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Abstract

As Internet worms become ever faster and more sophis-

ticated, it is important to be able to extract worm signa-

tures in an accurate and timely manner. In this paper, we

apply machine learning to automatically fingerprint poly-

morphic worms, which are able to change their appearance

across every instance. Using real Internet traces and syn-

thetic polymorphic worms, we evaluated the performance

of several advanced machine learning algorithms, includ-

ing naive Bayes, decision-tree induction, rule learning, and

support vector machines. The results are very promising.

Compared with Polygraph, the state of the art in polymor-

phic worm fingerprinting, several machine learning algo-

rithms are able to generate more accurate signatures, tol-

erate more noise in the training data, and require much

shorter training time. These results open the possibility of

applying machine learning to build a fast and accurate on-

line worm fingerprinting system.

1. Introduction

One of the major goals of autonomic computing is to

make computers self-protecting. Computer worms [22]

are programs that exploit security flaws in existing com-

puter systems. Like viruses, worms employ compromised

hosts to carry out assigned tasks; unlike viruses, worms ag-

gressively leverage resources of victims to propagate them-

selves across the network and compromise more vulnerable

hosts. Although not all worms are malicious, the aggressive

propagation of worms can increase Internet traffic tremen-

dously in a short period and thus slow down normal traffic

or even disable large areas of the network. In fact, the past

decade has seen an increasing number of worm outbreaks,

among which the most deadly ones caused billions of dol-

lars in loss. For example, the Code Red worm alone led to

2.6 billion dollars losses in revenue and productivity during

the first week of its outbreak [13].

Given the severity of the problem, researchers have de-

veloped various systems and approaches to discover and

quarantine worms. Most conspicuously, existing intrusion

detection systems such as [16, 17] have been employed to

quarantine worms whose signatures are known. A typical

intrusion detection system will monitor all the incoming

and outgoing traffic, while removing traffic flows that match

predefined rules (signatures). These systems can scale up

easily by introducing parallelism. However, the problem is

not yet solved, because worm fingerprinting currently re-

quires security experts to manually analyze captured worm

instances and thus can be very slow [14]. Meanwhile, re-

cent studies have shown that new worms such as the SQL

SLammer can compromise all vulnerable hosts in the net-

work in as short as 10 minutes [12]. As a result, in order

to effectively stop worm outbreaks, new automated worm

fingerprinting techniques need to be developed.

Worms released in the past few years have become even

more powerful and deadly by using polymorphic techniques

to prevent themselves from being detected [9]. To face this

challenge as well as the time challenge mentioned above,

automatic worm signature generation techniques have been

developed to replace the current manual fingerprinting ap-

proach. The aim of these techniques is to enable a computer

system to discover and generate signatures for new worms

without human intervention. Advances achieved in this di-

rection will contribute sinificantly to the self-protecting as-

pect of autonomic computing.

For example, Autograph [8], is an automatic worm fin-

gerprinting system. Autograph sits on the border between

networks and monitors the through traffic. It uses a heuris-

tic approach to collect suspicious flows and then constructs

signatures from those flows using a greedy induction al-

gorithm. The authors have shown that this system cor-

rectly generates signatures for two famous worms, Nimda

and CodeRed. Polygraph [15] is another system that builds

on the Autograph framework, but focuses on fingerprint-

ing polymorphic worms. The authors proposed three ap-

proaches to generating signatures: sequential, conjunc-

tive and Bayesian. Experiments showed that all three ap-

proaches worked well for fingerprinting two polymorphized

worms, though fingerprinting speed was still a concern.

In this paper, we examine the applicability of vari-



ous machine-learning algorithms to automatic worm fin-

gerprinting. Numerous alorithms have been developed for

learning classifiers from labeled training data. Because the

task of worm fingerprinting is essentially creating patterns

for worm flows that can be used to classify future flows

as malicious or innocuous, we argue that many well estab-

lished classification algorithms can be applied to solve the

problem. These algorithms have been designed for classifi-

cation accuracy as well as other properties, such as speed of

training and tolerance to noise in the training data.

We focused our study on fingeprinting polymorphic

worms and compared five existing learning algorithms with

Polygraph, which to our knowledge is the only existing sys-

tem designed specifically for this task. Experiments were

conducted on recorded real traffic data. For each algorithm,

we evaluated its false positive rate (misclassifying innocu-

ous as malicious), false negative rate (misclassifying mali-

cious as innocuous), and speed of training. Experimental re-

sults show that an existing decision-tree learning algorithm

and a rule learner both run faster than Polygraph and pro-

duce fewer errors.

