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Abstract 
 
   Hierarchical metric-space clustering methods have 
been commonly used to organize proteomes into 
taxonomies. Consequently, it is often anticipated that 
hierarchical clustering can be leveraged as a basis for 
scalable database index structures capable of managing 
the hyper-exponential growth of sequence data. M-tree is 
one such data structure specialized for the management of 
large data sets on disk. 
    We explore the application of M-trees to the storage 
and retrieval of peptide sequence data. Exploiting a 
technique first suggested by Myers, we organize the 
database as records of fixed length substrings. Empirical 
results are promising. However, metric-space indexes are 
subject to “the curse of dimensionality” and the ultimate 
performance of an index is sensitive to the quality of the 
initial construction of the index. We introduce new 
hierarchical bulk-load algorithm that alternates between 
top-down and bottom-up clustering to initialize the index.  
Using the Yeast Proteomes, the bi-directional bulk load 
produces a more effective index than the existing M-tree 
initialization algorithms. 
 
 
1. Introduction 
 

The Moore’s constant (doubling time) for the size of 
GenBank has shrunk from 18 months to 15 months [2]. 
Thus, effective support of sequence driven queries 
requires the development of scalable database index 
structures. In particular, it will be insufficient to merely 
store sequence data in a database and use utilities to scan 
the database (e.g. BLAST). The sequences must serve as 
index keys.  

 
Definition 1: A metric space is a set of objects, S, and a 
[metric] distance function, d, such that, given any three 
objects, x, y, z,  

(i) d(x, y) >= 0 and d(x, y) = 0 iff x = y. (Positivity) 
(ii) d(x, y) = d(y, x). (Symmetry) 

(iii) d(x, y) + d(y, z) >= d(x, z). (Triangle Inequality) 

The value of a metric-space approach is that it is 
unnecessary to find a meaning for the data with respect to 
the axes of a coordinate system. One can say that a tree-
based index structure of a metric space materializes a 
persistent representation of a hierarchical clustering of the 
data [7]. The triangle inequality is leveraged both to find 
naturally occurring data clusters, allocate them to separate 
sub-trees and to prune the search when retrieving data by 
traversing the tree.  

Global alignment of sequences is based on simple 
edit distance forms a metric(Levenshtein distance)[13]. It 
is commonly asserted that metric-space indexing should 
be applicable to biological sequence data. This has been 
accomplished by Giladi et.al. using the SST algorithm. 
There are many protein classification studies entailing the 
projection of similarity scores into a metric-space and 
deriving hierarchical clusterings [1, 22, 25, 28]. 

Our work is conducted within the context of 
developing a next-generation database management 
system, MoBIoS (Molecular Biological Information 
System), specialized for storage, retrieval and mining of 
biological data. MoBIoS comprises a metric-space based 
storage-manager and query language embodying the 
semantics of genomic and proteomics data. The research 
addresses a primary challenge facing biological databases: 
many of the data types are incompatible with the 
relational data model. Even when object-relational data 
models (e.g. XML) are used, there are few results 
comprising scalable index structures. The general interest 
in metric-space indexing stems from multimedia data 
types, such as images, video and music [4, 7]. 

With respect to sequence look-up we expect our 
complete homology search implementation to follow a 
general framework first proposed and analyzed by Myers 
[24]. Let the database comprise a sequence A of length N.  
Let the query be a string, W of length P, and a similarity 
threshold D. Off-line:  1) Divide a sequence database into 
small substrings of fixed length, T; 2) Build an index to 
support constant-time, O(1), look-up of  matches. For On-
line query: 1) Divide the query string W into substrings, 
Wi, of length T, i = 0..W/T; 2) For each Wi, generate all 
strings that fall within the similarity threshold D. Use the 
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index to determine if each generated string is in the 
database.  If not, discard it. 3) Chain the valid strings 
together to form solutions to the full query. 

Variations on the division (and overlap) of the 
database and query sequences lead to different chaining 
algorithms. The reader may recognize that BLAST 
divides the query sequence, but not the database and in-
lieu of building an index off-line, generates the hot-spot 
index at query time. Contemporary efforts, SST, BLAT 
and ours, to name a few [15, 21], seek to replace the 
generation and test phase of on-line step 2 with an index 
look-up. 

