Giving Advice about Preferred Actions to Reinforcement Learners
Via Knowledge-Based Kernel Regression

Richard Maclin’, Jude Shavlik!, Lisa Torrey*, Trevor Walker!, Edward Wild*

Computer Science Department
University of Minnesota Duluth
1114 Kirby Drive
Duluth, MN 55812
rmaclin@d.umn.edu

Abstract

We present a novel formulation for providing ad-
vice to a reinforcement learner that employs support-
vector regression as its function approximator. Our new
method extends a recent advice-giving technique, called
Knowledge-Based Kernel Regression (KBKR), that ac-
cepts advice concerning a single action of a reinforce-
ment learner. In KBKR, users can say that in some set of
states, an action’s value should be greater than some lin-
ear expression of the current state. In our new technique,
which we call Preference KBKR (Pref-KBKR), the user
can provide advice in a more natural manner by rec-
ommending that some action is preferred over another
in the specified set of states. Specifying preferences es-
sentially means that users are giving advice about poli-
cies rather than Q values, which is a more natural way
for humans to present advice. We present the motiva-
tion for preference advice and a proof of the correct-
ness of our extension to KBKR. In addition, we show
empirical results that our method can make effective
use of advice on a novel reinforcement-learning task,
based on the RoboCup simulator, which we call Break-
away. Our work demonstrates the significant potential
of advice-giving techniques for addressing complex re-
inforcement learning problems, while further demon-
strating the use of support-vector regression for rein-
forcement learning.

Introduction

Advice-taking methods have proven effective in a num-
ber of domains for scaling reinforcement learning (RL)
to complex problems (Clouse & Utgoff 1992; Lin 1992;
Gordon & Subramanian 1994; Maclin & Shavlik 1996;
Andre & Russell 2001; Kuhlmann et al. 2004). One promis-
ing recent method, called Knowledge-Based Kernel Regres-
sion (KBKR) (Mangasarian, Shavlik, & Wild 2004), has
been successfully applied to reinforcement-learning prob-
lems (Maclin et al. 2005). Advice in KBKR takes the form
of an IF-THEN rule such as:

IF (dist_goalcenter < 15) AND

(angle_goalcenter you_goalie > 25)
THEN Qshoot > 1

Copyright (© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Computer Sciences Department?
University of Wisconsin Madison

1210 West Dayton Street
Madison, WI 53706

{shavlik,ltorrey,twalker,wildt} @cs.wisc.edu

This rule indicates that in those states where the distance
to the center of the goal is less than or equal to 15m and
where the angle from the player to the goal center and goalie
is greater than 25, the Q value of shooting should be greater
than 1. But selecting an appropriate value for the THEN part
of the rule can be difficult for a human advisor who is not
knowledgeable about the use of Q values to estimate the
value of actions in an RL environment.

A much more natural approach is to allow the human to
suggest that one action should be preferred over another, so
that he or she does not have to understand Q values and how
they affect learning:

IF (dist_goalcenter < 15) AND
(angle_goalcenter you_goalie > 25)
THEN PREFER Shoot TO Pass

We present a new formulation based on KBKR, which
we call Preference KBKR (Pref-KBKR), that allows a user
to specify this type of advice and refine it with data us-
ing support-vector regression. In the next section we review
support-vector regression and the KBKR technique. Fol-
lowing that we present the Pref-KBKR algorithm. We then
present a novel RL task, based on the RoboCup simulator
(Noda et al. 1998), that we call BreakAway and demonstrate
the value of Pref-KBKR on this new testbed.

Knowledge-Based Support-Vector Regression

In this section we present the basics of KBKR. For a more
complete discussion, see Mangasarian et al. (2004).

Support-Vector Regression (SVR)

Consider an unknown function f(z) from R™ to R, where
x is a vector of numeric features describing a particular in-
stance and f(x) is the value that instance is labeled with.
For example, z might describe the soccer field as seen from
the point of view of a player, and f(z) the expected Q value
of taking the action Pass. We first consider a simple linear
approximation f(r) ~ w’z + b, where w is a vector of
weights on the features of z and b is an offset. All vectors
are column vectors unless transposed by 7.