The remainder of this paper is oranized as follows. In

Section 2, we discuss previous work in more detail. In Sec-

tion 3, we provide further motivation for our work and intro-

duce the four learning algorithms we have evaluated. Sec-

tion 4 presents the design and results of our experiments.

Section 5 presents our conclusions and directions for future

work.

2. Background on Existing Work

Worm detection, and more generally intrusion detection,

has been studied fairly extensively in the past few years.

Algorithms in the area can be roughly organized into four

categories. The first family of algorithms produces rules

that match malicious or suspicious behaviors by analyzing

traffic statistics[16, 17], and thus is called traffic-based al-

gorithms. For example, a rule can be ”all flows from host

A’s port B are malicious and shall be filtered”. The second

approach, usually called honeypots[21], involves setting up

virtual hosts on unused IP addresses in the network which

silently record all the incoming flows. Because those IPs

are unused, incoming traffic flows can be simply regarded

as suspicious. By manually or automatically analyze those

flows, new worms can be discovered. The third approach,

usually referred to as behavior-based algorithms[7], works

by monitoring vulnerable hosts’ behaviors. Alarms are

raised when the behaviors become abnormal or when the

hosts fail to pass integrity checks. The last method, content-

based algorithms [8, 15], works by analyzing the content of

suspicious flows from and to the vulnerable hosts. First,

these flows are roughly classified as unsuspicious or sus-

picious, and then signatures are constructed to identify the

suspicious flows.

While there is no previous study comparing all the four

families of algorithms, we argue that the content-based

algorithms are the best choice because of their appropri-

ate balance of efficiency and effectiveness. Among the

four family of algorithms, traffic-based, behavior-based,

and content-based algorithms can all run automatically. In

particular, content-based algorithms can be seen as stand-

ing between traffic-based and behavior-based algorithms.

Unlike traffic-based algorithms, signatures produced by

content-based algorithms are usually specific enough to

produce few false positive alarms in production. At the

same time, content-based algorithms avoid the high cost of

augmenting server software for the purpose of monitoring,

as well as the overhead caused by these augmentations at

runtime, which are all required by the behavior-based algo-

rithms and can easily be formidable in practice. Finally, the

limitation of the honey-pot approach is clear – the amount

of traffic entering honeypots is limited due to the increas-

ingly populated IP address space, thus it may take too long

to gather enough worm samples for effective fingerprinting.

Among content-based intrusion detection systems, Au-

tograph [8] was the first to explicitly target worms. When

deployed on the border of a network, the system uses a pre-

determined heuristic to identify suspicious hosts and mark

all traffic from these hosts as suspicious, leaving other flows

as unsuspicious. The suspicious and unsuspicious flows are

then fed as training data to the fingerprinting algorithm to

generate accurate worm signatures. Although at first glance

this setting may look odd since both the heuristic and the

fingerprinting algorithm have the same goal, i.e. distin-

guishing worm flows from innocuous flows; in reality they

serve very different purposes. The heuristic is a rough pre-

processing step and thus is not required to achieve high ac-

curacy, namely, the suspicious flows collected by the heuris-

tic may contain many inocuous flows or miss worm flows.

Meanwhile, the fingerprinting algorithm uses its results as

noisy training data to generate more accurate signatures to

be used in practice. As a result, the fingerprinting algo-

rithm needs to achieve high accuracy as well as being noise-

tolerant.

With the labeled training data, the next step is to con-

struct features from the payloads of these flows. Auto-

graph uses Robin’s fingerprint algorithm [19] to do this.

Briefly, Robin’s fingerprint algorithm separates a payload

string into many non-overlapping substrings according to

a pre-selected terminal symbol; these substrings are then

used as features to represent the original flow. Eventually,

suspicious flows represented by substring features are pre-

sented to a greedy signature generator. The generator recur-

sively finds the feature present in largest number of remain-

ing flows, makes a rule that this feature implies a worm, and

removes all flows that match this rule. This procedure con-



tinues until a predefined percentage of suspicious flows is

covered, or there are no more features to select. The result-

ing set of rules is then deployed in an intrusion detection

system to filter out worm flows.

Experimental evaluation of the Autograph algorithm was

quite promising. On two traffic traces recorded at Intel and

ICSI, which contain instances of the Nimda worm and the

CodeRed II worm, Autograph produced signatures that suc-

cessfully identified all worm flows. Moreover, the algo-

rithm gave few false positive alarms, as all the 17 signatures

generated were indeed true worm signatures. However, if

more innocuous flows made their way into the suspicious

pool, it is unknown whether the algorithm will be resilient

and not produce false alarms. Although the authors pro-

posed a blacklist method to handle this problem, which is

essentially manual removal of signatures that produce false

alarms, the cost and delay caused by such human interven-

tion would be problematic.

