Interpreted Examples), that acquires a semantic
lexicon from a corpus of sentences paired with represen-
tations of their meaning. The lexicon learned consists of
words paired with meaning representations. Wolfie is
part of an integrated system that learns to parse novel
sentences into semantic representations, such as logical
database queries. Experimental results are presented
demonstrating Wolfie's ability to learn useful lexicons
for a database interface in four di�erent natural lan-
guages. The lexicons learned by Wolfie are compared
to those acquired by a comparable system developed by
Siskind (1996).

1 Introduction & Overview

The application of learning methods to natural-language
processing (NLP) is a growing area. Using machine
learning to help automate the construction of NLP sys-
tems can eliminate much of the di�culty of building such
systems by hand. The semantic lexicon, or the mapping
from words to meanings, is one component that is typ-
ically challenging and time consuming to construct and
update by hand, as noted by Copestake et al. (1995) and
Walker and Amsler (1986). In addition, new lexicons are
needed when transferring a system to new applications
or domains. Johnston et al. (1995) also discuss the need
for systems that can learn the meanings of novel words.
This paper describes a system,Wolfie (WOrd Learn-

ing From Interpreted Examples), that learns a seman-
tic lexicon of word/meaning pairs from input consisting
of sentences paired with semantic representations. The
goal of this research is to automate lexicon construction
for an integrated NLP system that acquires semantic
parsers and lexicons. A subgoal is to learn a lexicon that
is as good or better than a manually-built one based on
performance on a chosen task.
Although a few others (Siskind, 1996; Hastings and

Lytinen, 1994; Brent, 1991) have presented systems for
semantic lexicon acquisition, this work is unique in com-
bining several features. First, interaction with a system,

Chill (Zelle, 1995), that learns to parse sentences into
their semantic representations, is demonstrated. Sec-
ond, it uses a fairly simple batch, greedy algorithm that
is quite fast and accurate. Third, it is easily extendible
to new representation formalisms. Finally, it is able to
bootstrap from an existing lexicon.
We testedWolfie on its ability to acquire a semantic

lexicon for the task of answering geographical database
queries, using a corpus of queries collected from human
subjects and annotated by an expert with their exe-
cutable logical form. To perform this test, Wolfie was
integrated with Chill, which learns parsers but requires
a semantic lexicon (previously built manually). The re-
sults demonstrate that the �nal acquired system per-
forms nearly as accurately at answering novel questions
when using a learned lexicon as compared to a hand-built
lexicon. The system is also compared to an alternative
lexicon acquisition system developed by Siskind (1996),
demonstrating superior performance on this task. Fi-
nally, we translated the corpus from English into Span-
ish, Japanese, and Turkish and ran experiments on learn-
ing database interfaces with these languages as well.
Overall, the results demonstrate a robust ability to

acquire accurate lexicons to be directly used for se-
mantic parsing. Because we have developed this inte-
grated system, the task of building a semantic pars-
ing system for a new domain is simpli�ed. One now
only needs to build one representative corpus of sen-
tence/representation pairs for the new domain. This one
corpus allows the acquisition of both a semantic lexicon
and a semantic parser that can together process that
corpus.

2 Background

The output produced by Wolfie can be used to assist
a larger language acquisition system; in particular, it is
currently used as part of the input to a parser acquisition
system called Chill (Constructive Heuristics Induction
for Language Learning). Chill uses inductive logic pro-
gramming (Muggleton, 1992; Lavra�c and D�zeroski, 1994)
to learn a deterministic shift-reduce parser written in
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Figure 1: The Integrated System

Prolog. The input to Chill is a corpus of sentences
paired with semantic representations, the same input re-
quired by Wolfie. The parser learned is capable of
mapping the sentences into their correct representations,
as well as generalizing well to novel sentences.
Chill requires a lexicon as background knowledge in

order to learn to parse into deeper semantic representa-
tions. By using Wolfie, the lexicon can be provided
automatically, easing the task of parser acquisition. Fig-
ure 1 illustrates the inputs and outputs of the complete
system. The output of Wolfie is a lexicon of (phrase,
meaning) pairs; these aspects will be discussed more
thoroughly in the following sections.
One of the components of Chill is an initial overly-

general parser, used to analyze the training data. This
initial parser is specialized by the learner to generate
only correct parses for the training examples. Given a
correct lexicon, the overly-general parser should be able
to parse all of the training examples.
In this paper, we limit our discussion of Chill to its

ability to learn parsers that map natural-language ques-
tions directly into Prolog queries that can be executed to
produce an answer (Zelle and Mooney, 1996). Following
are two sample queries for a database on U.S. Geography
paired with their corresponding Prolog query:

What is the capital of the state with the biggest
population?

answer(C, (capital(S,C), largest(P,
(state(S), population(S,P))))).