If we are given a training set of states consisting of m
input vectors in R™ as rows of the matrix A € R™*" with
y € R™ the corresponding vector of desired f(z) values,
we can learn a model by finding a solution to the problem

Aw+bexy €))
where e denotes a vector of m ones. From now on, we shall
omit e for clarity, with the understanding that b is always a
scalar. Solutions to this problem are ranked by how well they
meet some performance criterion, such as minimum error
with respect to the y values. In a kernel approach, the weight
vector w is replaced with its dual form A” o, which converts

Eq. 1t
4110 AATq + b~y ?)

We can generalize this formulation by replacing the AA™
term with a kernel, K (A4, AT), to produce
KA, AT a+b=~y. 3)

To treat this as a linear or quadratic programming problem
we simply have to develop a formulation that allows us to
indicate the error measure to be minimized in producing a
solution. One such formulation, from Mangasarian et al.,
(2004) is

min - [laf[y + v[b[+ Clls

(a,b,s) %)

st. —s<K(AAT) a+b—y<s.

Where v > 0and C > 0 are fixed parameters. In this formu-
lation we use the vector s to measure the error of the solu-
tion on each training example, and we penalize inaccuracies
in the objective function that is to be minimized. We mini-
mize a weighted sum of the s, «, and b terms (the one-norm,
|11, computes the sum of absolute values while | - | denotes
the absolute value). The penalties on v and b penalize the
solution for being more complex. C' is a parameter for trad-
ing off how inaccurate the solution is (the s term) with how
complex the solution is (the o and b terms). The resulting
minimization problem is then presented to a linear program
solver, which produces an optimal set of « and b values. In
this work we also examine the simpler linear regression for-
mulation which can be effective and produce solutions that
can be easily understood by the user. This formulation can
be written as

min [wlly + v[b] + Clls||s

(w,b,s) 5)

st. —s<Aw+b—y<s.

In our empirical tests we employ the linear formula-
tion in Eq. 5, because linear models are more understand-
able and scale better to large numbers of training exam-
ples. We use tile coding (Sutton & Barto 1998) to pro-
duce the non-linearity in our models. The reader should note
that using Eq. 5 is not identical to using a linear kernel
K(A,AT) = AAT in Eq. 4. We use the CPLEX com-
mercial software package to solve our linear program.

Knowledge-Based Kernel Regression

In KBKR, a piece of advice or domain knowledge is repre-
sented using the notation

Br <d= f(z) > hTz+ 3. (6)
This can be read as

If certain conditions hold (Bx < d), the output (f(x))
should equal or exceed some linear combination of the
inputs (h”'z) plus a threshold term (/3).

The term Bx < d allows the user to specify the region of
input space where the advice applies. Each row of matrix B
and its corresponding d values represents a constraint in the
advice. For example, the user might give as advice the first
rule from the Introduction. For this IF-THEN rule, the matrix
B and vector d would have two rows. In the first row there
would be a 1 in the column for feature dist_goalcenter. The
corresponding d row would hold the value 15. In the second
row of B there would be a -1 for the column for feature
angle_goalcenter_you_goalie and a -25 in the correspond-
ing d row (the values are negated to capture the idea that
this condition represents a > condition). The vector i would
simply be O for this rule and the scalar 5 would be the value
1. This advice would then be used when attempting to learn
the @) function corresponding to the action Shoot. Using this
advice format, a user in a reinforcement-learning task can
define a set of states in which the @) value for a specific ac-
tion should be high (or low).

Mangasarian et al. demonstrate that the advice implica-
tion in Eq. 6 can be approximated by the following set of
equations having a solution u:

K(A,B"Yu+ K(A,AT)a — Ah =0
—d"u+b—-6>0,u>0. (7)

If we employ slack variables' in these equations to allow
them to be only partially met (if the data indicates the advice
may be imperfect), we have the following formulation:

el A+ w18f+ Cllsfl + pullzll + #2€
)

min
(ab,5,2,u>0,(>0

s.t. —ng(A,AT)a—i—b—ygs
— 2 < K(A,Bu+ K(A, AT)a — Ah < 2
—d"u+¢>p—b.