Along with improved worm fingerprinting techniques,

researchers have also proposed methods that could be

adopted by worm authors to enhance their future worms.

In particular, various techniques can be employed to “poly-

morphize” a worm and thus allow it to evade current de-

tection techniques [9]. For example, a polymorphic en-

gine (e.g. [20]) can encrypt the original payload and then

link it to a decryptor, so when this polymorphic payload

reaches its destination, the original payload can be extracted

and executed as normal. However, these polymorphized

worm flows, when presented to a worm detection system

like Autograph, may prevent it from producing any signa-

tures/alarms. Besides encryption, other techniques such as

register swapping and no-op insertion serve the purpose as

well.

Fortunately, it has been noted by Newsome et al. [15]

that current polymorphic engines will always leave a few in-

variant chunks scattered around the encrypted body. Based

on this observation, they proposed three algorithms which

focus on detecting and generating signatures for polymor-

phic worms. Named after Autograph, these algorithms

were collectively called Polygraph. Polygraph has roughly

the same system architecture as Autograph; however, Poly-

graph employs a common substring finder instead of Ra-

bin’s fingerprint algorithm to construct features. The au-

thors argued that because a common substring finder favors

popular flows, potential signatures of a new worm will be

extracted quickly in the early moment of its outbreak.

Using the extracted features, Polygraph employs three

different algorithms for signature generation. The first

sequential-signature algorithm defines signatures as se-

quences of features. It starts from the most specific fea-

ture sequences (individual flows in the suspicious pool) and

iteratively combines the two most similar set of feature se-

quences into a new signature by retaining the longest com-

mon subsequence of the two and substituting the rest with

wildcard characters. This process stops when the new sig-

nature is so general that it matches more than a given num-

ber of innocuous flows in the validation set, and then all

signatures generated to this point are output as worm sig-

natures. Similar to this algorithm, a second conjunctive-

signature algorithm employs the same steps but generates

signatures as conjunctions of features, removing the loca-

tional information. The third algorithm applies Bayesian

technique to assign each feature a weight to indicate how

important it is in deciding the nature of the flow.

Similar to Autograph, experiments on Polygraph were

carried out on recorded traces. Meanwhile, instead of de-

tecting real worms, the algorithms were configured to detect

simulated worm flows, which were generated by filling ran-

dom characters into real worm signatures. Experimental re-

sults showed that Polygraph was very resilient to polymor-

phism in most cases. All three algorithms worked perfectly

when the noise level in the suspicious pool was low. As the

noise level increased, the Bayesian algorithm began to have

considerable false-positives and false-negatives, but the se-

quential and conjunctional algorithms still maintained zero

false negative rates and low false positive rates. However,

it was also noted that both the sequential and the conjunc-

tive algorithm took “less than ten minutes” to fingerprint a

suspicious pool of just 25 flows. Actually, these two algo-

rithms are of O(n2m) complexity, in which n and m are

the numbers of suspicious and unsuspicious flows respec-

tively. Under the current condition that a worm can breach

all vulnerable hosts in 10 minutes, this speed is insufficient

to effectively quarantine or stop a new worm early in its

outbreak. As a result, new algorithms are needed which run

faster and scale to larger number of suspicious flows, which

is a main focus of this paper.

Finally, it is worth mentioning a recent study [10] on ap-

plying machine learning to fingerprint malicious executa-

bles, which include viruses, worms and Trojan horses. The

authors gathered 1,651 malicious executables and 1,971 be-

nign executables on the Windows platform. After turn-

ing core dumps of these executables into an n-gram fea-

ture representation, the authors applied an array of learn-

ing methods to construct classifiers that predict whether an

executable is malicious or benign. Among the algorithms

tested, boosted decision trees performed the best in terms

of accuracy. Nonetheless, all algorithms generated satis-

factory Receiver Operating Characteristic (ROC) curves.

While this is an interesting study, it is significantly differ-

ent from ours in three aspects. First, the target in our study

is Internet traffic flows instead of executable binaries and

we focus solely on worms; second, while speed was not an

issue in detecting malicious executables offline, it is of great

importance here because it is the key to early quarantine of a

worm in its outbreak. Finally, rather than building a classi-



fier on training data free of class noise, our problem involves

generating signatures on potentially very noisy data.

3. Worm fingerprinting via machine learning

The task of worm fingerprinting can be abstracted as fol-

lows: given a few labeled training examples, construct a

classifier to separate a specific type of flow (worms) from

all other flows (innocuous flows) based on their content.