Giladi et.al. report performance for the SST algorithm 
as 27 times faster than BLAST when running search alone 
and 15 times faster than BLAST when considering both 
building and searching time [15]. In their work strings of 
nucleotides were mapped to a metric-space using 
Manhattan distance and a k-tuple encoding of 
subsequences where the dimension of the vector is Σk, 

where Σ is the size of the alphabet of the nucleotides. 
Using a main-memory index tree they further report 
average time complexity for building database index is 
O(nlogn) and O(mlogn) average time complexity for 
search. Although the authors claim the technique is 
equally applicable to peptides, the performance, in terms 
of speed and accuracy will suffer due to significantly 
increased alphabet size (20 amino acid vs. 4 nucleotides). 
Kent reports slightly faster results with a similar approach 
comprising a hash-based index, (BLAT)[21]. 

For these sequence homology efforts, the distance 
functions do not embody an evolutionary model and the 
application of the algorithms is limited to sequence 
assembly and evolutionarily close questions. 

To achieve our goals for MoBIoS we need to resolve 
two issues: the details of a scalable disk-based metric-tree 
index and a direct method for computing evolutionary 
distance between subsequences. PAM and related 
substitution matrices compute similarities. Similarity 
matrices reward more similar sequences with higher 
scores, an intuitively comfortable representation for 
biologists, but reverse the order in a metric.  In a metric, 
more similar objects must have distance closer to zero. 

There are a number of other metric substitution 
matrices [16, 29]. In related work we have addressed the 
distance issue by reworking the PAM substitution 
matrices to entail a metric [27].  Intuitively, where the 
PAM model speaks to the frequency of amino acid 
substitutions, for a given frequency, we computed an 
expected time. Thus, our matrix, mPAM, meets the 
requirement of a metric-distance.   

The challenge we face with respect to scalable disk-
based metric-indexes is called the curse of dimensionality 
[6, 7]. Simply stated, in a high dimensional space, as the 
distance from a point data grows, the number of neighbors 
in a bounding sphere grows exponentially. Further, most 

interesting problem statements concerning optimal, 
single-level, k-clusterings are NP-hard. Consequently, 
partitioning a high-dimensional space into a hierarchy of 
disjoint clusters is a computationally demanding process.   

The M-tree, a metric-space indexing package from 
the University of Bologna, Italy, as the basis of such an 
index [10]. Its in-memory query processing for static 
metric spaces has received extensive attention [7, 20]. To 
visit the applicability of the M-tree for the MoBIoS 
storage manager, we loaded the contents of a local 
chloroplast sequence database and the yeast proteome into 
M-trees and developed a test workload. We were not 
satisfied with the query performance although we tried all 
built in alternatives for initializing the index.  

After further analyze, algorithmically, M-tree’s built-
in loading features, we designed a new, bi-directional 
initialization. We started with a greedy k-center algorithm, 
farthest-first-traversal[18]. Both analysis and experimental 
results demonstrate our algorithm is scalable and leads to 
better query performance. 

In Section 2, we introduce M-tree. Several algorithms 
to initialize M-tree are described and analyzed in Section 
3, include M-tree bulk loading and our bi-directional 
initialization, followed by experimental results in Section 
4. Section 5 consists of conclusions and future work. 

 
2. Introduction to M-tree  

 
There are two primary methods used to define the 

predicates for metric-spaces: vantage points and 
generalized Hyperplanes. In vantage point methods [2, 7, 
8, 30], once a point, vantage point, is chosen, other points 
are partitioned according to their distances to the vantage 
point. Each partition satisfies a predicate P(V, rmin, rmax), 
In generalized hyperplanes [4, 7, 10, 30], two points are 
chosen as centers. The remaining points are assigned to 
the closest center. Therefore, each partition’s predicate is 
its center. In either method, the fanout of interior nodes 
may be increased by choosing more center points, in 
which, the data structure in Euclidean space resembles a 
Voronoi partitioning [7].  

M-tree [9, 10] is a balanced General Hyperplane 
structure with dynamic capabilities. It is open source 
package which built on the basis of GiST framework[6]. 
The release we downloaded and tested is version 0.911 
[23]. In this section, we will introduce the node structure, 
and search strategy of M-tree. Since our contribution 
concerns initialization, we will not detail the dynamic 
aspects of the M-tree algorithm. The interested reader may 
see [10]. 