What state is Texarkana located in?
answer(S, (state(S),

eq(C,cityid(texarkana, )),
loc(C,S))).

Given a su�cient corpus of such sentence/representation
pairs,Chill is able to learn a parser that correctly parses
many novel sentences into logical queries.
Chill treats parser induction as a problem of learn-

ing rules to control the actions of the shift-reduce parser
mentioned above. During parsing, the current context is
contained in the contents of a stack and a bu�er contain-
ing the remaining input. When parsing is complete, the
stack contains the representation of the input sentence.
There are three types of operators used by the parser

to construct logical queries. One is the introduction
onto the stack of a predicate needed in the sentence
representation, due to the appearance a phrase at the
front of the input bu�er. The semantic lexicon asso-
ciates phrases and their representations for use by this
type of operator. A second type of operator uni�es vari-
ables appearing in stack items. For example, in the �rst
representation of a sample query given above, the �rst
argument of answer is uni�ed with the second argument
of capital. Finally, a stack item may be embedded
into the argument of another stack item, as is required
for the �rst sentence/representation pair given above, to
embed state( ) and population( , ) into the second
argument of largest.
In sum, we concentrate on using machine learning

methods to build a system for processing sentences in
a narrow domain, but with the goal of obtaining deep
semantic representations. This is in contrast to work in
this general area that attempts to process broader cor-
pora, but only obtains shallow representations as a result
of processing.

3 The Semantic Lexicon Acquisition
Problem

We now de�ne the learning problem at hand. Given a set
of sentences, each consisting of an ordered list of words
and annotated with a single semantic representation, we
assume that each representation can be fractured into
all of its components (Siskind, 1992). The fracturing
method depends upon the given representation and must
be explicitly provided or implicit in the algorithm that
forms hypotheses for word meanings. Given a valid set
of components, they can be constructed into a valid sen-
tence meaning using a relation we will call compose.
The goal is to �nd a semantic lexicon that will as-

sist parsing. Such a lexicon consists of (phrase, mean-
ing) pairs, where the phrases and their meanings are
extracted from the input sentences and their represen-
tations, respectively, such that each sentence's represen-
tation can be composed from a set of components each
chosen from the possible meanings of a (unique) phrase
appearing in the sentence. If such a lexicon is found, we
say that the lexicon covers the corpus. We will also talk
about the coverage of components of a representation (or



sentence/representation pair) by a lexicon entry. Ideally,
we would like to minimize the ambiguity and size of the
learned lexicon, since this should ease the parser acqui-
sition task. Note that this notion of semantic lexicon
acquisition is distinct from work on learning selectional
restrictions (Manning, 1993; Brent, 1991) and learning
clusters of semantically similar words (Rilo� and Shep-
erd, 1997).
Note that we allow phrases to have multiple mean-

ings (homonymy) and for multiple phrases to have the
same meaning (synonymy). Also, some phrases in the
sentences may have a null meaning. We make only a
few fairly straightforward assumptions about the input.
First is compositionality, i.e. the meaning of a sentence is
composed from the meanings of phrases in that sentence.
Since we allow multi-word phrases in the lexicon (e.g.
([kick the bucket], die( ))), this assumption seems
fairly unproblematic. Second, we assume each compo-
nent of the representation is due to the meaning of a
word or phrase in the sentence, not to an external source
such as noise. Third, we assume the meaning for each
word in a sentence appears only once in the sentence's
representation. The second and third assumptions are
preliminary, and we are exploring methods for relaxing
them. If any of these assumptions are violated, we do
not guarantee coverage of the training corpus; however,
the system can still be run and learn a potentially useful
lexicon.