Additionally, an ideal classifier should be fast to train and

resilient to noise (e.g. misclassifications) in the training ex-

amples. Under the current scheme, knowledge embedded

in the learned classifier can be extracted as explicit signa-

tures and passed to an existing intrusion detection system,

which matches incoming flows against these signatures and

removes the matching ones. Alternatively, these classifiers

could be directly employed by an intrusion detection system

to assign a malicious or innocuous label to incoming flows.

A large number of classification algorithms exists in the

machine learning literature and are actively employed in

various applications. In general, these algorithms optimize

for calssification accuracy, the percentage of instances that

are correctly classified. However, learning algorithms have

been designed to simultaneously optimize for other criteria,

such as training time and noise resistance. In particular, in

terms of time complexity, most of the methods tested here

are linear in the size of the training data, compared to the

higher complexity of Polygraph. Most have also been ex-

plicitly designed to handle noisy training data.

As the main contribution of this paper, we conducted ex-

tensive experimental studies to verify our conjecture that

other standard machine learning methods would outper-

form those used in Polygraph. The algorithms we tested

were used “right out of the box” from the Weka data-

mining package [23], except for sequential-signature Poly-

graph, which we implemented following [15]. We chose the

sequential-signature version of Polygraph as the baseline

since it was shown to be significantly more accurate than

the other versions when there was any noise in the suspi-

cious pool [15]. In the remainder of this section, we briefly

introduce the five learning algorithms we evaluated.

3.1. Naive Bayes learners

Bayesian learning algorithms are founded on Bayes the-

orem, which, in the context of classification, states that the

posterior probability of a class is proportional to its prior

probability as well as the conditional likelihood of the fea-

tures given this class. If no independence assumptions are

made, a Bayesian algorithm must estimate conditional prob-

abilities for an exponential number of feature combinations.

“Naive Bayes” simplifies this process by making the as-

sumption that features are conditionally independent given

the class and requires estimating only a linear number of pa-

rameters. The prior probability of each class and the prob-

ability of each feature given each class is easily estimated

from the training data and used to determine the posterior

probability of each class given a set of features. Empirically,

Naive Bayes has been shown to produce good classifica-

tion accuracy across a variety of problem domains [4]. The

simplicity of its implementation and its fast (linear) training

time has made this algorithm a popular choice in practice.

In this study, we evaluated two versions of Naive Bayes,

the standard version that comes with Weka (NB) and a

Multinomial Naive Bayes (MNNB). Initially proposed for

text classification [11], MNNB assumes a multinomial dis-

tribution for real-valued features instead of a Gaussian dis-

tribution. It has been observed to outperform standard

Naive Bayes for text classification. Also, it is worth noting

that the Bayesian-signature Polygraph differs significantly

from the above algorithms by adopting an non-standard way

of calculating feature likelihoods.

3.2. Support vector machines

Support vector machines (SVMs) [3] were introduced

in the mid-90s and experiments have subsequently shown

them to be the most accurate current classifiers in a variety

of applications. The algorithm typically projects the origi-

nal feature vectors into a higher dimensional space and then

tries to find a hyper-plane in that space that best separates

the two classes of instances. Facilitated by a kernel, which

computes the dot product of two feature vectors in the high

dimensional space directly from the original feature vec-

tors, the computation required by the projection and op-

timization is greatly simplified and made computationally

tractable. Specifically, we employ the SMO algorithm for

SVMs implemented in Weka. Over the years, researchers

have developed various kernels that map the original fea-

ture vector into different high-dimensional spaces. Among

these functions, the most frequently used ones are the lin-

ear kernel, the polynomial kernel, and the RBF kernel. In

this paper, we present results with an RBF kernel since it

performed the best.

3.3. Decision tree learner

Decision tree learners [18] are a well-established fam-

ily of learning algorithms. Initially proposed in the 70s,

these algorithms have been continuously developed to in-

clude more features and yield better performance. Classi-

fiers are represented as trees whose internal nodes are tests

on individual features and whose leaves are classification

decisions. Typically, a greedy heuristic search method is

used to find a small decision tree that correctly classifies

the training data. In order to handle noisy data, they are



typically augmented with a “pruning” procedure that pre-

vents overfitting the training data. In this study we eval-

uated J48, the Weka version of the commonly used C4.5

algorithm [18]. Various studies in the past have shown that

it is an efficient algorithm that learns accurate classifiers in

many domains.

3.4. Rule learner

Rule learners [2] also originated in the 70’s and induce

a set of if-then rules with conjunctive premises. A typical

rule learner also uses greedy search to learn a small set of

rules consistent with the training data. The process proceeds

in iterations, each time a rule is constructed to match as

many instances of the minority class as possible and those

instances are removed from the training set. The learner

keeps producing rules until all remaining training instances

belong to one class. The construction of each rule is done

in a similar manner – premises are continually added to the

rule until the rule only matches instances of a single class.

