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Abstract

The sequencing and annotation of entire genomes has enriched the content of biological sequence
databases such that new methods of sequence analysis, comparison and retrieval are being invented
and rerun on an increasingly regular basis, generating new and more complete biological information.
Examples include full genome comparisons and phylogeneticfootprinting. Simple identification of ho-
mologous sequences based on BLAST searches is now just one option for querying the contents of a
sequence database.

These developments underscore the need for more general methods of sequence data management
and concomitant programming models that simplify biological discovery. MoBIoS, the Molecular Bio-
logical Information System, with mSQL, its set of SQL extensions, is such a system. MoBIoS supports
two views of sequence data. Sequences are identified and stored based on long functional units (e.g.
genes, proteins and chromosomes). Matching and analysis ofsequences exploits distance-based meth-
ods comparing short-overlapping substrings. We show that anumber of sequence analysis problems can
thus be succinctly expressed as mSQL queries.

1 Introduction

MoBIoS, the Molecular Biological Information System (pronounced mobius), is a metric-space database man-
agement system targeting life-science data. Analogous to spatial databases which extend relational systems with
index-structures and data types that support two and three-dimensional data and form the basis of geographic
information systems (GISs), MoBIoS comprises built-in biological data types and index structures to support
fast object storage retrieval based on the relative distance between objects determined by metric-distance func-
tions (metrics) [MXM03, CNBYM01]. Figure 1 illustrates theMoBIoS platform. MoBIoS is built in Java on
top of the McKoi open-source DBMS[McK]. McKoi includes a JDBC interface, allowing MoBIoS to integrate
seamlessly with web-application tool stacks.

Work to date includes development or identification of effective metric-models of biological similarity for
peptide sequences (mPAM), mass-spectrometer signatures and 3-d electrostatic models of proteins and respec-
tive applications [MXM03, XM04, ZBB].
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In the case of sequences, more database machinery is needed than with atomic representations of mass-
spectrometer signatures or 3-D protein models. In the latter two cases distance-based range queries and join
queries are precisely analogous to spatial databases, except that absolute position in Euclidean space is replaced
with relative distance determined by a metric. This is not tosay that the community’s understanding of query
processing and index support of metric-space databases is at all mature. Competing indexing methods continue
to be refined [Bri95, MXSM03, STMO03]. There is still no clearwinner. Metric-space joins have barely been
addressed [WS90, DGZ03].

A management challenge for biological sequences is that a biologist’s view of a sequence is different than the
computational view. Identification of biological sequences comprises long functional units (e.g. genes, proteins
and chromosomes). Excluding the Smith-Waterman algorithmas an important exception, most comparative
sequence analysis algorithms are structured such that theyfirst break sequences into short overlapping substrings.
Further processing compares substrings and may ultimatelyreassemble them into longer units. Thus far these
algorithms rarely consider additional substructure; for example, the location of introns, exons, and transcription
factor binding sites. These functional subunits are enumerated by name and position in the Genbank features
table. As a group, these are referred to as sequence annotations.

Our speculation is that the granularity of sequence management in Genbank and related systems is largely
responsible for the disassociation of annotation from sequence comparison. In common practice, a set of se-
quences is retrieved from Genbank by virtue of common annotations and/or BLAST-based similarity. The set
of sequences are culled by further analysis of sequence content. Additional inspection or filtering of those
sequences based on annotations requires ad-hoc scripts to map the resulting sequences back to their Genbank
entries. Thus, we claim that there is ample motivation to integrate sequence analysis with database query engines
and enable optimized query plans to interleave primary structure (sequence) and functional comparisons.

In addition to metric-distance based access paths, MoBIoS includes syntactic, logical and physical database
extensions to manage biological sequences. The primary syntactic extension is called asequenceview. Se-
quenceviewsenable SQL programmers to specify that, in addition to storing and retrieving biological sequences
as long functional units, a sequence may also be operated upon as a set of overlapping q-grams. Furthermore,
users may specify one of a number of built-in metrics for comparing the similarity of q-grams, or they may
specify their own in a manner similar to writing a stored procedure. Three logical operators makesequence-
viewspossible,createfragments(), groupfragments()and merge(). The corresponding physical operators and
supporting structures are discussed elsewhere [BLM+03].