4 The Wolfie Algorithm and an
Example

In order to limit search, a greedy algorithm is used
to learn phrase meanings. At each step, the best
phrase/meaning pair is chosen, according to a heuris-
tic described below, and added to the lexicon. The ini-
tial list of candidate meanings for a phrase is formed
by �nding the common substructure between sampled
pairs of representations of sentences in which the phrase
appears.1 In the current implementation, phrases are
limited to at most two words. This is for e�ciency
reasons only, and in the future we hope to incorporate
an e�cient method for including potentially meaningful
phrases of more than two words.
TheWolfie algorithm, outlined in Figure 2, has been

implemented to handle two kinds of semantic represen-
tations. One is a case-role meaning representation based
on conceptual dependency (Schank, 1975). For example,
the sentence \The man ate the cheese" is represented by:
[ingest, agent:[person, sex:male, age:adult],

1We restrict ourselves to a sampled pairs instead of all pairs

because this provides enough information to get good initial can-
didate meanings. Using all pairs is possible but not generally
necessary.

For each phrase (of at most two words):
1) Sample the examples in which the phrase appears
2) Find largest common subexpressions of pairs of

representations from these examples
Until the input representations are covered, or there are

no remaining candidate pairs do:
1) Add the best phrase/meaning pair to the lexicon.
2) Constrain meanings of phrases occurring in the

same sentences as the phrase just learned
Return the lexicon of learned phrase/meaning pairs.

Figure 2: Wolfie Algorithm Overview

patient:[food, type:cheese]]. Experiments in this
domain were presented in Thompson (1995).
The second representation handled is the logical query

representation illustrated earlier, and is the focus of the
current paper. To �nd the common substructure be-
tween pairs of query representations, we use a method
similar to �nding the Least General Generalization of
�rst-order clauses (Plotkin, 1970). However, instead of
using subsumption to guide generalization, we �nd the
set of largest common substructures that two representa-
tions share. For example, given the two queries from Sec-
tion 2, the (unique) common substructure is state( ).2

One of the key ideas of the algorithm is that each
phrase/meaning choice can constrain the candidate
meanings of phrases yet to be learned. This is the sec-
ond step of the loop in Figure 2. Such constraints exist
because of the assumption that each portion of the rep-
resentation is due to at most one phrase in the sentence.
Therefore, once part of a sentence's representation is cov-
ered by the meaning of one of its phrases, no other phrase
in the sentence has to be paired with that meaning (for
that sentence).
For example, assume we have the sentence/rep-

resentation pairs in Section 2, plus the additional pair:

What is the highest point of the state with the
biggest area?

answer(P, (high-point(S,P),
largest(A,(state(S),area(S,A))))).

As a simpli�cation, assume sentences are stripped of
phrases that we know a priori have a null meaning (al-
though in general this is not required). In the exam-
ple sentences, these phrases are [what], [is], [with],
and [the]. From these three examples, the mean-
ing of [state], the only phrase common to all sen-
tences, is determined to be state( ), which is the
only predicate the three representations have in com-
mon. Before determining this, the candidate meaning for

2Since Chill initializes the parse stack with the answer predi-
cate, it is �rst stripped from the input given to Wolfie.



[biggest] is [largest( , state( ))] (the largest sub-
structure shared by the representations of the two sen-
tences containing \biggest"). However, since state( )
is now covered by ([state], state( )), it can be elim-
inated from consideration as part of the meaning of
[biggest], and the candidate meaning for [biggest] be-
comes [largest( , )].
We now describe the algorithm in more detail. The

�rst step is to select a random sample of the sentences
that each one and two word phrase appears in, and de-
rive an initial set of candidate meanings for each phrase.
This is done by deriving common substructure between
pairs of representations of sentences that contain these
phrases. For example, let us suppose we have the follow-
ing pairs as input:

What is the capital of the state with the biggest
population?

answer(C, (capital(S,C),

largest(P,(state(S),population(S,P))))).

What is the highest point of the state with the
biggest area?

answer(P, (high-point(S,P),
largest(A, (state(S), area(S,A))))).

What state is Texarkana located in?
answer(S, (state(S),

eq(C,cityid(texarkana, )), loc(C,S))).

What is the area of the United States?
answer(A,(area(C,A),eq(C,countryid(usa)))).