Rule learners also include various pruning methods to avoid

overfitting the training data and make the learner robust to

noisy data. RIPPER [2] is a fast effective rule learning al-

gorithm that is particularly suitable for noisy training data.

In our study, we used the Weka implementation of RIPPER,

which is called JRip.

Among the five algorithms introduced in this section, the

rule learner is the most similar to Polygraph’s sequential

signature algorithm. Both learn a pattern in the form of a

disjunction of conjunctions of features. However, the Poly-

graph algorithm has a time complexity of O(n2m), whereas

RIPPER leverages the extensive body of research on rule

learning and has a time complexity of just O(m+n). More-

over, while the Polygraph has some ad-hoc methods for tol-

erating noise, RIPPER includes a general, carefully devel-

oped and evaluated method for preventing over-fitting. The

advantages of these advanced machine-learning techniques

are illustrated in the results.

4. Experimental results

4.1. Experimental Design

Our experimental comparisons were conducted on a

combination of network traffic traces and self-generated

polymorphic worm instances. The two network traces were

collected from a 100Mbps fiber link at ICSI. In particu-

lar, one trace was recorded during the one week span from

May 22nd to May 29th, 2004 and will be called the week

trace; the other trace was recorded for one day on Jan 26th,

2004 and will be called the day trace. These two traces

were previously used in experiments on Autograph. As pre-

processing, we reassembled packets in the two traces into

flows and filtered out flows that were labeled as worms by

the Bro intrusion detection system [16], thus the resulting

pool of flows only contained innocuous flows. Following

the studies on Polygraph, we generated polymorphic worm

flows for the Apache-knacker worm and the Atphttpd worm.

Headers of these worm flows were sampled uniformly from

the pool of previously constructed innocuous flows, and

bodies of these flows were constructed from known signa-

tures of these two worms by filling random characters into

the wildcard slots of these signatures.

As the next step, we transformed the string-based flows

into feature-vector representations. We employed two fea-

ture construction techniques: a common substring finder

like that used in [15] (COM) and an n-gram finder like that

used in [10] (n-GRAM). COM looks for substrings within a

predetermined length limit that appear in more than a given

percentage of flows. More specifically, the algorithm starts

with the longest common substrings and turn them into fea-

tures. It then moves on to second-to-longest common sub-

strings, but this time prevalence counting excludes appear-

ances of those substrings that form part of any existing fea-

tures. This process repeats until the minimum-length limit

is reached. As in Polygraph, we implemented COM based

on the suffix tree data structure [6], with a time complex-

ity of O(ml), where m is the number of flows and l is the

average length of a flow. An n-gram of a given payload is

defined as a substring of n characters that occurs anywhere

in the payload. Like the approach to feature construction

in [10], n-GRAM finds all n-grams in the payloads and

retains the 500 n-grams with the highest information gain

with respect to discriminating between suspicous and un-

suspicuous flows. In order to find the best parameters for

the two methods, we conducted development experiments

on the day trace. For COM, we varied the minimum-length

limit from 2 to 10 incrementing by 2 and the prevalence

limit from 2% to 10% incrementing by 2%, and chose for

each learning algorithm the pair of parameters that yielded

the most accurate signatures. For n-GRAM, we varied the

minimum-length limit from 2 to 10 incrementing by 2 and

also chose the best value for each learning algorithm.

The experiments were carried out on desktop machines

with 3.0GHz Intel Pentium IV processors and running

Linux kernel 2.6.13. We compared all six algorithms based

on the following criteria. To measure the accuracy of gener-

ated signatures, we recorded the cross-validated false posi-

tive rate (the percentage of innocuous flows incorrectly clas-

sified as worms) as well as the false negative rate (the per-

centage of worm flows misclassified as innocuous). To eval-

uate the resilience of these algorithms to unavoidable class

noise in the suspicious pool, we computed noise curves

by varying the ratio of innocuous flows in the suspicious

pool from 10% to 90% incrementing by 10% each time and

recording the error rates at each point. Finally, to evaluate



the detection speed, we recorded the time required by each

algorithm to process the training sets. It is worth noting that

except for the timing experiment in section 4.3.2, we did not

include feature construction time. To ensure the reliability

of the results, for each setting we report the results averaged

over ten runs.

