
Case Study: Distance-Based Image Retrieval in the MoBIoS DBMS

Rui Mao1, Qasim Iqbal2, Wenguo Liu1, and Daniel P. Miranker1
1 Department of Computer Sciences

 Center for Computational Biology and Bioinformatics
 University of Texas at Austin

1 University Station C0500, Austin, TX 78712-1188 USA
{rmao, liuwg, miranker}@cs.utexas.edu

2 LifeSize Communications, Austin, Texas 78746, USA
qiqbal@lifesize.com

Abstract

Similarity search leveraging distance-based index
structures is increasingly being used for complex data
types. It has been shown that for high dimensional
uniform vectors with similarity norms, any clustering
and partitioning index method is outperformed by
sequential scan. However, intrinsic clustering of real
data usually leads to low intrinsic dimensionality.
MoBIoS (the Molecular Biological Information
System) is a next generation database management
system comprising distance-based indices. Owing to
its generality, we have built, evaluated and optimized a
prototype of a distance-based image retrieval system.
We show that under a metric distance function, image
data is intrinsically low dimensional. We investigate
the performance of three distance-based index
structures (M-tree, RBT-index, and MVP-index), and,
to optimize the construction of MVP-indexes, develop
new heuristics that seek centers as pivots and partition
the data according to its intrinsic clustering. Last, we
show the SQL extension to embody distance-based
image retrieval in MoBIoS.

1. Introduction

Today, a great challenge in databases is to manage
various nontraditional types of data, such as spatial
objects, video, image, voice, text and biological data
types [4, 17, 19]. Management of images within a
large database is an important and emerging area of
research. Answering content-based queries typically
requires representing data objects by their feature
vectors and computing the relative distances between

feature vectors, which is typically a very costly
operation. The distance function often has the metric
properties, i.e. non-negativity, symmetry and triangle
inequality. Retrieval in large disk-resident datasets has
to be supported by external data structures optimizing
both disk I/O and the number of distance calculations.

Multi-dimensional index methods, such as k-d trees
[1] and R-trees [8], can be applied to images. In these
methods, for each image a (usually high dimensional)
feature vector is extracted so that the image can be
represented by a spatial point or a spatial object in a
high-dimensional vector space. Typical search
operations are range query, i.e., find all objects that are
within a given distance to the query point, and the
nearest neighbor query, i.e., find the k closest points to
the query point. Since k-nearest neighbor queries can
be systematically implemented by range queries [4], we
only consider range queries to simplify the discussion.

It is shown that for uniform high dimensional vector
space, if the database size does not increase
exponentially with respect to the dimension, any
partitioning and clustering index method will be
outperformed by a sequential scan [20].

However, real data is seldom uniform. Its intrinsic
clustering usually leads to low intrinsic dimensionality
although the feature vectors are in high dimension
space, suggesting the application of distance-based
indexing, or metric-space indexing. The value of a
distance-based approach is that it is unnecessary to find
a meaning for the data with respect to the axes of a
coordinate system. The only way to save distance
calculations is to take use of the triangle inequality [4].

In this paper, we discuss how distance-based image
similarity retrieval is supported in MoBIoS [17].
MoBIoS’ primary focus is life-science applications. In
anticipation of bioinformatics efforts that correlate
phenotypes derived from images (e.g. tumors) with
gene and protein expression, and also to exercise the

This research was supported by the National Science
Foundation contracts DBI-0241180, IIS-0325116, and EF
03-31453.

generality of the system we have implemented an
image retrieval system.

Many distance-based indexing methods have been
developed [4]. We have investigated the performance
of three distance-based methods, i.e. the Metric Tree
(M-tree) [5, 6], the Radius-Based Tree (RBT), and the
Multi-Vantage Point Tree (MVP-tree) [2] on images.
Experimental results showed that the MVP-index
performed the best.

Given the data, the initial construction of index
structure, or bulkload, is critical to its query
performance. The bulkload of MVP-index works in a
top-down recursive style. In each recursion, there are
two main steps: selection of pivots, or vantage-points,
and data partition based on the distances to the pivots.

Most of the previous heuristics proposed to these
two steps assume that the data is uniformly distributed.
Basically, they suggest selecting the corners of the data
as pivots and partitioning the data such that the index
tree is balance. However, real data usually has high
level of intrinsic clustering. Brin proposed that the
index structure should reflect the intrinsic clustering of
the data [3]. We proposed new heuristics for the two
steps. The basic idea is to select the centers of the
intrinsic clusters of the data as pivots, and partition the
data according to the intrinsic clustering. Our
heuristics usually lead to unbalanced index trees,
however, empirical results show that they outperform
the heuristics favoring of balance trees. Further, it is
shown that the optimized MVP-index scales well for
the image data. We have also tested our heuristics for
biological data. Similar conclusion can be drawn [14].

