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Abstract 
 

Similarity search leveraging distance-based index 
structures is increasingly being used for complex data 
types.  It has been shown that for high dimensional 
uniform vectors with similarity norms, any clustering 
and partitioning index method is outperformed by 
sequential scan.  However, intrinsic clustering of real 
data usually leads to low intrinsic dimensionality.  
MoBIoS (the Molecular Biological Information 
System) is a next generation database management 
system comprising distance-based indices.  Owing to 
its generality, we have built, evaluated and optimized a 
prototype of a distance-based image retrieval system.  
We show that under a metric distance function, image 
data is intrinsically low dimensional.  We investigate 
the performance of three distance-based index 
structures ( M-tree, RBT-index, and MVP-index), and, 
to optimize the construction of MVP-indexes, develop 
new heuristics that seek centers as pivots and partition 
the data according to its intrinsic clustering.  Last, we 
show the SQL extension to embody distance-based 
image retrieval in MoBIoS. 
 
1. Introduction 
 

Today, a great challenge in databases is to manage 
various nontraditional types of data, such as spatial 
objects, video, image, voice, text and biological data 
types [4, 17, 19].  Management of images within a 
large database is an important and emerging area of 
research.  Answering content-based queries typically 
requires representing data objects by their feature 
vectors and computing the relative distances between 

feature vectors, which is typically a very costly 
operation.  The distance function often has the metric 
properties, i.e. non-negativity, symmetry and triangle 
inequality.  Retrieval in large disk-resident datasets has 
to be supported by external data structures optimizing 
both disk I/O and the number of distance calculations. 

Multi-dimensional index methods, such as k-d trees 
[1] and R-trees [8], can be applied to images.  In these 
methods, for each image a (usually high dimensional) 
feature vector is extracted so that the image can be 
represented by a spatial point or a spatial object in a 
high-dimensional vector space.  Typical search 
operations are range query, i.e., find all objects that are 
within a given distance to the query point, and the 
nearest neighbor query, i.e., find the k closest points to 
the query point.  Since k-nearest neighbor queries can 
be systematically implemented by range queries [4], we 
only consider range queries to simplify the discussion.  

It is shown that for uniform high dimensional vector 
space, if the database size does not increase 
exponentially with respect to the dimension, any 
partitioning and clustering index method will be 
outperformed by a sequential scan [20]. 

However, real data is seldom uniform.  Its intrinsic 
clustering usually leads to low intrinsic dimensionality 
although the feature vectors are in high dimension 
space, suggesting the application of distance-based 
indexing, or metric-space indexing.  The value of a 
distance-based approach is that it is unnecessary to find 
a meaning for the data with respect to the axes of a 
coordinate system.  The only way to save distance 
calculations is to take use of the triangle inequality [4].   

In this paper, we discuss how distance-based image 
similarity retrieval is supported in MoBIoS [17].  
MoBIoS’ primary focus is life-science applications.  In 
anticipation of bioinformatics efforts that correlate 
phenotypes derived from images (e.g. tumors) with 
gene and protein expression, and also to exercise the 
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generality of the system we have implemented an 
image retrieval system. 

Many distance-based indexing methods have been 
developed [4].  We have investigated the performance 
of three distance-based methods, i.e. the Metric Tree 
(M-tree) [5, 6], the Radius-Based Tree (RBT), and the 
Multi-Vantage Point Tree (MVP-tree) [2] on images.  
Experimental results showed that the MVP-index 
performed the best.   

Given the data, the initial construction of index 
structure, or bulkload, is critical to its query 
performance.  The bulkload of MVP-index works in a 
top-down recursive style.  In each recursion, there are 
two main steps: selection of pivots, or vantage-points, 
and data partition based on the distances to the pivots. 