4.2. Accuracy of Generated Signatures

4.2.1 With a worm-free unsuspicious pool

Following the experimental design used to test Polygraph,

we first evaluated the case when there are no worm flows in

the unsuspicious pool. As suggested in [15], at any given

time during production use, the unsuspicious pool used by

a signature learner will be created from flows that were

recorded a few days earlier. This setting will help ensure

that in day zero of a new worm outbreak, the new worm

will not appear in the unsuspicious pool. Although the sus-

picious pool may still contain innocuous flows, the follow-

ing results show that most algorithms are able to fingerprint

the two worms in this scenario.

Our experiments were carried out on the week trace plus

one thousand simulated polymorphic worm flows. We tried

suspicious pools containing 50, 100, 200, and 400 flows and

recorded the results for each. For each suspicious pool size,

we generated a noise curve for different levels of class noise

as described below. This noise, namely innocuous flows

mislabelled as suspicious, was drawn uniformly from the

week trace flows. The unsuspicious pool size was fixed to

contain 45,000 flows that were also drawn uniformly from

the remaining week-trace flows. All the remaining week-

trace flows and simulated worm flows were used to test the

accuracy of the generated signatures. Although several ex-

periments did not run to completion because of extremely

long running time, in general we obtained consistent results

for most cases. Because the pattern of results was quite sim-

ilar across feature construction methods and different suspi-

cious pool sizes, due to space constraints, we only present

the results with COM features and 50 suspicious flows. Fig-

ure 1 shows the false positive and false negative rates for

this case. In both graphs, the x-axis is the level of noise in

the suspicious pool and the y-axis is the number of flows

that are misclassified. Some curves overlap on the graph,

for example, the false positive rates for Polygraph, JRip,

J48 and SVM are all consistently zero.

From the graphs it is clear that the two Naive Bayes algo-

rithms had the highest false positive rate as well as the low-

est false negative rate. On the test data, they mislabeled over

half of the innocuous flows as worms but classified almost

all worm flows correctly. Naive Bayes’ blanket assumption

of conditional independence is known to frequently lead

to incorrect probability estimates and classifications. The

abundance of false postives could be reduced by requiring a
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Figure 1. False positive and false negative rates un-

der varying percentage of noise in the suspicious pool (50

flows). Unsuspicious pool (45,000 flows) contains no worm

flows.

threshold above 0.5 on the posterior probability in order to

assign a flow to the worm class; however, this would require

determining an appropriate threshold and would risk result-

ing in false negatives. As a result, in the following studies,

we exclude the Naive Bayesian algorithms from considera-

tion.

Among the remaining algorithms, SVMs had a high false

negative rate and failed to recognize half of the worm flows,

though its false positive rate was acceptable. All of the other

algorithms had low false positive rates and low false nega-

tive rates continuously along the noise curve. The only ex-

ception is that Polygraph started to generate false positives

when the level of noise in the suspicious pool increased,

which agrees with the results presented in [15]. JRip per-

formed the best as it achieved zero false positive rates con-

sistently; in fact, for most runs, JRip just produced a single

rule ”0xFF0xBF implies worm”. It turns out that this two-

byte substring is the entry address of the security flaw in the

server system, which is required for any worm to break into



it. Moreover, this address is not seen in any of the innocuous

flows. Even more impressive is the fact that JRip success-

fully generated this signature when there were only five true

worm flows in a suspicious pool of size 50, which suggests

it would be able to detect a new worm early in its outbreak.

Since there seem to be small “smoking gun” signatures for

such worms, it is not surprising that symbolic rule learning

algorithms like JRip are more accurate than more numerical

and probabilistic methods since their bias for finding sim-

ple symbolic descriptions of categories seems to be a good

match for this problem.

Finally, it is worth mentioning that we also experimented

with boosted and bagged version of the above algorithms.

Boosting [5] and bagging [1] are two important ensemble

methods in machine learning. By creating a diverse com-

mittee of base classifiers and combining their decisions,

they usually improve predictive accuracy. However, our ex-

periments found that these methods actually decreased ac-

curacy on this problem. For boosting, we believe the reason

is that it overfits the noisy training data; for bagging, it is

probably because the number of worms in the training set is

reduced substantially by its boostrap sampling.

4.2.2 When the unsuspicious pool contains worms

One major assumption made in both Polygraph and our pre-

vious experiments is that the unsuspicious pool is free of

worm flows. The authors of Polygraph argued that this

can be achieved by using flows from a few days ealier to

form the unsuspicious pool. However, they also admitted

that a worm author could break this premise by stealthily

blending possible signatures of a new worm into innocu-

ous traffic and wait a few days to launch the worm attack.

