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Abstract

The sequencing and annotation of entire genomes has edrittee content of biological sequence
databases such that new methods of sequence analysis, teonpand retrieval are being invented
and rerun on an increasingly regular basis, generating n&a enore complete biological information.
Examples include full genome comparisons and phylogefattprinting. Simple identification of ho-
mologous sequences based on BLAST searches is now just toore fop querying the contents of a
sequence database.

These developments underscore the need for more genetabasatf sequence data management
and concomitant programming models that simplify biolabitiscovery. MoBIloS, the Molecular Bio-
logical Information System, with mSQL, its set of SQL eitess is such a system. MoBIloS supports
two views of sequence data. Sequences are identified aretl dtased on long functional units (e.g.
genes, proteins and chromosomes). Matching and analysisqufences exploits distance-based meth-
ods comparing short-overlapping substrings. We show timatraber of sequence analysis problems can
thus be succinctly expressed as mSQL queries.

1 Introduction

MoBIloS, the Molecular Biological Information System (poumced mobius), is a metric-space database man-
agement system targeting life-science data. Analogousdiies databases which extend relational systems with
index-structures and data types that support two and tfireensional data and form the basis of geographic
information systems (GISs), MoBIloS comprises built-inlbgical data types and index structures to support
fast object storage retrieval based on the relative disthietween objects determined by metric-distance func-
tions (metrics) [MXMO03, CNBYMOL1]. Figure 1 illustrates tiMoBIloS platform. MoBIoS is built in Java on
top of the McKoi open-source DBMS[McK]. McKoi includes a JOBnterface, allowing MoBIoS to integrate
seamlessly with web-application tool stacks.

Work to date includes development or identification of dffecmetric-models of biological similarity for
peptide sequences (MPAM), mass-spectrometer signatutie3-@ electrostatic models of proteins and respec-
tive applications [MXMO03, XM04, ZBB].
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In the case of sequences, more database machinery is ndwthedith atomic representations of mass-
spectrometer signatures or 3-D protein models. In therlatte cases distance-based range queries and join
queries are precisely analogous to spatial databasegteRatabsolute position in Euclidean space is replaced
with relative distance determined by a metric. This is nagdg that the community’s understanding of query
processing and index support of metric-space databasealis@ature. Competing indexing methods continue
to be refined [Bri95, MXSMO03, STMOO03]. There is still no cleginner. Metric-space joins have barely been
addressed [WS90, DGZ03].

A management challenge for biological sequences is thatiadist's view of a sequence is different than the
computational view. ldentification of biological sequemcemprises long functional units (e.g. genes, proteins
and chromosomes). Excluding the Smith-Waterman algoriisnan important exception, most comparative
sequence analysis algorithms are structured such thédfitsidyreak sequences into short overlapping substrings.
Further processing compares substrings and may ultimegasemble them into longer units. Thus far these
algorithms rarely consider additional substructure; $@maple, the location of introns, exons, and transcription
factor binding sites. These functional subunits are enatadrby name and position in the Genbank features
table. As a group, these are referred to as sequence aonetati

Our speculation is that the granularity of sequence manageim Genbank and related systems is largely
responsible for the disassociation of annotation from eege comparison. In common practice, a set of se-
qguences is retrieved from Genbank by virtue of common atioogand/or BLAST-based similarity. The set
of sequences are culled by further analysis of sequencemonidditional inspection or filtering of those
sequences based on annotations requires ad-hoc scripptthm resulting sequences back to their Genbank
entries. Thus, we claim that there is ample motivation tegrdate sequence analysis with database query engines
and enable optimized query plans to interleave primarycgira (sequence) and functional comparisons.

In addition to metric-distance based access paths, MoBld8des syntactic, logical and physical database
extensions to manage biological sequences. The primatadic extension is called sequenceview Se-
guenceviewsnable SQL programmers to specify that, in addition to stpand retrieving biological sequences
as long functional units, a sequence may also be operatadaga set of overlapping g-grams. Furthermore,
users may specify one of a number of built-in metrics for carmy the similarity of g-grams, or they may
specify their own in a manner similar to writing a stored @dare. Three logical operators maseguence-
views possible,createfragments()groupfragments(and merge() The corresponding physical operators and
supporting structures are discussed elsewhere [B0Q3].