 
2.1 Node structure 
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 M-trees are composed of internal nodes and leaf 
nodes. Leaf nodes store all the data objects entries. 
Internal nodes store routing objects [9, 10]. 

A routing object consists of a pointer to the root node 
of a sub-tree, the key of the routing object, a covering 
radius and the distance from the parent routing object to 
itself. Each leaf entry consists of the key of the data object, 
the data object identifier and the distance from its parent 
routing object to itself.  

 
2.2 Searching in M-tree 

 
M-trees support two types of similarity queries, range 

query and nearest-neighbor query. Since nearest-neighbor 
queries can be systematically implemented by range 
queries [7], to simplify the discussion, we only consider 
range queries in this paper. 

Definition 2: Range query range(Q,r): Given a data 
point Q and a distance r , a range query returns all 
objects O in the database  such that d(Q, O) ≤ r. 

The performance of similarity queries for disk based 
systems must consider both the number of disk I/Os, (i.e., 
number of nodes accessed), and number of distance 
computations. To improve performance, the key idea is to 
store pre-computed distances in the interior nodes, such as 
covering radii of the children, and exploit the triangle 
inequality to prune both the number of distance 
calculations within an interior node and the number of 
sub-trees recursively searched. Given query (Q, r), routing 
object Or with covering radius r(Or) and parent node Op,  
M-tree search exploits two rules [7, 10 ].  
Rule 1: If d(Or, Q) > r(Q) + r(Or), then, for any data 

object Oj in the sub-trees of Or, d(Oj, Q) > r, i.e., 
all the sub-trees of Or can be pruned. 

Rule 2: If | d(Op, Q) - d(Op, Or) | > r(Q) + r(Or), then for 
any data object Oj in the sub-trees of Or, d(Oj, Q) > 
r, i.e., all the sub-trees of Or can be pruned. 

The search algorithm can traverse the tree either 
breadth-first or depth-first. The interested reader is 
referred to [7, 10] for details. 

 
3. Initializing M-tree 

 
M-tree takes the search requirements of secondary 

storage into consideration. It implies that the tree should 
be balanced and, within some tolerance, each node has 
same utilization.  It is a sharp contrast with the usual goals 
of hierarchical clustering: revealing naturally occuring 
relationships among the data. In particular, some leaves of 
the tree may be very deep compared to others.  Outliers, 
data points that are far from most other points of the 
dataset, if each mapped to their own cluster and then each 
mapped to a disk page, can result in both high I/O 
overhead and poor disk utilization. 

Given a data set D of size n (D = {d1, d2, …, dn}), 
we cluster D hierarchically with constraints on minimum 
and maximum node utilization. We denote the constraints 
as minimum and maximum children number, m and M, of 
nodes and k (m≤k≤M) as the average number of objects 
in index nodes (fanout). M-tree’s dynamic operations 
(insert and delete) make certain local, greedy (clustering) 
decisions to avoid algorithmically expensive operations. A 
good tree structure is critical to the query performance. 
We expect M-trees will require periodic rebalancing.  

As part of its standard distribution, there are two 
ways to initialize an M-tree, a top-down bulk-load method 
and repeated insertions (a bottom-up construction). 

We were not satisfied with the results we first 
obtained with M-tree and recognized its initialization 
methods as a contributing factor. In particular, its greedy 
heuristics intended to minimize extra I/O due to outliers 
induce large radii and reduce the opportunity for pruning 
during search. For our implementation and analysis we 
use the farthest-first traversal k-center algorithm (FFT). 
FFT is a fast, greedy algorithm that minimizes the 
maximum cluster radius. It has been shown that FFT is 
guaranteed to produce a solution within a factor of 2 of 
optimal [18]. Since there is no consideration of balance, 
this is not necessarily the best objective function.  Our 
attempt is to try heuristics associated with proven 
algorithmic guarantees, even if the objective function is 
not optimal, in preference to heuristics that speak only 
intuitively to desirable objective functions.  