In this paper we discuss our query language and illustrate its use to capture a number of sequence analysis
protocols emerging in bioinformatics. The data model specified in Figure 2 will serve as the basis for each of
the examples.

The first two tables are used to store DNA and protein sequences, where the column ’Seq’ holds the se-
quences. The sequence id, SID, serves as a foreign key to a table of sequence annotations. Per the vernacular of
the area this is called the feature table. Rooted in ASN.1, the semi-structured foundation of Genbank, a feature
is a substring of a sequence, denoted by the offset of the firstand last sequence element and labeled with one of
a moderated list of tags [BKML+02].

2 mSQL

mSQL is the name we have chosen for our data type and operator extensions to the SQL standard. mSQL
introduces data types to manage sequence data, mass spectral data, and secondary and tertiary protein data.
The primitive data types introduced to handle sequence dataare called DNA, RNA, and Peptide, all of which
are subtypes of a generic Sequence data type. In general, a Sequence can be thought of as a string with two
important differences, stemming from the biological nature of sequences. First, the alphabet is limited to a
certain set of characters depending upon the type of sequence, i.e. ACTG for DNA sequences. Second, we must
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Figure 1: Architecture of the MoBIoS Platform

Figure 2: Tables and Attributes of the Example Schema

Figure 3:Createfragments()Query

Figure 4:Createfragments()Query

introduce therevcomp()operator to compute the reverse complement of DNA and RNA sequences; applied to
ordinary strings,revcomp()would have no logical meaning.

mSQL also introduces two new SQL-level operators to convertsequence information between its two logical
perspectives:createfragments()andmerge(). These operators are rather similar to the unnest and nest operators
popular in the extended-relational algebras of the early tomid-80s [JS82]. Their differences lie in the pre-
processing and post-processing steps necessary for each tologically view sequences as sets of overlapping
subsequences.

Createfragments()is a two-step operation. The first step takes a sequence of characters and a fragment length
as input and returns a set of 2-tuples. The first attribute of each tuple is the offset from the original sequence,
and the second attribute is the fragment. Each of these 2-tuples is an instance of an additional internal data
type, SubSequence. SubSequence contains these two fields, offset and fragment, as well as an operator to obtain
the length of the sequence. The vast majority of operations on sequence data will be performed using these
SubSequences. After the first step ofcreatefragments(), the set is unnested to yield the final usable result.

For example, assume that the DNASequence table described above is populated with the following two
rows:{R1, Rice, ACAA}, {R2, Rice, ACTCA}. The query in Figure 3 would yield the result shown in Table 1.
This set is then unnested, yielding the final result in Table 2

Table 1: Intermediate Results ofCreatefrag-
ments()Operation

Table 2: Final Results ofCreatefragments()Operation

Note that these fragments are not guaranteed to be in sequential order. In the implementation of mSQL, the
two steps ofcreatefragments()have been combined into one, with the syntax demonstrated inFigure 4.

This yields the same results as shown in Table 2.
The merge()operation is nearly the reverse ofcreatefragments(). An additional step is also needed at the

beginning, due to the fact that the results of a query may not necessarily be in sequential order. For this step,
we have overloaded the standard SQL GROUP BY operator to order these fragments by their offsets and then
separate them into groups. Two fragments are considered to be in the same group if the difference between
their offsets is less than the length of the fragments. The second step is the nest operation, which is applied
individually to each of these groups. The final step is the actual merge, which merges each set of tuples back
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into one larger sequence. The sequences are ordered by offset and then the overlapping sections are removed,
yielding one long SubSequence. The offset from the first fragment of the set is maintained as the offset from the
original sequence for the entire subsequence.

The merge()operation can occur in either a one-dimensional or a two-dimensional case. We have just
described the one-dimensional case, which assumes that allof the fragments are from the same parent sequence.
The two-dimensional case is used on the results of a metric join. In this case the results are first grouped by
the fragments from the first sequence, then by the fragments from the second, with the additional rule that two
fragments must be from the same parent sequence to be in the same group. The nest and the merge are performed
as usual.