Most of the previous heuristics proposed to these 
two steps assume that the data is uniformly distributed.  
Basically, they suggest selecting the corners of the data 
as pivots and partitioning the data such that the index 
tree is balance.  However, real data usually has high 
level of intrinsic clustering.  Brin proposed that the 
index structure should reflect the intrinsic clustering of 
the data [3].  We proposed new heuristics for the two 
steps.  The basic idea is to select the centers of the 
intrinsic clusters of the data as pivots, and partition the 
data according to the intrinsic clustering.  Our 
heuristics usually lead to unbalanced index trees, 
however, empirical results show that they outperform 
the heuristics favoring of balance trees.  Further, it is 
shown that the optimized MVP-index scales well for 
the image data.  We have also tested our heuristics for 
biological data.  Similar conclusion can be drawn [14]. 

Last but not least, we support image retrieval in the 
MoBIoS SQL (mSQL).  Syntactically, mSQL is 
consistent with the SQL99 [7] object-relational 
extensions to SQL.  Further extensions that support 
distance-based indices and similarity queries are 
aligned with standard spatial database extensions to 
SQL [18].  We first define the image data type, and 
then bulkload the data.  Next, a distance-based index is 
created on the data, and finally range queries or nearest 
neighbor queries are executed through the index. 

Our main contribution consists of investigating 
distance-based indexing of images to avoid the curse of 
dimensionality, comparing several distance-based 
methods and optimizing the MVP-index to show that 
the non-canonical unbalance index trees performs well, 
and the SQL support of image retrieval.  

The rest of this paper is organized as follows.  In 
Section 2, we show the low intrinsic dimension of 
images.  Several index structures are outlined in 
Section 3, and the optimization of MVP-index is 
discussed in Section 4.  We introduce the MoBIoS 

system and mSQL of image retrieval in Section 5, 
followed by conclusions and future work in Section 6. 
 
2. Image intrinsic dimension 
 

We start by a brief introduction of the metric 
distance function of images, which is not the focus of 
this paper, and interested readers are referred to [11].  

Each image is represented by 3 sets of features 
reflecting the image properties in structure, texture, and 
color.  Each set of features can be considered as a 
vector.  Consequently, an image can be represented by 
three vectors, with length 3 for structure, 15 for color 
and 48 for texture.  For texture and structure features, 
the distance functions are both L2 norm.  For color 
feature, the distance function is L1 norm [11].  The 
final distance is a linear combination of the distances of 
each feature set, with coefficients 1/3 respectively.  
Since linear combination of metric functions is metric, 
the final distance also has the metric properties. 

Due to the curse of dimensionality, the dimension of 
the data space dominates the efficiency of the search 
algorithms [20].  Since real data is seldom uniform, 
intrinsic dimension, instead of the dimension of the 
feature vectors, is a better way to quantify the 
characteristic of the data.   

Table 1. Intrinsic dimension of images 
Feature vector space Definition 1 Definition 2 

66 5.3 2.2 
Two methods of measuring intrinsic dimensionality 

have been proposed.  The intrinsic dimension of a 
metric space can be defined (Definition 1) as ! = 
µ2/2"2, where µ and "2 are the mean and variance of the 
pair-wise distances among the data points [4].  Another 
way to estimate the intrinsic dimension is to measure 
how the number of points contained in a hyper-ball 
changes with respect to the radius.  This measure 
agrees with the standard measure in d-dimensional 
Euclidean space with random and uniform data, since 
the ball with radius c∗r has cd times the volume of the 
ball with radius r.  To calculate a value of d in general, 
we can measure the number of results of a collection of 
range queries.  By taking the average number for each 
radius we can perform regression (we use a linear 
regression on the log of the number and radius) on the 
measured radius-number pairs to get an estimate of d 
(Definition 2).  We prefer definition 2 because it takes 
into account both the dataset and the queries. 

The intrinsic dimensionalities of the images 
estimated by the two methods are listed in Table 1.  We 
can see that both intrinsic dimensions are below 10, 
much less than the dimension of the feature vector 



space, suggesting the applicability of distance-based 
methods and minor effect of curse of dimensionality. 

 
3. Distance-based index methods 
 

In this section, we give brief introduction to the 
three distance-based index methods we have studied.  
References are given for detail. 

Answering similarity queries in partitioning and 
clustering methods consists of two steps.  The first step 
is offline construction of an index structure, called 
bulkload.  Bulkload actually hierarchically partitions 
and clusters the data, while each sub-tree can be 
defined by a predicate.  The index keys of data objects 
are stored in the leaf nodes of the index tree. 