In this paper we discuss our query language and illustratesié to capture a number of sequence analysis
protocols emerging in bioinformatics. The data model dpatin Figure 2 will serve as the basis for each of
the examples.

The first two tables are used to store DNA and protein seqsendeere the column 'Seq’ holds the se-
guences. The sequence id, SID, serves as a foreign key tteafaequence annotations. Per the vernacular of
the area this is called the feature table. Rooted in ASNelsémi-structured foundation of Genbank, a feature
is a substring of a sequence, denoted by the offset of thafitstast sequence element and labeled with one of
a moderated list of tags [BKMLO02].

2 mSQL

mSQL is the name we have chosen for our data type and operdtrseons to the SQL standard. mSQL
introduces data types to manage sequence data, mass Isgatdraand secondary and tertiary protein data.
The primitive data types introduced to handle sequenceatataalled DNA, RNA, and Peptide, all of which
are subtypes of a generic Sequence data type. In generafjugr®e can be thought of as a string with two
important differences, stemming from the biological natof sequences. First, the alphabet is limited to a
certain set of characters depending upon the type of sequeacACTG for DNA sequences. Second, we must



DNA Sequence(SID, Organism, seq)
Protein_Sequence(SID, Organism, seq)

Active Application Efforts Other Identified Opportunities Featureitable(SID FID, tag, start, end)
Homology | Mass-Spectrometer | Genome De Novo Combi-Chem
Search Proten Sequence Peptide Library & Protein
Identification Assembly | Sequencing Shape Matching
MoBloS SQL (M-SQL H . H
RS PRL el Figure 2: Tables and Attributes of the Example Schema
Query Engine Mining Engine

Select SID, Organism, Createfragments(seq, 3)
From DNA_Sequence;

MoBloS Java Interface (MIT)

Metnc-Space Based AN 1
Storage Manager //‘j,.’j ‘f\{‘\;;‘\
AR N ARTIN .
- DMNA Sequences .
. e Figure 3:Createfragments(@Query
4 Mass-Spectra

' Gene Expression Data 9 Select *

e e rehie: From Createfragments(DNA_Sequence.seq, 3); ‘
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introduce theevcomp()operator to compute the reverse complement of DNA and RNAessres; applied to
ordinary stringsrevcomp(would have no logical meaning.

mSQL also introduces two new SQL-level operators to corsemftience information between its two logical
perspectivescreatefragments@ndmerge() These operators are rather similar to the unnest and nesdtops
popular in the extended-relational algebras of the earlgni»-80s [JS82]. Their differences lie in the pre-
processing and post-processing steps necessary for edabidally view sequences as sets of overlapping
subseguences.

Createfragments(p a two-step operation. The first step takes a sequence iafatbes and a fragment length
as input and returns a set of 2-tuples. The first attributeaohduple is the offset from the original sequence,
and the second attribute is the fragment. Each of thesel@stip an instance of an additional internal data
type, SubSequence. SubSequence contains these two fiedds and fragment, as well as an operator to obtain
the length of the sequence. The vast majority of operationsemuence data will be performed using these
SubSequences. After the first stepcadatefragments(the set is unnested to yield the final usable result.

For example, assume that the DNBequence table described above is populated with the fioidptwo
rows: {R1, Rice, ACAA}, {R2, Rice, ACTCA. The query in Figure 3 would yield the result shown in Table 1.
This set is then unnested, yielding the final result in Table 2

Table 1: Intermediate Results dCreatefrag- Table 2: Final Results dfreatefragments(Pperation

ments()Operation SID Organism Createfragments(Sequence, 3)
5 R1 Rice [0, ACA]
SID | Organism | Createfragments(Sequence, 3) Ri Rico [, CAA]
Rl | Rice [[0, ACA], [1, CAA]J] R2 Rice [0, ACT]
R2 Rice [[O= ACT]! []-7 CTC]: [25 R2 Rice [17 CTC]
TCa]l R2 Rice [2, TCA]

Note that these fragments are not guaranteed to be in ségumder. In the implementation of mSQL, the
two steps otreatefragments(have been combined into one, with the syntax demonstratEgjime 4.