In FFT, k points are first selected as cluster centers. 
The remaining point is added to the cluster whose center 
is the closest. The first center is chosen randomly. The 
second center is greedily chosen as the point furthest from 
the first.  Each remaining center is determined by greedily 
choosing the point farthest from the set of already chosen 
centers, where the furthest point, x, from a set, D, is 
defined as, maxx{min{d(x,j), j∈D}}. The farthest-first 
traversal algorithm is shown in Figure 1. The time 
complexity of FFT isΘ(sk), where s is the number of data 
objects and k is the number of clusters. 

3.1 Top-down Initialization Algorithms 
 
Definition 3 Simple Top-down Hierarchical Clustering 

Run FFT on the whole data set to establish an 

Farthest_first_traversal(D: data set, k: integer) 
{ randomly select first center; 
//select centers 
for (I= 2,…,k) 
{ for (each remaining point) 

calculate distance to the current center set 
select the point with maximum distance as new 
center; } 

//assign remaining points 
for (each remaining point) 
{ calculate the distance to each cluster center; 
put it to the cluster with minimum distance; } 

} 

Figure 1. Algorithm of farthest-first traversal 
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initial clustering. Recursively call FFT on each 
cluster that is too big to be put in a leaf node. 

The Simple Top-down Hierarchical Clustering 
algorithm is detailed in Figure 2. Since the algorithm is 
applied recursively to sub-clusters,, the maximum 
children number constraint is satisfied. To satisfy the 
minimum children number constraint we delete the too 
small clusters and add each of their data objects to the 
closest of the remaining clusters respectively. 

Simple top-down hierarchical clustering does not 
guarantee the index tree to be balanced.  

Lemma 1: Simple Top-down Hierarchical Clustering’s 
time complexity isΘ(nlgn) in the best case, andΘ(n2) in 
the worst case. 

Proof:       Best case:  
If each recursive call of FFT produces similarly sized 

clusters, the algorithm degenerates to a simple divide-and-
conquer algorithm of k sub-problems, each of which with 
size n/k. The index tree is balance. The time complexity to 
build the tree isΘ(nlgn). 

Worst case:  
When FFT yields unbalanced clusters, in extreme 

case, after eliminating the small clusters, only two clusters 
will be left. One will be a leaf of size k-1. The other node, 
subject to recursive splitting will contain n-k data objects. 
To  simplify, we assume the leaf size is k. 

T(n) = FFT(n,k) + T(n-k,k) 
T(n-k, k) = FFT(n-k, k) + T(n-2k, k) 
…. 
T(n) = FFT(n,k) + FFT(n-k,k) + FFT(n-2k, k) + …  

=∑i FFT(n - i﹒k,  k) , (0 ≤i≤n/k –1) 
= ∑i k(n - i﹒k) , (∵FFT(s,t) = O(st) ) 
=∑i kn - i﹒k2  = kn﹒n/k - k2

∑i I 
= n2  - k2 

﹒1/2(n/k –1)﹒n/k 
=Θ(n2) 

The M-tree top-down method generates an initial 
clustering by selecting k center objects at random to form 
cluster and then calls itself recursively for each cluster. To 
satisfy the minimum node size constraint, the algorithm 
detects and deletes small clusters and inserts their data 
objects into the remaining clusters that have the closest 
center respectively. It finds the minimum height hmin for 
all the subtrees. Then, it splits the taller subtrees into a 

forest of subtrees of height hmin. Next, it calls itself 
recursively to build a super tree on the centers of the 
forest. Finally, it calculates the covering radius of the root 
routing object as the maximum sum among the sums of 
the covering radius of its children and distance from the 
children [9, 10]. Figure 3 presents the algorithm of M-tree 
bulk loading. 

We can see, like the simple top-down clustering, that 
M-tree bulk loading satisfies the minimum and maximum 
node size constraints but it also produces a balance index 
tree. The Algorithm [9] is shown in Figure 3. We analyze 
the time complexity of M-tree bulk loading by Theorem 1. 

Theorem 1: The time complexity of M-tree bulk loading 
isΘ(nlgn) in the best case and Ω(n3) in the worst case. 

Proof:        Best case: 
If the k-center algorithm produces clusters in nearly 

the same size, the index trees produced by recursively 
calls on every cluster are of the same height. Therefore, 
no index tree will be split and no super-tree will be 
generated. Actually, this case is a Simple Top-down 
Hierarchical Clustering. From Lemma 1, the time 
complexity isΘ(nlgn). 