The second step is online answering the similarity 
query.  The answering process basically descends the 
index tree from the root to leaf nodes, in usually more 
than one path.  At each internal node, computation is 
performed on the query and the predicates of the sub-
trees to prune those that are impossible to contain any 
query results.  Children that can not be pruned are 
further visited in the same way. 

Ciaccia et al.’s M-tree effort stands out as the single 
investigation of a fully general external metric-space 
index structure [5, 6].  In M-tree, each sub-tree is 
associated with a center, C, and the maximum distance 
from C to points in the sub-tree, r, called covering 
radius.  Thus, each sub-tree is defined by a predicate 
P(C, r), a bounding sphere.  If a query point is too far 
from the center of a sub-tree, by virtue of the triangle 
inequality, the sub-tree may be pruned.   

In previous work [15], we proposed a bi-directional 
bulkload algorithm for M-tree to save bulkload time 
and get better index structure.  Further the M-tree’s 
determination of the radius is refined by setting it as the 
maximum distance between the center and each data 
object in the sub-tree [15].  For clarity, we name the 
resulting data structure Radius-Based Tree (RBT). 

Experimental results on images show that the RBT-
index outperforms the M-tree (Section 5). 

MVP-trees were also studied in the context of 
MoBIoS.  Since the original MVP-tree resides in main-
memory, we implemented a paged MVP-tree, MVP-
index, which accounts for elements of an external data 
structure by organizing the leaves of the tree as disk-
pages.  The fanout of a node is determined by the disk 
page size and the occupancy constraints.   

In one partition step of MVP-index bulkload, a 
number of pivots, or vantage points, are selected and 
data is partitioned into cells, each of which is bounded 
by a multi-dimensional interval of the form [Pi, rmin, i, 
rmax, i ], indicating that for each pivot Pi, the distances 

from Pi to points in the cell are within the range [ rmin, i, 
rmax, i].  A range query is transformed into a multi-
dimensional interval based on the distances to each 
pivot and the search radius.  The cells whose intervals 
do not intersect with that of the query are pruned.  See 
Bozkaya and Ozsoyoglu for details [2]. 

We compared MVP-index and RBT on image 
workload, and the conclusion is that MVP-index is 
more suitable in the context of MoBIoS (section 5). 
 
4. Optimizing the MVP-index 
 

In this section, we introduce how we optimize the 
bulkload of MVP-index to improve its query 
performance. 

From Section 3, we see that there are two critical 
parts in MVP-index bulkload, i.e. pivot selection and 
data partition, for which many heuristics have been 
proposed.  For pivot selection, two dominant heuristics 
are random selection (random-pivot) and corner 
selection (corner-pivot).  Random-pivot is the naïve 
way to select pivots.  It is fast, O(1), and is often 
combined with some sampling technique.  Corner-pivot 
advocates that the “corners”, or the farthest points, of 
the dataset are the best candidates for vantage-points 
[21].  The farthest-first-traversal (FFT) [9] algorithm is 
proposed to find the farthest points.  FFT is proposed 
as an approximation algorithm for the k-center 
problem, whose objective is to minimize the maximum 
cluster diameter.  FFT gives 2-approximation to the 
optimum and had been proved to be the best possible 
[9].  Its time and space complexities are both O(n) [9]. 

Previously, two partition algorithms have been 
proposed.  A cardinality-balanced algorithm balances 
the tree by balancing the cardinality of the partitions.  
A distance-balanced algorithm partitions the range of 
distances uniformly, usually creating a skewed tree. 

For GNAT, an improvement of hyper-plane 
methods, Brin argued that distance-based indexing 
methods are effective due to the intrinsic hierarchical 
clustering of data [3].  Similarly, it is demonstrated that 
RBTs capture the hierarchical clustering of the data 
better than M-trees[15],..  We claim that the index tree 
structure should embody the intrinsic clustering of the 
data to gain good performance. 