This yields the same results as shown in Table 2.

The merge()operation is nearly the reverse akatefragments() An additional step is also needed at the
beginning, due to the fact that the results of a query may acéssarily be in sequential order. For this step,
we have overloaded the standard SQL GROUP BY operator ta tdrdse fragments by their offsets and then
separate them into groups. Two fragments are considered to the same group if the difference between
their offsets is less than the length of the fragments. Tloersk step is the nest operation, which is applied
individually to each of these groups. The final step is theaanerge, which merges each set of tuples back



into one larger sequence. The sequences are ordered biyafts¢éhen the overlapping sections are removed,
yielding one long SubSequence. The offset from the firsnfieagt of the set is maintained as the offset from the
original sequence for the entire subsequence.

The merge()operation can occur in either a one-dimensional or a twcedsional case. We have just
described the one-dimensional case, which assumes tlodtladl fragments are from the same parent sequence.
The two-dimensional case is used on the results of a meiric ja this case the results are first grouped by
the fragments from the first sequence, then by the fragments the second, with the additional rule that two
fragments must be from the same parent sequence to be imtieegsaup. The nest and the merge are performed
as usual.

It is not feasible or necessary to materialize the resultb@€reatefragments(pperation. With a fragment
length of g and a sequence length of n, materializingatefragments(jvould require storing an additional
g(n-g+1)-n characters. For this we introduce the conceflie$equenceviemanalogous to SQL's view, which
materializes the results afreatefragments(ps a secondary metric space index. Implementation detals a
discussed elsewhere [BLM3]. Sequenceviewsn be used in the same manner as standard SQL views, without
the same space or time overhead. In this way indices can Haeupt®ffline, speeding online queries.

3 Application Examples

3.1 Electronic PCR

A sequence-tagged site consists of a pair of primers whiclunajuely identify a site in the genome. Electronic
PCR is used to computationally find sequence-tagged sileS)Sn DNA sequences by searching for subse-
guences that closely match the PCR primers and have thectorder, orientation, and spacing that they could
plausibly prime the amplification of a PCR product of the eotrmolecular weight [Sch97].

In-lieu of a procedural utility program, the Electronic P@®blem can be solved as an mSQL query (Figure
5). For brevity, we introduce some simplifications, i.e., m@e not checked for the possibility of matching
reverse complements. We have coded the problem as desbehmd

e Createsequenceviewor forward and reverse primers in a STS table; create@uencevievior the
genome of an organisnlines 1-3; lines 4-6; lines 5-9)

¢ Utilize the metric-space index to find matching fragmentprifners and genome sequences. Find pairs
of merged fragments that match forward and reverse primignstiae following conditions:

— The primers are fully matchedlines 15-16; lines 20-21)

— The two genome fragments come from the same sequence. Tipeitagrs belong to the same STS.
(lines 24-26; lines 27-28)

— The spacing between the two genome fragments is within 58shafdhe length of the PCR product.
(lines 29-30)

3.2 Conserved Primer Pair Discovery

To help solve the question as to whether evolution is adetyuatodeled by bifurcating trees, or iffiwhen network
models are critical, we used MoBIoS to determine a candisiett®f PCR primers that would enable biologists
to sample, amplify and sequence the DNA of any flowering glaatlarge number of places. The query, which
we hand-compiled, involves joiningequenceviewsf the Rice and Arabidopsis genomes in search of shared
substrings that fulfill the electronic PCR properties. Tiunber of nucleotides, and therefore the number of
logical rows, is in excess of half a billion. Our current irapientation comprises an indexed nested-loop join,