Worst case: 
If the k-center algorithm does not produce clusters 

balanced in size, it takes more time to bulk load. Let’s 
consider an extreme case that only two clusters left after 
eliminating the small clusters, and one of them is a leaf. 
Thus, the minimum index tree height is 1, the other higher 
index tree will be split and number of sub-trees is n/k. So, 
we have (assume n is big enough) 
T(n) = nk + T(n/k) + T(n-k) 
T(n-k) = (n-k)k + T(n/k –1) + T(n-2k) 
T(n-2k) = (n-2k)k + T(n/k –2) + T(n-3k) 
… 
T(n-(n/k –1)k) = (n-(n/k –1)k)k + T(1) + T(k) 
T(n) = ∑i(n-ik)k + ∑iT(n/k –i) + ∑iT(n-ik), (0≤i≤n/k-1) 

= n2 – k2[1/2 n/k (n/k –1)] + ∑iT(n/k –i) + ∑iT(n-ik) 
≥n2 – k2[1/2 n/k n/k] + ∑iT(n/k –i) + ∑iT(n-ik) 
= 1/2 n2 + ∑iT(n/k –i) + ∑iT(n-ik)                        (1) 
≥1/2 n2 + ∑iT(n/k –i) , (0 ≤i≤n/k - n/2k ) 

Td-Bulkloading(D: data set, m, M: integer) 
{ if ( |D| ≤M) return a leaf node; 

   FFT( D, k); 

   For (each sub-cluster Di) 
If ( |Di| < m) delete Di, put each point in Di
into the closest sub-cluster; 

   For (each remaining sub-cluster Di) 
        FFT(Di, k); 
} 

Figure 2. Simple top-down hierarchical clustering 

Mtree-Bulkloading(D: data set, m, M: integer) 
{ if ( |D| ≤M) return a leaf node; 

Randomcenter_clustering(D, k); 

Eliminate small clusters; 

For (each remaining cluster Di) 

Mtree-Bulkloading(Di, m, M); 

Split the resulting index trees into sub-trees of 
the minimum height; 

Construct data set Super of all sub-tree roots; 

Mtree-Bulkloading(Super, m,M); 

Append sub-trees to the super tree. 

r = max{ r
i
 + d(o, o

i
) }; 

}

Figure 3. Algorithm of M-tree Bulk loading 
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≥1/2 n2 + n/2k 1/2 (n/2k)2, (from (1), T(n) ≥1/2 n2) 
 =1/2 n2 + n3/16k3 
 ≥1/16k3 n3   

3.2 Bottom-up Initialization Algorithms 

Definition 4 Simple Bottom-up Hierarchical Clustering 
For each level, it first computes number of clusters 
according to index node size, fanout k and size of current 
level data set. Then it runs FFT to cluster the data set, 
and finally, it constructs the data set of next level from all 
the centers of sub-clusters of current level. 

Algorithm of Simple Bottom-up Hierarchical 
Clustering is shown in Figure 4. The minimum node size 
constraint can be satisfied by using the same merging 
technique discussed in last sub-section. However, since in 
each level FFT only runs once and then continues to 
cluster the higher level, the maximum node size constraint 
is not guaranteed to be satisfied. The maximum node size 
constraint will be satisfied only if FFT does not produce 
unacceptably large cluster. It will generate a balanced 
index tree. 

Lemma 2: If maximum node size constraint is satisfied by 
FFT, Simple Bottom-up Hierarchical clustering generates 
a balance index tree, and the time complexity isΘ(n2). 

Proof: If maximum node size constraint is satisfied, given 
average node size k, cluster number of a level is the size 
of data set of that level divided by k. So, we have 
following: 

T(n)= FFT(n, n/k) + FFT(n/k, n/k2) + FFT(n/k2, n/k3) 
+ … 

=∑i FFT(n/ki, n/ki+1) , ( 0 ≤i≤logk
n –2 ) 

=∑i FFT(n/ki, n/ki+1) , (∵FFT(s,t) = O(st) ) 
=∑i n

2 k-2i-1 = n2
∑i k

-2i-1 

≤n2
∑i k

-2i, ( 0 ≤i ) ≤n2 e =Θ(n2) . 
M-tree bottom-up initialization is implemented by 

running insert operations repeatedly for each data object 
in the given data set. The insert algorithm is an insert-
split-promote method similar to that of B-tree [10]. It first 
selects the target leaf node into which to insert the data 
object based on its search algorithm. If the target node 
exceeds the maximum node utilization after insertion, it 
splits the node, selects a pair of objects as new centers and 
promotes them. Several split and promote policies are 

provided by M-tree, such as minimum volume, minimum 
overlap, and generalized Hyperplane distribution [10]. 