Here z and (are the slacks introduced to allow the formu-
las in Eq. 7 to be only partially met for this piece of advice.
The fixed, positive parameters p1 and po specify how much
to penalize these slacks. In other words, these slacks allow
the advice to be only partially followed by the learner. Man-
gasarian et al. (2004) tested their method on some simple
regression problems and demonstrated that the resulting so-
lution would incorporate the knowledge. However, the test-
ing was done on small feature spaces and the tested advice
placed constraints on all of the input features.

SVR, RL and Preference KBKR

In order to use regression methods for RL we must first
formulate the problem as a regression problem. Some pre-
vious research (Dietterich & Wang 2001; Lagoudakis &
Parr 2003) has employed support-vector approaches for re-
inforcement learning, but these methods focused on learn-
ing a single state-evaluation function and relied on having a
world simulator to be able to simulate the effects of actions,
a strong assumption. In previous work (Maclin et al. 2005)

"Which we will call “slacks” for short from now on. Variable s
in Egs. 4 and 5 is another example of a slack.

we investigated using support-vector approaches for rein-
forcement learning and in particular the difficulties of ap-
plying KBKR to RL. In order to learn a) function without
needing a world model, we formulated the learning problem
as that of learning a ser of regression models, one for each
action in the environment. We could then employ support-
vector regression methods to learn each of these functions
individually. This technique is effective and with a number
of other extensions and refinements to the KBKR method
led to significant gains in performance. But one significant
drawback of employing the advice is that the advisor must
determine the value the () function should meet or exceed
for a set of states and this can be difficult.

Note that one does not have to learn the models for each
action separately; the problem could be formulated as one
where the solver had one set of a or w values and a b
value for each action and the solve for all of these param-
eters simultaneously. If we index the set of actions by the set
{1, ..., 7} we have the problem

J

(gl.iz?) (llaallr + v[ba| + C|lsall1)

o=t)
s.t. foreachactiona € {1,...,5}:

— 5, < K(Aa,Az)oza + by — Yo < Sq.

Here the o, and b, are the parameters for the model for
action a. The A, values are the states where action a was
taken and the y, values are our estimates for the () values
for the action a for each of those states. There are then a set
of slacks s, for each action.

Although this formulation may be appealing in the sense
that all of the () action functions are being solved simulta-
neously, in practice the individual action optimization prob-
lems are independent and can thus be solved separately
(which is often a bit more efficient computationally). Thus
for standard KBKR we do not employ this approach. How-
ever, this formulation does open up the possibility of con-
sidering the relative @) values for a pair of actions simul-
taneously. In particular, this formulation allows us to now
represent a novel form of advice where we indicate that un-
der a set of conditions, one action is preferable to another.
In precise terms, we can represent advice of the form

Bz <d= Q,(z) — Qun(z) > S, (10)
which can be read as:

If certain conditions hold (Bx < d), the value of pre-
ferred action p (Qp(z)) should exceed that of non-
preferred action n (Q,,(x)) by at least 3.

This type of advice, where one action is marked as being
preferred over another is the essence of our new approach,
which we call Preference KBKR (Pref-KBKR for short).
Writing Eq. 10 using our models of Eq. 2 we get

Bx < d:>a§Apx+bp—a£An:C—bn >3, (11
In order to incorporate a nonlinear kernel into our prior
knowledge formulation, following Mangasarian et al., we
assume x can be accurately approximated as a linear combi-
nation of the rows of A to get

BATt <d = a] Ay ATt + by —) A ATt — by, > B
12)

We then kernelize this equation, obtaining
K(B,AT)t <d=
al K(Ap, AT)t + b, — al K(An, AT)t — b, > 3. (13)

Finally, we require the kernels in Eq. 13 be symmetric, that
is K(B, AT)T = K(A, BT). In order to incorporate Eq. 13
into our optimization problem, we employ the following
proposition from the literature.

Proposition: [(Mangasarian, Shavlik, & Wild 2004), Propo-
sition 3.1] Let the set {t|K(B, AT)t < d} be nonempty.
Then, for a fixed (o, b, h, 3), the implication

KB, At <d= o"KA, ATt +b>hTATt+
(14)
is equivalent to the system of linear equalities in Eq. 7 hav-
ing a solution u.
Substituting our new formulation for advice from Eq. 13 into
this proposition, we are interested in the following corollary.