It is not feasible or necessary to materialize the results ofthecreatefragments()operation. With a fragment
length of q and a sequence length of n, materializingcreatefragments()would require storing an additional
q(n-q+1)-n characters. For this we introduce the concept ofthesequenceview, analogous to SQL’s view, which
materializes the results ofcreatefragments()as a secondary metric space index. Implementation details are
discussed elsewhere [BLM+03]. Sequenceviewscan be used in the same manner as standard SQL views, without
the same space or time overhead. In this way indices can be pre-built offline, speeding online queries.

3 Application Examples

3.1 Electronic PCR

A sequence-tagged site consists of a pair of primers which can uniquely identify a site in the genome. Electronic
PCR is used to computationally find sequence-tagged sites (STSs) in DNA sequences by searching for subse-
quences that closely match the PCR primers and have the correct order, orientation, and spacing that they could
plausibly prime the amplification of a PCR product of the correct molecular weight [Sch97].

In-lieu of a procedural utility program, the Electronic PCRproblem can be solved as an mSQL query (Figure
5). For brevity, we introduce some simplifications, i.e., wehave not checked for the possibility of matching
reverse complements. We have coded the problem as describedbelow.

• Createsequenceviewsfor forward and reverse primers in a STS table; create asequenceviewfor the
genome of an organism.(lines 1-3; lines 4-6; lines 5-9)

• Utilize the metric-space index to find matching fragments ofprimers and genome sequences. Find pairs
of merged fragments that match forward and reverse primers with the following conditions:

– The primers are fully matched.(lines 15-16; lines 20-21)

– The two genome fragments come from the same sequence. The twoprimers belong to the same STS.
(lines 24-26; lines 27-28)

– The spacing between the two genome fragments is within 50 bases of the length of the PCR product.
(lines 29-30)

3.2 Conserved Primer Pair Discovery

To help solve the question as to whether evolution is adequately modeled by bifurcating trees, or if/when network
models are critical, we used MoBIoS to determine a candidateset of PCR primers that would enable biologists
to sample, amplify and sequence the DNA of any flowering plantin a large number of places. The query, which
we hand-compiled, involves joiningsequenceviewsof the Rice and Arabidopsis genomes in search of shared
substrings that fulfill the electronic PCR properties. The number of nucleotides, and therefore the number of
logical rows, is in excess of half a billion. Our current implementation comprises an indexed nested-loop join,
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Figure 5: Electronic PCR

which isO(nlogn). We solved the problem in less than 2 days using 4 processors of a Sun 6800. The results are
currently being validated in a wet lab [XBP+04]. This type of computation is usually the province of very-large
clusters, running parallel copies of BLAST as the inner loopof anO(n2) solution. Please see Xu et al for the
mSQL code for this query [XBP+04].

Figure 6: Finding Conserved Primer Pairs Figure 7: Homology Search

3.3 Homology Search

The mSQL query to solve the homology search problem is illustrated in Figure 7. BLAST-like matching of hot-
spots is accomplished by a metric-space join. A two-dimensional merge operator merges the matching q-grams
[BLM +03, XMMW03]. An optional gap function,g and distance threshold,d, enables hot-spot extension.

3.4 All-way Genomic Conservation

The availability of whole genome sequence data makes it possible to discover conserved features across multiple
organisms. Ultraconserved elements are sequence segmentsthat are absolutely conserved (100% identity with
no deletion or insertion) between orthologous regions of a number of genomes. See Figure 8. A recent com-
putational study of the human, rat, and mouse genomes has found that ultraconserved elements play important
roles in RNA processing, transcription regulation and development [BPM+04].

Again, for brevity and simplicity, we don’t limit fragment matching to orthologous regions in the mSQL
query for finding ultraconserved elements from three genomes. We first createsequenceviewswith fragments
of length 200 from each genome. Thus the minimum length of an ultraconserved element is 200. The query is
formulated as in Figure 10.