In the insert-split-promote procedure, no matter what 
policies are used, the time spent on each level is constant. 
Thus, given the height h of the tree, the insertion accesses 
h levels in the best case (no split and promotion) and 2h 
levels in the worst case (split and promote in every level). 
If the tree is balanced, the time complexity of insertion is
Θ (lgn). Consequently, the time complexity of M-tree 
bottom-up initialization isΘ (nlgn). Our experimental 
results confirm the reported results that this method of 
initialization scales well with the size of the database. 

Comparing with M-tree top-down bulk loading, M-
tree bottom-up initialization is faster. At the same time, 
since the top-down uses random k-center algorithm, 
bottom-up yields out better query performance. The 
experimental results also show this. On the other hand, 
since the choice of leaf node is determined by the search 
procedure and clusters are split pair wise without 
consideration or reorganization of the remaining clusters, 
the M-tree bottom-up initialization technique does not 
produce uniformly tight clustering at the leaves. Moreover, 
both top-down and bottom up compute the covering 
radius as the maximum sum of the distance from the 
center to child center and the covering radius of child 
routing object among all children, i.e., r = max{ d(O, Oi) 
+ ri, Oi are the children of O}. Radii computed by this way 
are actually increased unnecessarily. We will detail this in 
the following empirical analysis. 

3.3 FFT Derived Bi-directional Initialization  

Top-down algorithm satisfies the maximum node size 
constraint but cannot guarantee a balanced index tree. 
Bottom-up produces a balanced tree, but will satisfy the 
maximum node size constraint if and only if the data 
naturally decomposes into approximately equal size 
clusters, an unlikely scenario given that the number of 
clusters, (one per leaf) is calculated a priori without any 
knowledge of the nature of the data. To exploiting the 
advantages of both approaches, we introduced the bi-
directional initialization. 

Definition 5: Bi-directional initialization In each level 
of the bottom-up, we first run a simple top-down 
hierarchical clustering algorithm on current level data set. 
The leaves of the cluster tree returned by simple top-down 
are actually clusters of the data set with minimum and 
maximum node size constraints. Then, we construct the 
data set of next level from centers of all clusters of current 
level. The radius is computed as the maximum distance 
between the center and each data objects in the subtree. 
The bottom-up procedure terminates when current level 
data fit one disk page. 

The bi-directional initialization algorithm is shown in 
Figure 5. Now, the top-down algorithm is applied to the 

Bu-Bulkloading(D: data set, m, M: integer) 
{ if ( |D| ≤M) return a leaf node; 
  while ( |D| > M) 
{  FFT( D, |D|/k); 

       For (each sub-cluster Di) 
If ( |Di| < m) delete Di, put data in Di 
into other sub-cluster; 

D = centers of all Di; 
} 

 } 
Figure 4. Algorithm of Simple Bottom-up 

Hierarchical Clustering 
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predicates that cover the leaves that already satisfy the 
minimum and maximum node size constraints, building 
the bottom-layer of interior nodes. Repeated application 
of the top-down algorithm generates a balanced index tree 
satisfying both constraints. 

Theorem 2: The time complexity of bi-directional 
initialization isΘ(nlgn) in the best case andΘ(n2) in the 
worst case. 

Proof: The best and the worst cases of Simple Top-down 
Hierarchical Clustering are also the best and the worst 
cases of Bi-directional Bulk-loading respectively. 