4



| CREATE SEQUENCEVIEW Forward view AS
Z SELECT*
3 FROM CREATEFRA GMENTS(STS FarwardFrimer, 5)

4 CREATE SEQUENCEVIEW Reverse view A

5 SELECT*

& FROM CREATEFRAGMENTS(STS ReverseFnmer, 5)
7 CREATE SEQUENCEVIEW g view AS

£ SELECT*

8 FROM CREATEFRA GMENTS(DNA sequence seg 5)
10 WHERE DNA sequence argnism = ‘g’

1 SELECT Ceegl offeet Guegs offset STE ud
12 FROM

14 FROM Org view G, Forward view F

15 WHERE distancebase_payr misinatch!

18 Ggeg Fagment, Feeg Sagment) <=008

17 GROUFP BY Geeqg Flecgl,

18 FROM Crg view & Heverse wew

20 WHERE ditancecanploment bave paw mismatch!
Fi Gseg fagment, R oseq fagment) <= 40

22 GROUF BY G eeg Fsegl

23 8T%

24 WHERE Feeg 518 = 8TS sud

25 AND Reeq ud = 5TE ud

28 AND Ceegl sid = GeegZ ud

7 AND Fyeglength = ST FarwardPrimer length
P8 AND Feeglength = STS ReversePrumer length
28 AND abe(G2 sog affvet — G seq offest
30— Gl seglength — 8TRlength) < 58

Figure 5: Electronic PCR

which isO(nlogn). We solved the problem in less than 2 days using 4 procestarSun 6800. The results are
currently being validated in a wet lab [XB®@4]. This type of computation is usually the province of waxge
clusters, running parallel copies of BLAST as the inner loban O(n?) solution. Please see Xu et al for the
mSQL code for this query [XBP04].

Genome AT mE I NN ipseeeeE o EE n e
218 matching | Awplified region ' | 218 marching |
ucleotides 0 - 3000 n. \ nucleotides ; ,
Gén B 4003000 n.t \\/ W 3 WHERE distancefmetric name, R fragment,
enome -mnﬂ‘lﬂmlﬁlll.lliﬂlllli- 2 B s

~— P 4 4 GROUP BY R fragment, A fiagment
" Primer Pair Candidate |

1 SELECT merge(R fragment, A fiagment, g, &)
2 FROM S view R, g sview A

Figure 6: Finding Conserved Primer Pairs Figure 7: Homology Search

3.3 Homology Search

The mSQL query to solve the homology search problem is itiistl in Figure 7. BLAST-like matching of hot-
spots is accomplished by a metric-space join. A two-dinmradimerge operator merges the matching g-grams
[BLM T03, XMMWO03]. An optional gap functiong and distance threshold, enables hot-spot extension.

3.4 All-way Genomic Conservation

The availability of whole genome sequence data makes iiljess discover conserved features across multiple
organisms. Ultraconserved elements are sequence segiima&ntse absolutely conserved (100% identity with
no deletion or insertion) between orthologous regions ofimlmer of genomes. See Figure 8. A recent com-
putational study of the human, rat, and mouse genomes had fbat ultraconserved elements play important
roles in RNA processing, transcription regulation and tigw@ent [BPM™04].

Again, for brevity and simplicity, we don’t limit fragment aiching to orthologous regions in the mSQL
query for finding ultraconserved elements from three gersorivée first creatsequenceviewwith fragments
of length 200 from each genome. Thus the minimum length oflaaonserved element is 200. The query is
formulated as in Figure 10.

Notice in lines 12 and 14, the join stipulates exact matcleedhe past work and the ability of the software.
However, in MoBIoS we could easily repeat the study for vagyamounts of sequence divergence by increasing
the join distance.
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Figure 9: Rosetta Stone Protein Search

1. Create sequenceview Human view as

2. Select *

3. From createfragments(DNA Sequence.seq, 200)
4. Where Organism = ‘Human’;

5. Create sequenceview Rat view as
/f S8ame as Human_view;

6. Create sequenceview Mouse view as
/f Same as Human_view

7. Select merge({merge(Rat_view.seq, Mouse view.seq),
Human view.seq))
8. From Human_view,

9. (Sel
10.
11.
12.

ect *

From Rat_view, Mouse_view
Where distance{*hamming’, Rat_view.seq.fragment,

Mouse_view.seq,fragment) = 0)

13. Where distance(*hamming’, Human_view.seq. fragment,

14.