Corollary: Let the set {t|K(B, AT)t < d} be nonempty.
Then, for a fixed (oup,bp, an, by,), the implication in
Eq. 13 is equivalent to the following system of linear in-
equalities having a solution u

K(A, BT u+ K(A, Al)ay, — K(A, Al)an, =0

(15)
—d"u+b, — b, —3>0,u>0.

Proof: The corollary follows directly using appropriate sub-
stitutions. For concreteness, we prove the corollary here us-
ing the proof of Proposition 2.1 of Mangasarian et al. (2004)
as a template.

The implication in Eq. 13 is equivalent to the following
system of equations having no solution (¢, ¢)

—(<0,K(B,AT)t—d¢ <0

(af K(Ap, AT) — al K(An, AT))t + (by — by, — B)¢ < 0.
(16)

This captures the notion of the implication in Eq. 13 that
we cannot come up with a solution that makes the left-hand
side of the equation true and the right-hand side false. Using
Motzkin’s theorem of the alternative (Mangasarian 1994) we
know that Eq. 16 being insoluble is equivalent to the follow-
ing system having a solution (u, n, 7)
K(A, BT)u+ (K(A, Aoy, — K(A, Af)an)n =0
—d"u+ (b, — by, — B —7=0,u>0,0# (n,7) > 0.
a7
The expression 0 # (n,7) > 0 states that both 7 and 7
are non-negative and at least one is non-zero. If n = 0
in Eq. 17 then we contradict the nonemptiness of the set
{t|K(B, AT)t < d} (assumed in the proposition) because
fort € {t|K (B, AT)t < d} and (u, 7) that solve this equa-
tion with 7 = 0, we obtain the contradiction

0> u'(K(B,AT)t —d) =
t'K(A, B u—d"u=—d"u=71>0. (18)

Thus we know that > 0 in Eq. 17 and by dividing this
equation through by 7 and redefining (u, o, 7) as (%, = %)
we obtain the system in Eq. 15. O

Note that we can specify multiple pieces of advice us-
ing the above corollary, each with its own B, d, p, n, and
(. Indexing the pieces of advice with the set {1,...,k}
and adding the constraints from Eq. 15 we get a new, Pref-
KBKR, formulation of our problem

min

(asba,Sa,zi,(Ciyui)>0)

J k
> (llealls + vlbal + Cllsall) + Y (pallzill1 + p2i)
a=1 i=1

s.t. foreachactiona € {1,...,j}: (19
= 8q < K(Aa, AD)0ta + b — Yo < 54
for each piece of advice i € {1,...,k} :

—2; §K(A,Ag)ozp — K(A,AZ)an + K(A, BlT)ul <z
—d"u; + ¢ > B — by + by,

For readability, we omit the subscripts on p and n. Note that
we have added slack variables z; and (; so that the advice
can be satisfied inexactly.

To close this section, we note that in our experiments we
introduced nonlinearity through the use of tiling rather than
through the use of a nonlinear kernel. Thus, we used the sim-
ple form of advice

Br<d=wlz+b,—wiz—b,>p (20)
The above analysis can be repeated to obtain an optimization
problem that incorporates the advice of Eq. 20 as

min
(wa,basSa,zi,(Ciui)>0)
J k
> (lwally + vlbal + Cllsallt) + > (mallzilly + p26i)
a=1 i=1

s.t. foreach actiona € {1,...,j}: @h

_SaSAawa+ba_ya§8a
for each piece of advicei € {1,...,k} :
—zigwp—wn—i-B;ruigzi

_dTUi+<i26i_bp+bn-

We note that here w, need not be a linear combination of the
rows of A,. This formulation is different from the formula-
tion of Eq. 19 with the linear kernel K (A4, AT) = AAT.