From Lemma 2: 
      T(n) = FFT(n, n/k) + FFT(n/k, n/k2) + FFT(n/k2, n/k3) 

+ … 
              = Top-down(n) + Top-down(n/k)  

+ Top-down(n/ k2) + … 
Best case: 

From Lemma 1: Top-down(n) = O(nlgn) 
T(n) = nlgn + n/k lg n/k + n/ k2 lg n/ k2 + … 

=∑i n/ki lgn/ki, ( 0 ≤i≤logk
n –1 ) 

=∑i n/ki (lgn- i ) =  nlgn
∑i k

-i - ∑i i k
-I 

≤nlgn
∑i k

-i = nlgn [ (n-1)k / n(k-1) ]  
=Θ(nlgn) 

Worst case: 
From Lemma 1: Top-down(n) = O(n2) 
T(n) = n2  +  n2 / k2  + n4 / k4 + … 

= n2 
∑i k

-2i, (0 ≤i≤n/k –1) 
= n2 (1- k-2n/k) / (1- k-2) =Θ(n2). 

All of top-down, bottom-up and bi-directional 
initializations have the same best-case time complexity, 
Θ(nlgn), which is the same as for B+-trees. Bi-directional 
initialization’s worst-case time complexity, Θ(n2), is far 
better than that of top-down initialization, Ω(n3), while is 
worse than that of bottom-up initialization, Θ(nlgn). In 
practice, for gene sequence datasets, the load time of both 
the bi-directional initialization and M-tree bottom-up 
scale linearly with database size (Figure 10). 

Top-down uses random k-center algorithm to cluster 
a single level of data. Bottom-up only considers local 
context. In bi-directional initialization, farthest-first 
traversal algorithm, which gives a solution guaranteed to 
be within a factor of 2 of optimal, is used to cluster a 
single level or data with global consideration. 

Moreover, in both M-tree initializations, cover radii 
are computed as the maximum of the sum of child-parent 
distance and child node radii among all children. It results 
in larger stored radii and decreases the search 
performance. In our approach, we compute the radius as 
the maximum distance between the center and data object 
in the sub-tree. It takes more time in initialization but 
compensated by better query performance. 

 
4. Experimental Results  

 
Our experimental results comprise, the initialization 

running time, index structure information pertinent to 
index quality and query performance.  We’ve made 
measurements of both M-tree initialization methods and 
bi-directional initialization. We use the M-tree open 
source release v0.91, which is written in C++ [23]. Our 
own implementation of M-tree with bi-directional 
initialization is written in JAVA. Therefore, we report on 
implementation independent measurements such as 
counting the number of distance computations and nodes 
visited.  Nodes-visited is proportional to the number of 
disk I/Os. We use the same source data and parameters, 
such as node utilization, dataset size, for both the original 
M-tree release and our Java implementation. The dataset 
we use is Yeast gene sequence data downloaded from [31], 
and local chloroplast genome sequence data. We split the 

sequences into equal size segments of 10 amino acids. 
We first compare the query performance of M-tree's 

top-down and bottom-up initializations. For bottom-up 
initialization, we tried several combinations of split and 
promotion policies. The best combination is to use 
balanced-GH split policy and minimum overlap 
promotion policy together. We initialize M-trees with 
chloroplast gnome sequence data and ran queries on them. 
For both initializations, the relationship between the 

Bidirectional-Bulkloading(D: data set, m, M: integer)

{ if ( |D| ≤M) return a leaf node; 

  while ( |D| > M) 

{ Td-Bulkloading(D,m, M); 

   get all the leaves Di. 

   construct index nodes of current level from Di 

D = {centers of all Di} 

compute the covering radius: r = max{ d(O,di) } 

}  

} 

Figure 5. Algorithm of Bi-directional initialization 

Figure 8.  Figure 9.  

Figure 6.  Figure 7.  
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number of distance computations and the database size, 
and relationship between the number of disk I/Os and the 
database size are shown in Figures 6 and 7. The results 
suggest that bottom-up initialization has better 
performance than top-down. Therefore, for the remainder 
of the paper we present M-tree results only with respect to 
bottom-up initialization. 

In the rest of this section, we present the results of the 
bi-directional initialization with respect to the yeast 
proteome  sequence dataset. To get deep insight of the 
data and held determine the scope of realistic range query 
radiiwe first compute the distance distribution for all pairs 
of points in the dataset (Figure 8). According to the figure, 
the data objects distribute normally in the space. The 
maximum distance between two object is around 60. 
Moreover, after distance 20, the curve climbs up rapidly, 
which indicates that due to vast amount of results, range 
query radius greater than 20 is meaningless. For 75% 
conserved peptide sequences of length 10, the average 
mPAM score is around 7. 