What is the population of the states bordering
Minnesota?
answer(P, (population(S,P), state(S),

next to(S,M),eq(M,stateid(minnesota)))).

The sets of initial candidate meanings for some of the
phrases in this corpus are:
[biggest]: [largest( ,state( ))],

[state]: [state( ), largest( ,state( ))],

[area]: [area( )],

[population]: [(population( , ), state( ))],

[capital]: [(capital(S, ),
largest(P, (state(S), population(S,P))))].

Note that [state] has two candidate meanings, each gen-
erated from a di�erent pair of representations of sen-
tences in which it appears. A detail is that for phrases
that only appear in one sentence, we use the entire rep-
resentation of the sentence in which they appear as an
initial candidate meaning. An example in this corpus is
[capital]. As we will see, this type of pair typically has
a low score, so the meaning will usually get pared down
to just the correct portion of the representation, if any.
Finally, if a phrase is ambiguous, the pairwise matchings

to generate candidate items, together with the constrain-
ing of representations, would enable multiple meanings
to be learned for it.
After deriving these initial meanings, the greedy

search begins. The heuristic used to evaluate candidates
has �ve weighted components:

1. Ratio of the number of times the phrase appears
with the meaning to the number of times the phrase
appears, or P (meaningjphrase).

2. Ratio of the number of times the phrase appears
with the meaning to the number of times the mean-
ing appears, or P (phrasejmeaning).

3. Frequency of the phrase, or P (phrase).

4. Percent of orthographic overlap between the phrase
and its meaning.

5. The generality of the meaning.

The �rst measure helps reduce ambiguity (homonymy)
by preferring phrases that indicate a particular meaning
with high probability. The second measure helps reduce
synonymy by favoring pairs in which the meaning ap-
pears with few other phrases. The third measure is used
because frequent phrases are more likely to be paired
with a correct meaning since we have more information
about the representations of sentences in which they ap-
pear.
The fourth measure is useful in some domains since

sometimes phrases have many characters in common
with their meanings, as in area and area( ). It mea-
sures the maximum number of consecutive characters in
common between the phrase and the terms and predi-
cates in the meanings, as an average of the percent of
both the number of characters in the phrase and in the
term and predicate names. However, as we will demon-
strate in our experiments, the use of this portion of the
heuristic is not required to learn useful lexicons.
The �nal measure, generality, measures the number of

terms and predicates in the meaning. Preferring a mean-
ing with fewer terms helps evenly distribute the predi-
cates in a sentence's representation among the meanings
of the phrases in that sentence and thus leads to a lexi-
con that is more likely to be correct. To see this, we note
that some words are likely to co-occur with one another,
and so their joint representation (meaning) is likely to
be in the list of candidate meanings for both words. By
preferring a more general meaning, we more easily ig-
nore these incorrect joint meanings. In the candidate
set above for example, if all else were equal, the general-
ity portion of the heuristic would prefer state( ) over
largest( ,state( )) as the meaning of state.
For purposes of this example, we will use a weight of

50 for each of the �rst four parameters, and a weight of 8



for the last. The �rst four components have smaller val-
ues than the last, so they have higher weights. Results
are not overly-sensitive to the heuristic weights. Au-
tomatically setting the weights using cross-validation on
the training set (Kohavi and John, 1995) had little e�ect
on overall performance. In all of the experiments, these
same weights were used. To break ties, we choose less
\ambiguous" phrases �rst and learn short phrases before
longer ones. A phrase is considered more ambiguous if
it currently has more meanings in the partially learned
lexicon.

The heuristic measure for the above six pairs is:
[[biggest], largest( ,state( ))]: 50(2=2)+ 50(2=2)+
50(2=21) + 50((4=12+ 4=7)=2)� 8 � 2 = 111

[[area], area( )]: 50(2=2) + 50(2=2) + 50(2=21) +
50((4=4 + 4=4)=2)� 8 � 1 = 147

[[state], state( )]: 50(3=3) + 50(3=4) + 50(3=21) +
50((5=5 + 5=5)=2)� 8 � 1 = 137

[[state], largest( ,state( ))]: 110

[[population], (population( , ), state( ))]: 130

[[capital], (capital(S, ), largest(P,
(state(S), population(S,P))))]: 101

The best pair by our measure is ([area], area( )), so it
is added to the lexicon.