For pivot selection, we propose to select the centers 
of intrinsic clusters of the real data. In MVP-Indexes, 
we implement an algorithm derived from CLARA 
(Clustering LARge Applications) [12], which is a 
simple k-median algorithm based on sampling and 
iteration.  Since the program usually converges rather 
rapidly, and the time to compute the objective function 



is linear to the dataset size, the time complexity of the 
algorithm is approximately O(n). 

 
From the discussion of the online query step, we 

can see that the average query performance is 
dominated by average number of branches the queries 
have to descend in the internal nodes.  Assuming the 
queries have the same distribution as the database, it is 
important to reduce the proportion of points that are 
close to the cluster boundaries.  Based on this 
observation, we propose the clustering partition 
algorithm.  Clustering partition tries to find the 
intrinsic clusters in the data, and put each cluster into a 
partition.  It does not consider the number of objects in 
each cluster.  Thus, without refinement, the cluster 
partition algorithm may lead to unbalanced trees.  We 
ameliorate this effect by reordering the pivots within a 
node from best to worst.  The quality of a pivot is 
greedily determined by the balance of the size of the 
subsets when considering only that pivot.  In particular, 
for each pivot, we partition the dataset by computing 
the variance of the sizes of the partitions.  The pivot 
resulting in the smallest variance is the best and is 
considered first within the node.  The clustering 
partition algorithm is detailed in Figure 1.   

Each step of the algorithm takes constant or linear 
time except the k-means algorithm.  Each iteration of k-
means takes linear time.  Since k-means normally 
converges quickly, and our experiments also show this, 
we can assume that the number of iterations of k-means 
is bounded by a constant, thus k-means takes linear 
time.  Again, we consider the number of pivots and the 
number of partition from each pivot are constant, 
therefore the time complexity of the clustering partition 
algorithm is O(n). 

Empirical results show that our heuristics 
outperform other heuristics in most of the cases.  
 
5. Empirical results 
 

In this section, we present the empirical results to 
compare the query performance of the three distance-
based methods, the MVP-index bulkload heuristics, 
and the scalability of our optimized MVP-index.  

We used the M-tree open source release v0.91, 
which is written in C++ [13].  Our own implementation 
of the RBT and the MVP-index are written in Java.  
Therefore, we report on language independent 
measurements such as the number of distance 
computations and the number of page accesses rather 
than execution time.  For the RBT and the MVP-index, 
since the node sizes are equal to disk page size, we 
measure the number of nodes visited and present that as 
the number of disk I/O operations. 

The image dataset [10] consists of 10221 images.  
A number of data points are randomly selected as 
queries.  For each index structure, range queries are run 
with multiple radii.  For each radius the average 
number of distance calculations and nodes visited are 
computed as the performance measurements.   

 
The query performance of the M-tree, the RBT and 

the MVP-index are first compared.  The average 
number of distance calculations of all range queries 
with different radii is shown in Figures 2.  From the 
figures we can see that the RBT always outperforms 
the M-tree.  For small radii, the MVP-index yields the 
best performance, while for large radii, MVP-index 
performs the worst.  The average number of I/O 
operations demonstrates similar relationship and is 
therefore not shown in this paper. 

We focus our discussion on radii that are neither too 
small nor too large.  If the radius is too small, only a 
very small fraction of the database is qualified.  This is 
makes the query like an exact match but not a range 
query.  For a large radius, a major part of the database 
is returned, which makes the search degrade to a linear 
scan.  For example, Figure 2 shows that the cross over 

Figure 2.  Num. of dist.  calc. vs. radius 

Figure 1. Clustering Partition 

ClusteringPartition (D: dataset, P: pivots, s: number 
of partitions from each pivot) { 
// each cluster is associated with a set of pivots, 

initially, D is associated with all the pivots 
while ( exists a cluster C with non-empty pivots set 

P){ 
for ( each Pi in P) { 

compute the distances from all points to Pi; 
find s-1 split values by 1-d kmeans clustering;
compute the sizes of sub-clusters; 
compute the variance of the sizes;  

} 
find the pivot P-mv resulting in least variance; 
split C based on the clustering resulted by P-mv;
remove P-mv from P;  
copy P as the pivot set for each sub-clusters; 
remove C;  

} 
return all the clusters;  

} 



of RBT and MVP-index is at radius 0.8, where the 
distance calculation number is about 3000, 29.4% 
(3000/10221) of the total number of images.  
Therefore, this radius is too large to be of interest.  
Consequently, MVP-index is the best. 