Notice in lines 12 and 14, the join stipulates exact matches per the past work and the ability of the software.
However, in MoBIoS we could easily repeat the study for varying amounts of sequence divergence by increasing
the join distance.
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Figure 8: Ultraconserved Element Figure 9: Rosetta Stone Protein Search

Figure 10: Three-way Genome Comparison

3.5 Rosetta Stone

It has been observed that if two proteins A and B in one organism are both homologous to a single protein A-B
in another organism (See Figure 9), there is a good chance that A and B interact or share related biological
functions [MPN+99]. Such a protein A-B is termed a ’Rosetta Stone’ protein. Sequence alignment methods can
be used to find if two proteins in one organism have non-overlapping alignments on a single protein in another
organism. The following mSQL query is to obtain the sequences IDs of these protein triplets (Figure 11).

Figure 11: Rosetta Stone Query

The proteins come from multiple organisms. There are three steps in our query.

• First, create a singlesequenceviewfor protein sequences of all organisms.(lines 4-12)

• Use the metric space index to make local alignments between pairs of proteins from any two distinct
organisms. The results are pairs of merged matching proteinfragments. Create a view from the results.
(lines 4-12)
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• Produce the Rosetta Stone protein triplets using the following conditions:

– Two proteins from one organism are aligned to a single protein from another organism without
overlap.(lines 16-20)

– The difference between the length of a protein and the total length of its aligned fragments must be
less than a given constant.(lines 21-25)

(a) MiRscan query (b) miRNA target site query

Figure 12: RNAi Queries

3.6 RNA Interference

RNA interference (RNAi) refers to the post-transcriptional gene silencing (PTGS) induced by the direct intro-
duction of double stranded RNA. In the past few years, RNAi has become a popular tool in molecular biology
to knock out genes in a variety of organisms [Gur00, HCH01].

MicroRNAs (miRNAs), an important class of interfering RNA,are endogenous RNAs that are about 22
nucleotides long. MiRscan is an miRNA gene prediction tool in which all experimentally verified miRNA
genes were compared with a 21nt windows passing through eachconserved stem loop of the genome sequence
[LGY+03]. TargetScan is a tool that predicts target sites conserved across multiple genomes. The first step of
the algorithm is to search a set of orthologous 3’ UTR sequences from one organism for perfect Watson-Crick
complementary matches to bases 2-8 (from the 5’ end) of the miRNA, and then extend matches [LSJR+03]. We
expect such searching processes can also be expressed in mSQL as shown in Figure 12.
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In both queries, thesequenceviewsfor known miRNA genes and sequences of one genome are createdwith
fragment lengths 21 and 7, respectively(lines 1-3; lines 4-7). To find the miRNA candidate (Figure 12(a)), we
use ’miRNA metric’ as the metric distance function to measure the closeness of two miRNA segments(lines
12-13). In Figure 12(b), the ’RNAcomplementarymetric’ is the metric distance function used between the
reverse complement of the first RNA fragment and the second RNA fragment(lines 11-19). The purpose of
lines 16-25 in Figure 12(a) and lines 22-31 in Figure 12(b) are to exclude fragments that are derived from the
coding region. The results from the above queries are subject to further evaluations such as meeting the energy
required for RNA folding.

4 Discussion and Conclusion

MoBIoS, and especially its mSQL component, remains a work inprogress. While we have successfully found a
solution to the Conserved Primer Pair problem using the MoBIoS platform, none of the above queries have yet
been implemented at a SQL level. In presenting them it is our goal to show that the future of genomics research
goes far beyond the homology search now possible with programs such as BLAST; that as new, interesting
problems arise with greater and greater frequency, biologists need tools that are powerful enough to adapt quickly
to changing demands; and finally, that these tools must be easy to use and rely on already established standards.
MoBIoS with mSQL promises to address all of these concerns.

The above queries are meant to represent what will soon be possible with a cohesive biological database
management system such as MoBIoS. We have demonstrated the feasibility of performing useful queries on
sequence data within a database management system itself, offering an alternative to the chains of programs
previously necessary to solve complex genomics problems. However, many questions remain unanswered. We
have yet to address the issue of regular expressions in queries. We also have not focused our attention on how
to handle secondary and tertiary structure information. Elements of other bioinformatics and string algebras are
under consideration to support these goals [TP03].
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