The next step in the algorithm is to constrain the re-
maining candidate meanings for the learned phrase, if
any, so as to only consider sentences for which no mean-
ing has yet been learned for the phrase. In our exam-
ple, the learned pair covers all occurrences of [area], so
there are no remaining meanings that need to be con-
strained. Next, for the remaining unlearned phrases,
their candidate meanings are constrained to take into
account the meaning just learned, as was discussed at
the beginning of this section. In our example, learning
[area] would not a�ect any of the meanings listed above,
but the next best pair, [[state], state( )], would con-
strain the (only) candidate meaning for [population]
to become population( , ), the candidate meaning
for [capital] to become (capital(S, ), largest(P,
population(S,P))), and the candidate meaning for
[biggest] to become largest( , ). The greedy search
continues until the lexicon covers the training corpus.

A detail of the search not yet mentioned is to check if
covered sentence/representation pairs can be parsed by
Chill's overly-general parser. If this is not the case, we
know that some phrase in the sentence has a meaning
that is not useful to Chill. Therefore, whenever a sen-
tence is covered, we check whether it can be parsed. If
not, we retract the most recently learned pair, and adjust
that phrase's candidate meanings to omit that meaning.
We call this the parsability heuristic.

5 Experimental Results

This section describes our experimental results on a
database query application. The corpus contains 250
questions about U.S. geography paired with logical rep-
resentations. This domain was chosen due to the avail-
ability of an existing hand-built natural language inter-
face, Geobase, to a simple geography database containing
about 800 facts. This interface was supplied with Turbo
Prolog 2:0 (Borland International, 1988), and was de-
signed speci�cally for this domain. The questions were
collected from uninformed undergraduates and mapped
into their logical form by an expert. Examples from the
corpus were given in the previous sections. To broaden
the test, we had the same 250 sentences translated into
Spanish, Turkish, and Japanese. The Japanese transla-
tions are in word-segmented Roman orthography. Trans-
lated questions were paired with the appropriate logical
queries from the English corpus.

To evaluate the learned lexicons, we measured their
utility as background knowledge for Chill. This is per-
formed by choosing a random set of 25 test examples
and then creating lexicons and parsers using increasingly
larger subsets of the remaining 225 examples. The test
examples are parsed using the learned parser, the result-
ing queries submitted to the database, the answers com-
pared to those generated by the correct representation,
and the percentage of correct answers recorded. By mak-
ing a comparison to the \gold standard" of retrieving a
correct answer to the original query, we avoid measures
of partial accuracy which do not give a picture of the real
usefulness of the parser. To improve the statistical sig-
ni�cance of the results, we repeated the above steps for
ten di�erent random splits of the data into training and
test sets. For all signi�cance tests we used a two-tailed,
paired t-test and a signi�cance level of p � 0:05.

We compared our system to that developed by Siskind
(1996). Siskind's system is an on-line (incremental)
learner, while ours is batch. To make a closer com-
parison between the two, we ran his in a \simulated"
batch mode, by repeatedly presenting the corpus 500
times, analogous to running 500 epochs to train a neu-
ral network. We also made comparisons to the parsers
learned by Chill when using a hand-coded lexicon as
background knowledge. This lexicon was available for
this domain because when Chill was originally devel-
oped, Wolfie had not yet been developed.

In this application, there are many terms, such as state
and city names, whose meanings are easily extracted
from the database. Therefore, all tests below were run
with such names given to the learner as an initial lexicon,
although this is not required for learning in general.
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5.1 Comparisons using English