 
Next, we compare the MVP-index bulkload 

heuristics.  Since the figures of number of distance 
calculations and number I/O operations show are 
similar, to save space, we only show the number of 
distance calculation for typical radii. 

 
Figure 3 compares the pivot selection heuristics, 

and the cardinality-balanced partition is used for all 
experiments.  From the figure, we can see that center-
pivot always outperforms corner-pivot by FFT 
algorithm.  Also, center-pivot and random-pivot have 
similar performance.  Note that the query radius, 0.1, is 
fairly small.  An advantage of random selection is that 
it usually leads to relatively balance clustering of the 
dataset compared to other heuristics.  For very small 
range query radii, the result of a range query is a very 
small fraction of the whole dataset, and at each level of 

the index tree, the search usually descends to only one 
child.  In this case, like the B+-tree for traditional exact 
match query, balanced trees lead to better performance.  
Therefore, we expect that random selection leads to 
better performance for very small radii. 

The data comparing the partition algorithms is 
shown in Figure 4.  Since we consider the clustering 
partition as a derivation of the distance-balanced 
partition, for simplicity we only show the data of the 
cardinality-balanced partition and the clustering 
partition.  From the figure, we can clearly see that the 
clustering partition outperforms balance clustering for 
most of the cases.   

 
In the following, we present the scalability of the 

MVP-index in Figure 5 by showing the average number 
of distance calculations for each range query result 
with search radius 0.3 as database size increases.  From 
the figure we can see that as database size increases 
from 2000 to 10221, nearly 400%, the average number 
of distance calculations per query result only increases 
from 2.1 to 2.7, just 29%, indicating good scalability. 

 
6. MoBIoS and mSQL of image retrieval 
 

MoBIoS [17] is a project that aims at inventing a 
new generation database management system (DBMS) 
targeting life-science data.  MoBIoS is built on top of 
Mckoi [16], an open source Java RDBMS.  MoBIoS 
contains built-in biological data types entailing the 
semantics of biological dogma, general-purpose metric-
space indices, storage and retrieval of sequences and 
spectra based on similarity metrics, and a query 
language (mSQL) (Figure 6). 

The storage manager is the foundation of MoBIoS.  
It uses a B+-tree as the primary index.  At this time, 
metric-space indexes are only used as secondary dense 
indexes.  The storage manager is built by integrating 
our metric-space index library with Mckoi [16].  The 
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metric-space index library is written in Java below an 
interface, called the MoBIoS Java Interface (MJI).  
With MJI, the library can easily be integrated with 
other Java DBMSs. 

 
mSQL is an extension to the standard SQL language 

and is under development for MoBIoS.  It embodies 
the semantics of genomics and proteomics and allows 
for concise expression of Bioinformatics studies.  
Syntactically mSQL is consistent with the SQL99 
object-relational extensions to SQL.  Its syntax design 
also refers to standard spatial database extensions to 
SQL [7].  mSQL extends standard SQL in three 
aspects: metric-space indices, built-in biological data 
types, and biologically related functions and operators.   

Since the choice of metric is sometimes a 
parameter, mSQL departs from the standards on 
occasion.  To specify that an index is a metric-space 
index, we introduce the reserved word “using” as an 
argument to create index.  The name of a built-in or 
user-defined metric distance function on which the 
index is built follows “using” (see Figure 7.  (c)). 

In mSQL, any data type with a metric distance can 
be used to create metric-space indices to support 
similarity queries.  The following four steps detail the 
mSQL statements for image retrieval. 

(a) Define a new (nontraditional) object, and use it to 
define an attribute of a table.  (Figure 7 (a)) 
As in SQL99, mSQL supports user-defined types.   

(b) Define the metric distance function.  (Figure 7 (b)) 
There is a built-in type named METRIC, which is 

the super type of any metric distance function.  The 
user can define his or her own distance function as a 
sub-type of METRIC.   