We conjecture that in this case Polygraph will be less ef-

fective, because genuine worm signatures will seemingly

yield false positives on the validation set. As a result, ei-

ther these signatures are discarded, which leaves the new

worm undetected, or the threshold for accepting signatures

is lifted, which allows erroneous signatures to be created for

noise in the suspicious pool. To verify our conjecture, we

experimented with unsuspicious pools that contained worm

flows. More specifically, we kept all settings the same as the

previous experiments, except we blended twenty simulated

worm flows into the unsuspicious pool. Because results are

similar for different numbers of suspicious flows, those us-

ing a suspicious pool of size 200 are shown this time, and

we only present results for algorithms that did well in the

previous experiments.

As shown in Figure 2, Polygraph had a consistently high

false negative rate. Even when the suspicious pool con-

sisted of only worm flows, Polygraph mislabeled 58.5% of

worm flows as innocuous. In contrast, JRip has a zero false

negative rate when the suspicious pool is free of innocu-
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Figure 2. False positive and false negative rates under

varying percentage of noise in the suspicious pool (200

flows). Unsuspicious pool (45,000 flows) contains 20 worm

flows.

ous flows. It continued to generate zero false negative rates

when the number of innocuous flows increased, and only

began to mislabel worm flows as innocuous when the num-

ber of worm flows in the suspicious pool dropped below that

of the unsuspicious pool. Together these results show that

JRip is much more resilient to noise in the innocuous pool

than Polygraph is. The performance of J48 stands between

those of the above two algorithms, with an exception that

J48 outperformed JRip when there were 20 worm flows.

As stated earlier, worm authors can disable worm de-

tection algorithms by poisoning the unsuspicious pool be-

fore launching the attack. On the other hand, the use of

recorded innocuous flows to form the unsuspicious pool

may cause problems even without adversarial attack. More

specifically, as new web applications are being constantly

introduced, the traffic flows produced by these applications

may be quite different from those of existing applications.

Meanwhile, because most methods for determining suspi-

cious flows look for abnormalities, novel flows created by



the new applications are more likely to be labeled as sus-

picious. As a result, worm fingerprinting algorithms will

generate erroneous worm signatures for the new legitimate

flows right after their release, because these flows only ex-

ist in the suspicious pool and not in the unsuspicious pool.

Even worse, if the erroneous signatures were automatically

utilized by the intrusion detection system, legitimate traffic

will be filtered out, which is extremely undesirable. There-

fore, in order to prevent such a disaster, human experts must

be deployed to manually look over signatures generated be-

fore actually deploying them, which will greatly slow down

the process and thus reduce the possibility of quarantining

a worm early in its outbreak.

We verified this conjecture by a simple experiment on the

day trace. We created one hundred new and distinct flows

by substituting the URL part of sampled innocuous flows

with a unique string. In this way the flows remained legit-

imate but were different from other innocuous flows. Then

we blended these new flows into the suspicious pool but not

the unsuspicious pool, and reran the experiment. It turned

out that all fingerprinting algorithms examined recognized

these new and legitimate flows as worms. This result sug-

gests to us that we may need to use same-day flows to form

the unsuspicious pool. However, therefore it is impossible

for us to guarantee that the unsuspicious pool consists solely

of innocuous flows, instead, the best assumption we can

make is that there are more worms in the suspicious pool

than in the unsuspicious pool given a reasonable method

for identifying suspicious flows. Consequently, resilience

to noise in both the suspicious and unsuspicious pool is cru-

cial for a worm fingerprinting algorithm to work well. As

we have shown, learning algorithms like JRip clearly win in

this regard.

The above results lead us to believe that standard ma-

chine learning algorithms, in particular, JRip and J48, are

superior to Polygraph in terms of accuracy of signatures and

resilience to noise.

4.3. Training Time

4.3.1 Training time for the accuracy experiments

As previously stated, the time required to train a worm de-

tector is a crucial factor in effectively quarantining new

worms. Figure 3 presents depict training time for the two

experiments presented in the previous subsection. It is

worth noting that the training time for a pure unsuspicious

pool does not differ much from that of an impure unsuspi-

cious pool. Again, we focus on the algorithms that gener-

ated more accurate signatures, namely, JRip, J48, and Poly-

graph.

The time complexity for Polygraph is O(n2m), in which

n is the number of suspicious flows and m is the number

of unsuspicious flows. This can be clearly observed in the
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Figure 3. Training time under varying percentage of

noise in suspicious pool. The above graph depicts suspi-

cious pool of size 50 and pure unsuspicious pool. The bot-

tom graph depicts suspicious pool of size 200 and unsuspi-

cious pool with 20 worm flows

results, as when the size of suspicious pool grows to four

times as large, the training time increases roughly sixteen

times. For example, when there are 200 flows in the sus-

picious pool, Polygraph takes more than an hour to train.