The �rst experiment was a comparison of the two sys-
tems on the original English corpus. However, since
Siskind has no measure of orthographic overlap, and it
could arguably give our system an unfair advantage on
this data, we ran Wolfie with a weight of zero for this
component. We also did not use the parsability heuris-
tic for this test. By making these adjustments, we at-
tempted to generate the fairest head-to-head comparison
between the two systems.
Figure 3 shows learning curves for Chill when using

the lexicons learned byWolfie (CHILL+WOLFIE) and
by Siskind's system (CHILL+Siskind). The uppermost
curve (CHILL+corrlex) is Chill's performance when
given the hand-built lexicon. Finally, the horizontal line
shows the performance of the Geobase benchmark. The
results show that a lexicon learned by Wolfie led to
parsers that were almost as accurate as those generated
using a hand-built lexicon. The best accuracy is achieved
by the hand-built lexicon, followed by Wolfie followed
by Siskind's system. All the systems do as well or better
than Geobase by 225 training examples. The di�erences
between Wolfie and Siskind's system are statistically
signi�cant at 25 and 175 examples. These results show
that Wolfie can learn lexicons that lead to successful
learning of parsers, and that are somewhat better from
this perspective than those learned by a competing sys-
tem.
As noted above, these tests were run with only the

meaning of database constants provided as background
knowledge. Next, we examined the e�ect of also provid-
ing closed-class words as background knowledge. Fig-
ure 4 shows the resulting learning curves. For these
tests, we also show the advantage of adding both the or-
thographic overlap and parsability heuristics toWolfie
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Figure 4: Accuracy Given Closed Class Words

(CHILL-fullWOLFIE). Both the additional background
knowledge and the improved heuristic increase the over-
all performance a couple of percentage points. The dif-
ferences between Siskind's system and Wolfie without
parsing or overlap are statistically signi�cant at 75, 175,
and 225 examples. Finally, we noted that Siskind's sys-
tem run in batch mode on this test averaged 54.8% at 225
examples, versus non-batch mode which attained 49.6%
accuracy, giving evidence that batch mode does improve
his system.
One of the implicit hypotheses of our approach is that

coverage of the training pairs implies a good lexicon. We
can compare the coverage of Wolfie's lexicons to those
of Siskind's and verify that Wolfie's have better cov-
erage. For the �rst experiment above, Wolfie covered
100% of the 225 training examples, while Siskind cov-
ered 94.4%. For the second experiment, the coverages
were 100% and 94.5%, respectively. This may account
for some of the performance di�erence between the two
systems.
Further di�erences may be explained by the percent-

age of training examples usable by Chill, which is the
percentage parsable by its overly-general parser. For the
�rst experiment, Chill could parse 93.7% of the 225 ex-
amples when given the lexicons learned by Wolfie but
only 78% of the examples when given lexicons learned
by Siskind's system. When the lexicon learners are given
closed class words, these percentages rise to 98.1% and
84.6%, respectively. In addition, the lexicons learned
by Siskind's system were more ambiguous than those
learned by Wolfie. Wolfie's lexicons had 1.1 mean-
ings per word for the second experiment (after 225 train-
ing examples) versus 1.7 meanings per word in Siskind's
lexicons. These di�erences most likely contribute to the
di�erences seen in the generalization accuracy of Chill.
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The ability to learn multiple-word phrases is not a signif-
icant source of the advantage of Wolfie over Siskind's
system, since only 2% of the lexicon entries learned by
Wolfie on average contained two-word phrases.

5.2 Comparisons using Spanish

Next, we examined the performance of the two systems
on the Spanish version of the corpus. We again omitted
orthographic overlap and the parsability heuristic. Fig-
ure 5 shows the results. In these tests, we also gave closed
class words to the lexicon learners as background knowl-
edge, since these results were slightly better for English.
Though the performance compared to a hand-built lex-
icon is not quite as close as in English, the accuracy of
the parser using the learned lexicon is very similar.

5.3 Accuracy on Other Languages

We also had the geography query sentences translated
into Japanese and Turkish, and ran similar tests to deter-
mine how wellWolfie could learn lexicons for these lan-
guages, and how well Chill could learn to parse them.
Figure 6 shows the results. For all four of these tests,
we used the parsability heuristic, but did not give the
learner access to the closed class words of any of the
languages. We also set the weight of the orthographic
overlap heuristic to zero for all four languages, since this
gives little advantage in the foreign languages. The per-
formance di�erences among the four languages are quite
small, demonstrating that our methods are not language
dependent.