(c) Create a metric-space index on the table using the 
user’s metric-distance function (Figure 7.  (c)). 
The index is created by adding a keyword, USING, 

to the traditional SQL statements to create index.  The 
corresponding distance function is provided in the 
statement in the form of the USING clause. 

(d) Execute the range query or nearest neighbor query 
(Figure 7.  (d)). 
mSQL also consists of some built-in biological data 

types such as k-mer, sequence, and mass spectra.  The 
semantics of these data types include subsequence 
operators and the concept of local alignment.  Some 
functions and operators are defined or extended based 
on these types.  Query optimization rules are given 
based on these operator extensions.  Some biological 
application procedures are available, such as homology 
search and conserved primer pair discovery [19]. 
 
7. Conclusion and future work 
 

In this paper, we explore the application of MoBIoS 
to support distance-based image similarity retrieval.  
Curse of dimensionality has prohibited the application 
for multi-dimensional partitioning and clustering index 
methods to high dimensional uniform vector space.  
However, real data is seldom uniform, and its intrinsic 
dimension can be far less than the dimension of its 
feature vector.  By two methods, we show that our 
image data has very low intrinsic dimension.  Then, we 
apply distance-based indexing, or metric-space 
indexing, methods to images.  The merit of distance-
based indexing is that the distance function is treated as 
a black box and the interpretation to coordinate system 
is not necessary.  

Many distance-based index methods have been 
proposed, but their performance on real image data are 
not compared enough.  We applied three methods, i.e. 
M-tree, RBT-index and MVP-index to images, and the 
results show that MVP-index is the one of choice. 

More importantly, we further propose new heuristics 
for pivot selection and data partition of the MVP-index 
bulkload, aiming at reflecting the intrinsic clustering of 
real data in the index tree.  In the research of database 
indexing, a prevailing idea is that balance index trees 

CREATE TYPE imagekey_type 
AS ( IMAGE_ID INTEGER, 
 STRUCTURE  DOUBLE .  3], 
 COLOR  DOUBLE .  48], 
 TEXTURE  DOUBLE .  15]) 
INSTANTIABLE 
REF ( IMAGE_ID ) ; 
 

CREATE TABLE image  
( FILENAME VARCHAR(256), 
 KEY REF(imagekey_type) ); 
(a) Create image index key type, and table of images

 

CREATE TYPE image_distance UNDER METRIC 
INSTANCE    METHOD 
 getDistance  ( FIRST imagekey_type,  
                                 SECOND imagekey_type)  
        RETURNS DOUBLE; 

(b) Declare the image distance function 
 

CREATE INDEX image_index on image(KEY)  
 USING image_distance; 
(c) Create metric-space index on the image index key

 

SELECT * FROM image  
WHERE image_distance.getDistance(KEY, 
               imagekey_type(“query.jpg” )  <= 5;  
SELECT NN(“query.jpg”, 10) FROM image; 

(d) Execute an image range query 

Figure 7.  mSQL statements for image 
similarity query 



result in better performance than unbalance trees.  
However, although our heuristics usually lead to 
unbalance trees, empirical results show that they 
outperform heuristics that in favor of balance trees. 

As discussed above, because of curse of 
dimensionality, indexing methods are usually 
outperformed by sequential scan.  In out case, since the 
data is intrinsically low dimensional, with distance-
based indexing and heuristics designed for real 
clustered data, our MVP-index show good scalability. 

Last of all, under the framework of MoBIoS, we 
have extended the SQL language to support image 
similarity retrieval syntactically.  Just a few lines of 
mSQL statements are enough to express the whole 
process from creating an image data type, creating a 
metric-space index to executing a similarity query. 

In addition to image retrieval, we have also applied 
MoBIoS to other applications successfully, such as 
scalable protein sequence retrieval, indexing mass-
spectra data and finding conserved primer pairs [19].  
Similar results are reported. 

In ongoing work we are continue to explore index 
structures and clustering algorithms in hopes of finding 
a single generally applicable solution.  There is 
considerable flexibility in the choice of the predicate of 
subsets, pivot selection and data partition heuristics 
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