We believe this is one of the major limitations of the Poly-

graph algorithm, because in the outbreak of a new worm,

the suspicious pool can easily grow up to hundreds or even

thousands of flows, and consequently the time required by

Polygraph to train on this suspicious pool will be too long to

effectively quarantine the worm. On the contrary, the time

complexity for JRip is O(m + n), which is also observed

in the graphs, as when the size of suspicious pool increase

from 50 to 200, the training time stays roughly the same

because the number of unsuspicious flows (45,000) domi-

nates the total number of flows. In practice, this property is

crucial to restricting the training time in a worm outbreak

to a tractable level so that the resulting rules can be learned

fast enough to quarantine the worm. Meanwhile, the train-



ing time of J48 lies between that of JRip and Polygraph.

Though J48 can be seen as following roughly the same phi-

losophy as JRip, the fact that its pruning is done only after

the tree is fully grown makes it slower. Finally, it is worth

noting that testing time, i.e. the time required to make pre-

dictions on testing instances, remains negligible for all these

algorithms.

4.3.2 End-to-end training time for production use

Although JRip takes between 3 to 10 minutes to train re-

gardless of the size of suspicious pool, it remains dubious

whether this is still fast enough to effectively quarantine a

worm outbreak. As a result, we conducted additional exper-

iments to explore how fast the Ripper algorithm could train

on the minimum number of examples necessary to identify

a worm. More specifically, we used the original more ef-

ficient C implementation of the RIPPER algorithm instead

of the JRip Java version, coded the n-gram feature extractor

efficiently in C++, and streamlined the entire process from

reading reassembled flow payloads to outputting the gen-

erated signatures. For feature construction, n-GRAM was

chosen over COM because it leads to comparable signature

quality with significantly less computation.

We then measured the end-to-end time required to fin-

gerprint a new worm with this “production level” imple-

mentation of our approach. Moreover, as the fingerprinting

algorithm may not need as many as 45,000 unsuspicious

flows to contrast against the suspicious flows, we used the

week trace but gradually lowered the number of unsuspi-

cious flows to the minimum number needed to successfully

fingerprint the worms, creating a learning curve. There were

200 suspicious flows, of which 50 were worm flows; mean-

while, in the varying number of unsuspicious flows there

are consistently 20 worm flows. In our opinion, this config-

uration is a reasonable model of a real-world situation early

in a worm outbreak.

The results are shown in figure 4. In addition to end-

to-end training time, false positive and false negative rates

are also plotted to present a more comprehensive view.

Therefore, the x-axis represents the number of unsuspicious

flows, while the left y-axis and right y-axis depict false pos-

itive/negative rate and end-to-end training time respectively.

Finally, results of experiments with more than 2,000 un-

suspicious flows are omitted because they follow the same

pattern as the one observed on the right side of figure 4 -

training time grows linearly in the number of training flows,

while false positive and false negative rate stay zero.

From the figure we can see that end-to-end training time

is linear in the number of flows used in training - with 1,000

unsuspicious flows it is 18 seconds and with 2,000 unsuspi-

cious flows it increases to 34 seconds. Meanwhile, the false

positive rate and false negative rates decrease as the number
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Figure 4. False positive rate, false negative rate and train-

ing time under varying number of unsuspicious flows.

of unsuspicious flows grows. When the number of unsus-

picious flows is 200, the same as the number of suspicious

flows, RIPPER mislabeled 28% of testing innocuous flows

as worms and 7.5% of testing worm flows as innoucuous.

However, when there are 1,000 or more unsuspicious flows

in training, both rates stay zero consistently. This result sug-

gests that we can safely bring the number of unsuspicious

flows down to 1,000 and thus reduce the end-to-end training

time to 18 seconds.

5. Conclusions and future work

We verified in this paper that certain machine learning al-

gorithms work well for the problem of worm fingerprinting.

In particular, we compared the performance of five machine

learning algorithms against the best existing worm finger-

printing algorithm (Polygraph) on a blend of network traces

and simulated polymorphic worm flows. Results showed

that two machine learning algorithms perform significantly

better than Polygraph in terms of resilience to noise and de-

tection speed. More specifically, RIPPER produced zero

negative rates consistently on noisy training data and was

able to capture new worms with very few worm instances in

the suspicious pool. Moreover, the algorithm runs in time

linear in the total number of training flows, which makes

it tractable for containing a large-scale worm outbreak. As

future work, we plan to test our techniques on worms with

even greater polymorphism using the advanced worm con-

struction ideas presented in [9].
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