6 Related Work

Pedersen and Chen (1995) describe a method for acquir-
ing syntactic and semantic features of an unknown word.
They assume access to an initial concept hierarchy, and
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do not present any experimental results. Many systems
(Fukumoto and Tsujii, 1995; Haruno, 1995; Johnston
et al., 1995; Webster and Marcus, 1995) focus only on
acquisition of verbs or nouns, rather than all types of
words. Also, these either do not experimentally evalu-
ate their systems, or do not show the usefulness of the
learned lexicons. Manning (1993) and Brent (1991) ac-
quire subcategorization information for verbs. Finally,
several systems (Knight, 1996; Hastings and Lytinen,
1994; Russell, 1993) learn new words from context, as-
suming that a large initial lexicon and parsing system
are available.
Tishby and Gorin (Tishby and Gorin, 1994) learn asso-

ciations between words and actions (as meanings of those
words). Their system was tested on a corpus of sentences
paired with representations but they do not demonstrate
the integration of learning a semantic parser using the
learned lexicon.
The aforementioned work by Siskind is the closest.

His approach is somewhat more general in that it han-
dles noise and referential uncertainty (multiple possible
meanings for a sentence), while ours is specialized for
applications where a single meaning is available. The
experimental results in the previous section demonstrate
the advantage of our method for such an application. His
system does not currently handle multiple-word phrases.
Also, his system operates in an incremental or on-line
fashion, discarding each sentence as it processes it, while
ours is batch. While he argues for psychological plausi-
bility, we do not. In addition, his search for word mean-
ings is most analogous to a version space search, while
ours is a greedy search. Finally, and perhaps most signif-
icantly, his system does not compute statistical correla-
tions between words and their possible meanings, while
ours does.



His system proceeds in two stages, �rst learning what
symbols are part of a word's meaning, and then learning
the structure of those symbols. For example, it might
�rst learn that capital is part of the meaning of capi-
tal, then in the second stage learn that capital can have
either one or two arguments. By using common sub-
structures, we can combine these two stages in Wolfie.
This work also has ties to the work on automatic

construction of translation lexicons (Wu and Xia, 1995;
Melamed, 1995; Kumano and Hirakawa, 1994; Catizone
et al., 1993; Gale and Church, 1991). While most of
these methods also compute association scores between
pairs (in their case, word/word pairs) and use a greedy
algorithm to choose the best translation(s) for each word,
they do not take advantage of the constraints between
pairs. One exception is Melamed (1996); however, his
approach does not allow for phrases in the lexicon or for
synonymy within one text segment, while ours does.

7 Future Work

Although the current greedy search method has per-
formed quite well, a better search heuristic or alterna-
tive search strategy could result in improvements. A
more important issue is lessening the burden of build-
ing a large annotated training corpus. We are exploring
two options in this regard. One is to use active learning
(Cohn et al., 1994) in which the system chooses which
examples are most usefully annotated from a larger cor-
pus of unannotated data. This approach can dramati-
cally reduce the amount of annotated data required to
achieve a desired accuracy (Engelson and Dagan, 1996).
Second, we are currently developing a corpus of sen-

tences paired with SQL database queries. Extending
our system to handle this representation should be a
fairly simple matter. Such corpora should be easily con-
structed by recording queries submitted to existing SQL
applications along with their original English forms, or
translating existing lists of SQL queries into English
(presumably an easier direction to translate). The fact
that the same training data can be used to learn both a
semantic lexicon and a parser also helps limit the overall
burden of constructing a complete NL interface.
On a separate note, the learning algorithm may be

applicable to other domains, such as learning for trans-
lation or diagnosis. We hope to investigate these possi-
bilities in the future as well.

8 Conclusions

Acquiring a semantic lexicon from a corpus of sen-
tences labeled with representations of their meaning is
an important problem that has not been widely studied.
Wolfie demonstrates that a fairly simple greedy sym-
bolic learning algorithm performs fairly well on this task
and obtains performance superior to a previous lexicon

acquisition system on a corpus of geography queries. Our
results also demonstrate that our methods extend to a
variety of natural languages besides English.
Most experiments in corpus-based natural language

have presented results on some subtask of natural lan-
guage, and there are few results on whether the learned
subsystems can be successfully integrated to build a com-
plete NLP system. The experiments presented in this
paper demonstrated how two learning systems, Wolfie

and Chill were successfully integrated to learn a com-
plete NLP system for parsing database queries into exe-
cutable logical form given only a single corpus of anno-
tated queries.
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