Last but not least, we support image retrieval in the
MoBIoS SQL (mSQL). Syntactically, mSQL is
consistent with the SQL99 [7] object-relational
extensions to SQL. Further extensions that support
distance-based indices and similarity queries are
aligned with standard spatial database extensions to
SQL [18]. We first define the image data type, and
then bulkload the data. Next, a distance-based index is
created on the data, and finally range queries or nearest
neighbor queries are executed through the index.

Our main contribution consists of investigating
distance-based indexing of images to avoid the curse of
dimensionality, comparing several distance-based
methods and optimizing the MVP-index to show that
the non-canonical unbalance index trees performs well,
and the SQL support of image retrieval.

The rest of this paper is organized as follows. In
Section 2, we show the low intrinsic dimension of
images. Several index structures are outlined in
Section 3, and the optimization of MVP-index is
discussed in Section 4. We introduce the MoBIoS

system and mSQL of image retrieval in Section 5,
followed by conclusions and future work in Section 6.

2. Image intrinsic dimension

We start by a brief introduction of the metric
distance function of images, which is not the focus of
this paper, and interested readers are referred to [11].

Each image is represented by 3 sets of features
reflecting the image properties in structure, texture, and
color. Each set of features can be considered as a
vector. Consequently, an image can be represented by
three vectors, with length 3 for structure, 15 for color
and 48 for texture. For texture and structure features,
the distance functions are both L2 norm. For color
feature, the distance function is L1 norm [11]. The
final distance is a linear combination of the distances of
each feature set, with coefficients 1/3 respectively.
Since linear combination of metric functions is metric,
the final distance also has the metric properties.

Due to the curse of dimensionality, the dimension of
the data space dominates the efficiency of the search
algorithms [20]. Since real data is seldom uniform,
intrinsic dimension, instead of the dimension of the
feature vectors, is a better way to quantify the
characteristic of the data.

Table 1. Intrinsic dimension of images
Feature vector space Definition 1 Definition 2

66 5.3 2.2
Two methods of measuring intrinsic dimensionality

have been proposed. The intrinsic dimension of a
metric space can be defined (Definition 1) as ! =
µ2/2"2, where µ and "2 are the mean and variance of the
pair-wise distances among the data points [4]. Another
way to estimate the intrinsic dimension is to measure
how the number of points contained in a hyper-ball
changes with respect to the radius. This measure
agrees with the standard measure in d-dimensional
Euclidean space with random and uniform data, since
the ball with radius c∗r has cd times the volume of the
ball with radius r. To calculate a value of d in general,
we can measure the number of results of a collection of
range queries. By taking the average number for each
radius we can perform regression (we use a linear
regression on the log of the number and radius) on the
measured radius-number pairs to get an estimate of d
(Definition 2). We prefer definition 2 because it takes
into account both the dataset and the queries.

The intrinsic dimensionalities of the images
estimated by the two methods are listed in Table 1. We
can see that both intrinsic dimensions are below 10,
much less than the dimension of the feature vector

space, suggesting the applicability of distance-based
methods and minor effect of curse of dimensionality.

3. Distance-based index methods

In this section, we give brief introduction to the
three distance-based index methods we have studied.
References are given for detail.

Answering similarity queries in partitioning and
clustering methods consists of two steps. The first step
is offline construction of an index structure, called
bulkload. Bulkload actually hierarchically partitions
and clusters the data, while each sub-tree can be
defined by a predicate. The index keys of data objects
are stored in the leaf nodes of the index tree.

The second step is online answering the similarity
query. The answering process basically descends the
index tree from the root to leaf nodes, in usually more
than one path. At each internal node, computation is
performed on the query and the predicates of the sub-
trees to prune those that are impossible to contain any
query results. Children that can not be pruned are
further visited in the same way.

Ciaccia et al.’s M-tree effort stands out as the single
investigation of a fully general external metric-space
index structure [5, 6]. In M-tree, each sub-tree is
associated with a center, C, and the maximum distance
from C to points in the sub-tree, r, called covering
radius. Thus, each sub-tree is defined by a predicate
P(C, r), a bounding sphere. If a query point is too far
from the center of a sub-tree, by virtue of the triangle
inequality, the sub-tree may be pruned.

In previous work [15], we proposed a bi-directional
bulkload algorithm for M-tree to save bulkload time
and get better index structure. Further the M-tree’s
determination of the radius is refined by setting it as the
maximum distance between the center and each data
object in the sub-tree [15]. For clarity, we name the
resulting data structure Radius-Based Tree (RBT).