Rat view.seq.fragment) =0

15. Group By Human_view.seq, Rat_view.seq, Mouse_view.seq;

Figure 10: Three-way Genome Comparison

3.5 Rosetta Stone

It has been observed that if two proteins A and B in one orgaige both homologous to a single protein A-B
in another organism (See Figure 9), there is a good chantéthad B interact or share related biological
functions [MPNF99]. Such a protein A-B is termed a 'Rosetta Stone’ proteggugnce alignment methods can
be used to find if two proteins in one organism have non-oppitey alignments on a single protein in another

organism. The following mSQL query is to obtain the sequenbs of these protein triplets (Figure 11).

R

. CREATE SEQUENCEVIEW griew A%
 BELECT *
. FROM CREATEFRAGMENTS Frotein_seguenve seg 3)

g b

. CREATE VIEW Af AR

. BELECT MERGE{S} g AS seql, 57 seq AS teg? g )
. FROM gweew 54, sview 52, Frotein seguence Fl

. Frofes sguenve FZ

 WHERE distanve mPANM 51 seg fapment,

9. 57 seq Fagment) <= radius

10. AND 31 zeq.sid = P1.sid AND 52 zeq.sd = P2 sid

11. AND Pl organism |= P2 organism

12. GROUP BY 5 seq 52 seq

[ (= SR

13

14.
15.
16,
17
15
19
20

21

22.
23
24,
25.

. BELECT M/ zeql 2id M1 seqf of MZ sogZ ud

FROM A A5, M M2, Frotemn sequence Pl
Frotein sequence FlZ, Frotem sequence FIZ

WHERE M/ segl sd = MZ soql ud

AND Bl ud =M1 sogl sid

AND FiZud =M seql sd

AND FZ7 sd = M2 pegl sud

AND FiZ arganin = FI7 organsm

. AND M1 seqd offset + M1 segl Jength < MZ segl affset

AND Fi zeglength - (M1 seql length + MZ seqi fength) <
max_gan Jengthi

AND FiZ geglongth - Ml seql length < max gap JengthZ

AND F27 geqlongth - MZ seql length < max gap Jength?

Figure 11: Rosetta Stone Query

The proteins come from multiple organisms. There are thiegessn our query.

e First, create a singleequencevievior protein sequences of all organisnflines 4-12)

e Use the metric space index to make local alignments betwa@&n pf proteins from any two distinct
organisms. The results are pairs of merged matching pré@gments. Create a view from the results.

(lines 4-12)




¢ Produce the Rosetta Stone protein triplets using the fatigwonditions:
— Two proteins from one organism are aligned to a single pmotem another organism without
overlap.(lines 16-20)

— The difference between the length of a protein and the tetajth of its aligned fragments must be
less than a given constarflines 21-25)

i i _ 1. Create sequenceview miRMNA_ wiew as
1. Create sequenceview miRMA wew as 7 Select *
2. Select * 3. From createfragments(miR M4 sequence, 7)
3. From createfragments{miR N & sequence, 21) ] — : ;

i (UENCEVIEW ZENOME VIEW a5

. . 5. Belect *
4. Create seqUENcevIEw genome_view as 6. From createfragments(genome sequence, 7)
5. Select * 7 Where Organism = orgh’;
fj,.' %gecgféﬁiingl;iggnme.sequence, 21 8 Belect merge (genome_wview seq, miRNA view seq)