To lend insight into the quality of the clusterig of the 
two methods, bi-directional initialization and bottom-up 
initialization, we compute the covering radii of each tree 
level. See Figure 9. This figure shows that the radius of 
bottom-up initialization decreases significantly while 
descending the tree, which suggests that the dataset is 
clustered significantly. 

However, we can also see that for higher levels, the 
radii of bottom-up initialization are much higher than 
those of bi-directional initialization. From Figure 8 we 
know that the maximum distance between two objects is 
around 60. However, in the seven higher levels of bottom-
up initialized M-tree, the average radii are all greater than 
60. According to the pruning rules, due to the large 
covering radii, almost none of the children will be pruned 
in the higher levels, i.e., nearly all the internal nodes in the 

seven highest levels will be visited. This will appear as 

both I/O cost and distance computations. For bi-
directional initialization, no radius exceeds 60, which 
means the search will prune tree branches immediately. 
Finally, in any level, the radius of bi-directional 
initialization is smaller than that of bottom-up 
initialization, indicating better clustering and implying 
better query performance than bottom-up initialization. 

We also show the initialization running time of the 
two initializations to examine their scalability (Figure 10). 
Because the bottom-up initialization is implemented in 
C++ and bi-directional initialization is implemented in 
JAVA, we scale the date when put them into the figure. 
Figure 10 show that both initializations have good 
scalability in building the database. 

Next, we present the results of queries. Two main 
measurements of query performance are the number of 
distance calculations and number of disk I/Os. Figure 11 
shows the comparison of number of distance 
computations of bi-directional initialization and bottom-
up initialization. First, we can see that the numbers of 
distance computations of bottom-up initialization are 
much greater than those of bi-directional initialization. 
Especially, for radius 0, (exact matches) bottom-up’s 
number is three times of that of bi-directional 
initialization’s, and for radius 10, bottom-up’s number is 
two times that of bi-directional initialization. We can also 
see that as the radius increases, the two numbers become 
closer. Given the curse of dimensionality we would expect 
that increasing the radius would quickly induce the entire 
tree to be searched, independent of the initialization. 

Comparison of I/O number vs. radius is shown in 
Figure 12. Similar conclusion can be drawn as from 
Figure 11.  

From all the experimental results shown above, we 
can conclude that the bi-directional initialization owns 
better performance than M-tree bulk loading. 

 
5. Conclusions and Future Work 

 
Due to the curse of dimensionality the performance of 

a metric space indexing structure is very sensitive to the 
initialization algorithm. Moreover, periodic bulk loading 
and re-balancing is also critical to maintain an index 
structure for dynamic disk-based operation. 

Comparing with M-tree top-down and bottom-up 
initializations, bi-directional initialization is simpler and 
produces better results. Specifically, top-down and bi-
directional initialization have the same best case time 
complexity, Θ(nlgn), while top-down’s worst case time 
complexity, Ω(n3), is far slower than that of bi-directional 
initialization, Θ (n2). Currently, we use bi-directional 
initialization on the same data structure and search 
strategy as M-tree. The differences are the single level 
clustering algorithm, the hierarchical clustering algorithm, 

Figure 10. Running time of both initializations 

Figure 11. Figure 12. 
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and the way they calculate the covering radii of internal 
nodes. 

Experimental results show that both bottom-up and bi 
directional initializations are scalable. However, bi-
directional initialization produces better index structure. 
From the experiments, we can also conclude that bi-
directional initialization owns better query performance 
than M-tree. 

Our results for sequence data contradict those 
reported by the M-tree project on their synthetic test data. 
It is quite normal in the development of search-tree that 
heuristics are individualized to particular workloads [17]. 
In ongoing work we are exploring other clustering 
algorithms in hopes of finding a single generally 
applicable solution.  Toward that end, we are exploring 
approximation algorithms for the capacitated k-median 
problem in hopes that a simple top-down clustering can be 
developed that will guarantee a balanced tree and 
potentially useful approximation guarantees for the index 
as a whole. 
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