RoboCup Soccer: The BreakAway Problem

To demonstrate the effectiveness of our new formulation we
experimented with a new subtask we have developed based
on the RoboCup Soccer simulator (Noda et al. 1998). We
call this new task BreakAway; it is similar in spirit to the
KeepAway challenge problem of Stone and Sutton (2001).
BreakAway is played at one end of the soccer field, and
the objective of the N attackers is to score goals against M
defenders. A BreakAway game ends when a defender takes
the ball, the goalie catches the ball, the ball gets kicked out

Figure 1: A sample BreakAway game where two attackers,
represented as light circles with dark edges, are attempting
to score on a goalie. The goal is shown in black and the ball
is the large white circle.

of bounds, a goal gets scored, or the game length reaches
10 seconds. For simplicity, several rules about player be-
havior near the goal (such as the off-sides rules) are ig-
nored. Figure 1 contains a sample snapshot of the Break-
Away game. In our experiments we use this configuration,
which contains two attackers, zero defenders, and a goalie.

To simplify the learning task, attackers only learn when
they are in control of the ball. Those attackers that do not
have the ball follow a hard-wired strategy: they move to in-
tercept the ball if they estimate that they can reach it faster
than any other attacker; otherwise, they move to a good
shooting position near the goal and wait to receive a pass.

The attacker in possession of the ball has a learnable
choice of actions. It may choose to move with the ball, pass
the ball to a teammate, or shoot the ball at the goal. We limit
the movement actions to four choices: forward toward the
center of the goal, directly away from the goal, and right or
left along the circle centered at the goal. The shoot action di-
rects the ball at the center, right side, or left side of the goal,
whichever path is least blocked by the goalie. Note that all
of these high-level actions actually consist of multiple low-
level commands in the simulation.

Defenders, if there are any besides the goalie, follow a
simple hard-wired strategy. The one that can get to the ball
fastest tries to intercept it. If there are others, they move to
block the path between the ball and the nearest attacker, to
prevent it from receiving a pass.

The goalie tries to pick up the ball if close enough, and
otherwise it moves to block the path from the ball to the
center of the goal. This is an effective strategy; two attackers
who choose among their actions randomly will score against
this goalie in less than 3% of their games, even without any
non-goalie defenders.

For the case with two attackers and one goalie, a set of 13
features describes the world state from the perspective of the
attacker with the ball. These features provide pair-wise dis-
tances between players (3 features); distances between the
attacker with the ball and the left, center, and right portions
of the goal (3 features), distance from the other attacker to
the center of the goal (1 feature); the angle formed by the
three players (1); the angles between the goalie, the attacker
with the ball, and each of the left, center, and right portions
of the goal (3); the angle from the top-left corner of the field,

the center of the goal, and the attacker with the ball (1); and
the time left in the game (1).

The task is made more complex because the simulator in-
corporates noise into the players’ sensors. In addition, player
actions contain a small amount of error. For example, there
is a small probability that a player attempting to pass the ball
will misdirect it and send it out of bounds.

The attackers receive a reward at the end of the game
based on how the game ends. If they score a goal, the re-
ward is +2. If the ball goes out of bounds, the goalie steals
it, or time expires, the reward is -1. Missed shots, including
those the goalie blocked, lead to rewards of 0 (we chose this
neutral value in order to not discourage shooting).

In their work on KeepAway, Stone and Sutton showed that
reinforcement learning can be used successfully. They used
a tile encoding of the state space, where each feature is dis-
cretized several times into a set of overlapping bins. This
representation proved very effective in their experiments on
this task, and we use tiling in our experiments.

Experimentation

We performed experiments on BreakAway using three learn-
ing algorithms: (a) Pref-KBKR, (b) a KBKR learner that
only allows advice about individual actions (Eq. 6), and (c) a
support-vector reinforcement learner without advice (Eq. 5).

The two attackers pooled their experiences to learn a sin-
gle shared model. The attackers use that model to choose the
predicted best action 97.5% of the time (exploitation) and
otherwise randomly choose an action 2.5% (exploration).
We set the discount rate to 1 since games are time-limited.