' : 9. From genome_view, miBNA view
. . . 10. Where
3. Belect merge (gepume_mew.seq, miENA view seq) 1 (AaEN A e segotioel =
9. From miBNA wiew, 12 AND
10, genome_wiew 13 Distance (‘BENA complementary metric’,
11. Where 14. genome wiew seq, miRMA view seq) =00
12, Distance CmiRMNA metric’, genome_view. seq, 15. OR
13. miBMNA view seq) <=3 16, (R N&_ wiew. seqoffset 52
14. AND 17. AND
15 HGenome view seqis not in coding region 15 Distance ("RN& complementary metric”,
16. {Select COUNT () 19 genome wiew.seq, miRNA wew seq)<=3))
17. From feature_tahle 20 AND
18 Vhere _ _ _ 21, (Select COUNT (%)
19. Feature table sid = Genome wiew.seq.sud 22 From feature tahle
20. AND 23 Where
21. feature table start>=Cenome view.seq offset + 24 feature tahle sid = Genome wiew seq.sid
22 Genome view seqlength 25 AND
23 AND 26. feature table statt==Cenome wiew seq offset +
4. feature_tahle stop<= 27 Genome_view. seq length
25 Genome_ wiew seq offzet) =0 28. AND
29 feature table stop<= Genome wiew. seq.offset) =0

(a) MiRscan query

(b) miRNA target site query

Figure 12: RNAI Queries

3.6 RNA Interference

RNA interference (RNAI) refers to the post-transcriptibgane silencing (PTGS) induced by the direct intro-
duction of double stranded RNA. In the past few years, RNAi b@come a popular tool in molecular biology
to knock out genes in a variety of organisms [Gur00, HCHO1].

MicroRNAs (miRNAs), an important class of interfering RNAre endogenous RNAs that are about 22
nucleotides long. MiRscan is an miRNA gene prediction toolvhich all experimentally verified miRNA
genes were compared with a 21nt windows passing throughcemserved stem loop of the genome sequence
[LGY T03]. TargetScan is a tool that predicts target sites corseaeross multiple genomes. The first step of
the algorithm is to search a set of orthologous 3" UTR segeefiom one organism for perfect Watson-Crick
complementary matches to bases 2-8 (from the 5’ end) of tRN#j and then extend matches [LSI63]. We
expect such searching processes can also be expressed InaaS@own in Figure 12.



In both queries, theequenceview®r known miRNA genes and sequences of one genome are credled
fragment lengths 21 and 7, respectivdines 1-3; lines 4-7) To find the miRNA candidate (Figure 12(a)), we
use 'miRNA.metric’ as the metric distance function to measure the olese of two miRNA segmenttines
12-13) In Figure 12(b), the 'RNAcomplementarymetric’ is the metric distance function used between the
reverse complement of the first RNA fragment and the second R&dgment(lines 11-19) The purpose of
lines 16-25 in Figure 12(a) and lines 22-31 in Figure 12(le)tarexclude fragments that are derived from the
coding region. The results from the above queries are sutgdarther evaluations such as meeting the energy
required for RNA folding.

4 Discussion and Conclusion

MoBIloS, and especially its mSQL component, remains a wogkagress. While we have successfully found a
solution to the Conserved Primer Pair problem using the M&Bilatform, none of the above queries have yet
been implemented at a SQL level. In presenting them it is oaf @ show that the future of genomics research
goes far beyond the homology search now possible with pnagrsuch as BLAST,; that as new, interesting
problems arise with greater and greater frequency, bistegieed tools that are powerful enough to adapt quickly
to changing demands; and finally, that these tools must hetease and rely on already established standards.
MoBIloS with mSQL promises to address all of these concerns.

The above gueries are meant to represent what will soon tmbmsvith a cohesive biological database
management system such as MoBloS. We have demonstratedatibility of performing useful queries on
sequence data within a database management system iffalingpan alternative to the chains of programs
previously necessary to solve complex genomics problemosveder, many questions remain unanswered. We
have yet to address the issue of regular expressions ineguéffe also have not focused our attention on how
to handle secondary and tertiary structure informatioentgnts of other bioinformatics and string algebras are
under consideration to support these goals [TP03].
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