We gave one piece of advice for each of the six possible
actions. Advice for when to shoot appears in the Introduc-
tion. We advise passing when more than 15m from the goal
and one’s teammate is closer to the goal but at least 3m from
the goalie. We advise moving ahead when more than 15m
from the goal but closer than one’s teammate. We advise
against moving away when more than 15m from the goal,
we advise against moving left when the angle with the top-
left corner is less than 20° and advise against moving right
when this angle exceeds 160°. We advise against an action
by saying its Q value is lower than a constant, which we de-
termine by computing the mean Q value in the training set.

In our experiments with Pref-KBKR, we use advice that is
similar to the advice we used for KBKR. We used the advice
about preferring Shoot to Pass shown in the Introduction,
but extended it to say that Shoot was preferred to all five
other actions in these circumstances. We also said that Pass
is preferred to all five other actions when more than 15m
from the goal, and one’s teammate is closer to the goal but
at least 3m from the goalie.

We set the values of C, v, uq, and po in our optimiza-
tion problems (Eq. 21) to 100/#examples, 10, 10, and 100
respectively. (By scaling C' by the number of examples, we
are penalizing the average error on the training examples,
rather than the total error over a varying number of exam-
ples.) We tried a small number of settings for C' for our non-
advice approach (i.e., our main experimental control) and
found that 100 worked best. We then used this same value

1.40

o 1.20
g
o
o 0.80
g 0.60
£ .
(]
€ 0.40 A
o
£ 020
&
= 000 . — Pref-KBKR| |
E KBKR
02 -
0.20 —— No Advice
'0.40 T T T T
0 5000 10000 15000 20000 25000

Games Played

Figure 2: The average total reinforcement as a function of
the number of games played for the three algorithms in our
experiments.

for our KBKR-based algorithms. We simply chose these 13
and po values and have not yet experimented with different
settings; 10 and 100 are actually the initial values for 17 and
1o — we scale these by e~947¢#/2500 g6 that the penalty for
not matching the advice is reduced as a function of the the
number of games played.

Since incremental algorithms for support-vector machines
are not well developed, we simply retrain models “from
scratch” every 100 games, using at most 2000 training exam-
ples per action. We choose half of these examples uniformly
from all earlier games and half via an exponentially decay-
ing probability according to the example’s age, in order to
not overfit the most recent experiences while still focusing
on recent data. For all three of our approaches, each training
cycle we recompute the Q’s for the chosen training exam-
ples using one-step SARSA learning (Sutton & Barto 1998)
obtained via the most recently learned models.

Figure 2 shows the results of our experiments. As a func-
tion of the number of games played, we report the average
reward over the previous 2500 games. Each curve is the aver-
age of ten runs. Our results show that giving preferential ad-
vice is advantageous in BreakAway, leading to statistically
significant improvements in performance over both KBKR
and a no advice approach (p < 0.001 in both cases using
unpaired 7-tests on the results at 25,000 games played).

Related Work

Others have proposed mechanisms for providing advice to
reinforcement learners. Clouse and Utgoff (1992) developed
a technique to allow a human observer to step in and pro-
vide advice in the form of single actions to take in a spe-
cific state. Lin (1992) “replays” teacher sequences to bias
a learner towards a teacher’s performance. Laud and De-
Jong (2002) developed a method that uses reinforcements
to shape the learner. Each of these methods, while providing
a mechanism for advice-taking differs significantly from the

Pref-KBKR form and usage of the advice.

Several researchers have examined advice-taking meth-
ods that use some form of programming language to spec-
ify procedural advice. Gordon and Subramanian (1994), de-
veloped a method that accepts advice in the form IF con-
dition THEN achieve goals that operationalizes the advice
and then uses genetic algorithms to adjust it with respect to
the data. Our work is similar in the form of advice, but we
use a significantly different approach (optimization via lin-
ear programming) as our means of determining how to in-
corporate that advice. Maclin and Shavlik (1996) present a
language for providing advice to a reinforcement learner that
includes simple IF-THEN rules and more complex rules in-
volving recommended action sequences. These rules are in-
serted into a neural network, which then learns from future
experience, whereas KBKR uses support-vector machines.
Unlike Pref-KBKR, Maclin and Shavlik’s approach did not
allow the user to indicate preferences for one action over an-
other. Andre and Russell (2001) describe a language for cre-
ating learning agents, but the commands in their language
are assumed by their learners to be fully correct, while in
KBKR advice is not assumed to be constant and can be re-
fined via slack variables.

Conclusions and Future Work

We have presented a new algorithm, called Preference
KBKR (Pref-KBKR), that allows a human user to present
advice in a natural form to a reinforcement learner. Advice
in Pref-KBKR takes the form of IF-THEN rules, where the
IF indicates situations in which the advice applies and the
THEN indicates a preference for one action over another.
Thus, users present their advice in terms of policies — the
choice of the action to perform in the current state — rather
than giving their advice in terms of () values, which are an
internal detail of the learning algorithm we employ.

Our algorithm is based on Knowledge-Based Kernel Re-
gression (KBKR). We represent the preference advice as
additional constraints to a support-vector regression task,
which is solved using a linear-program solver. We tested our
approach on a new testbed that we only recently developed.
It is based on the RoboCup soccer simulator and addresses a
subtask of soccer, which we call BreakAway. We empirically
compare three approaches: a support-vector solver that re-
ceives no advice, a KBKR solver that receives advice about
desired () values, and our new Pref-KBKR technique. Our
results show that giving advice is advantageous, and that ad-
vice about preferred actions can be more effective than ad-
vice about () values.

In our future work, we plan to investigate Pref-KBKR on
a wider set of problems and with additional pieces of ad-
vice. We also intend to test these systems on a wider variety
of parameter settings to see how important the various pa-
rameters are to the effectiveness of these methods. Another
of our planned experiments is to use kernels (Eq. 19), with
and without tiling our features. We also need to address scal-
ing to larger numbers of advice and larger numbers of train-
ing examples. We believe that advice-taking methods are
critical for scaling reinforcement-learning methods to large

problems, and that approaches making use of support-vector
techniques will be crucial in this effort.

Acknowledgements

This research was partially supported by DARPA grant
HRO0011-04-1-0007 and US Naval Research Labora-
tory grant NO00173-04-1-G026. The code for Break-
Away can be obtained from ftp://ftp.cs.wisc.edu/machine-
learning/shavlik-group/RoboCup/breakaway.

References

Andre, D., and Russell, S. 2001. Programmable reinforce-
ment learning agents. In NIPS 13.

Clouse, J., and Utgoff, P. 1992. A teaching method for
reinforcement learning. In ICML’92.

Dietterich, T., and Wang, X. 2001. Support vectors for
reinforcement learning. In ECML’01.

Gordon, D., and Subramanian, D. 1994. A multistrategy
learning scheme for agent knowledge acquisition. Infor-
matica 17:331-346.

Kuhlmann, G.; Stone, P.; Mooney, R.; and Shavlik, J. 2004.
Guiding a reinforcement learner with natural language ad-
vice: Initial results in RoboCup soccer. In AAAI’04 Wshp
on Supervisory Control of Learning and Adaptive Systems.

Lagoudakis, M., and Parr, R. 2003. Reinforcement learn-
ing as classification: Leveraging modern classifiers. In
ICML’03.

Laud, A., and DeJong, G. 2002. Reinforcement learn-
ing and shaping: Encouraging intended behaviors. In
ICML 02.

Lin, L. 1992. Self-improving reactive agents based on
reinforcement learning, planning, and teaching. Machine
Learning 8:293-321.

Maclin, R., and Shavlik, J. 1996. Creating advice-taking
reinforcement learners. Machine Learning 22:251-281.
Maclin, R.; Shavlik, J.; Torrey, L.; and Walker, T. 2005.
Knowledge-based support-vector regression for reinforce-
ment learning. In IJCAI’05 Wshp on Reasoning, Represen-
tation, and Learning in Computer Games.

Mangasarian, O.; Shavlik, J.; and Wild, E. 2004.
Knowledge-based kernel approximation. Journal of Ma-
chine Learning Research 5:1127-1141.

Mangasarian, O. 1994. Nonlinear Programming. Philadel-
phia, PA: STAM.

Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer server: A tool for research on multiagent systems.
Applied Artificial Intelligence 12:233-250.

Stone, P., and Sutton, R. 2001. Scaling reinforcement
learning toward RoboCup soccer. In ICML’01.

Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.