Experimental results on images show that the RBT-
index outperforms the M-tree (Section 5).

MVP-trees were also studied in the context of
MoBIoS. Since the original MVP-tree resides in main-
memory, we implemented a paged MVP-tree, MVP-
index, which accounts for elements of an external data
structure by organizing the leaves of the tree as disk-
pages. The fanout of a node is determined by the disk
page size and the occupancy constraints.

In one partition step of MVP-index bulkload, a
number of pivots, or vantage points, are selected and
data is partitioned into cells, each of which is bounded
by a multi-dimensional interval of the form [Pi, rmin, i,
rmax, i], indicating that for each pivot Pi, the distances

from Pi to points in the cell are within the range [rmin, i,
rmax, i]. A range query is transformed into a multi-
dimensional interval based on the distances to each
pivot and the search radius. The cells whose intervals
do not intersect with that of the query are pruned. See
Bozkaya and Ozsoyoglu for details [2].

We compared MVP-index and RBT on image
workload, and the conclusion is that MVP-index is
more suitable in the context of MoBIoS (section 5).

4. Optimizing the MVP-index

In this section, we introduce how we optimize the
bulkload of MVP-index to improve its query
performance.

From Section 3, we see that there are two critical
parts in MVP-index bulkload, i.e. pivot selection and
data partition, for which many heuristics have been
proposed. For pivot selection, two dominant heuristics
are random selection (random-pivot) and corner
selection (corner-pivot). Random-pivot is the naïve
way to select pivots. It is fast, O(1), and is often
combined with some sampling technique. Corner-pivot
advocates that the “corners”, or the farthest points, of
the dataset are the best candidates for vantage-points
[21]. The farthest-first-traversal (FFT) [9] algorithm is
proposed to find the farthest points. FFT is proposed
as an approximation algorithm for the k-center
problem, whose objective is to minimize the maximum
cluster diameter. FFT gives 2-approximation to the
optimum and had been proved to be the best possible
[9]. Its time and space complexities are both O(n) [9].

Previously, two partition algorithms have been
proposed. A cardinality-balanced algorithm balances
the tree by balancing the cardinality of the partitions.
A distance-balanced algorithm partitions the range of
distances uniformly, usually creating a skewed tree.

For GNAT, an improvement of hyper-plane
methods, Brin argued that distance-based indexing
methods are effective due to the intrinsic hierarchical
clustering of data [3]. Similarly, it is demonstrated that
RBTs capture the hierarchical clustering of the data
better than M-trees[15],.. We claim that the index tree
structure should embody the intrinsic clustering of the
data to gain good performance.

For pivot selection, we propose to select the centers
of intrinsic clusters of the real data. In MVP-Indexes,
we implement an algorithm derived from CLARA
(Clustering LARge Applications) [12], which is a
simple k-median algorithm based on sampling and
iteration. Since the program usually converges rather
rapidly, and the time to compute the objective function

is linear to the dataset size, the time complexity of the
algorithm is approximately O(n).

From the discussion of the online query step, we

can see that the average query performance is
dominated by average number of branches the queries
have to descend in the internal nodes. Assuming the
queries have the same distribution as the database, it is
important to reduce the proportion of points that are
close to the cluster boundaries. Based on this
observation, we propose the clustering partition
algorithm. Clustering partition tries to find the
intrinsic clusters in the data, and put each cluster into a
partition. It does not consider the number of objects in
each cluster. Thus, without refinement, the cluster
partition algorithm may lead to unbalanced trees. We
ameliorate this effect by reordering the pivots within a
node from best to worst. The quality of a pivot is
greedily determined by the balance of the size of the
subsets when considering only that pivot. In particular,
for each pivot, we partition the dataset by computing
the variance of the sizes of the partitions. The pivot
resulting in the smallest variance is the best and is
considered first within the node. The clustering
partition algorithm is detailed in Figure 1.

Each step of the algorithm takes constant or linear
time except the k-means algorithm. Each iteration of k-
means takes linear time. Since k-means normally
converges quickly, and our experiments also show this,
we can assume that the number of iterations of k-means
is bounded by a constant, thus k-means takes linear
time. Again, we consider the number of pivots and the
number of partition from each pivot are constant,
therefore the time complexity of the clustering partition
algorithm is O(n).

Empirical results show that our heuristics
outperform other heuristics in most of the cases.

5. Empirical results

In this section, we present the empirical results to
compare the query performance of the three distance-
based methods, the MVP-index bulkload heuristics,
and the scalability of our optimized MVP-index.

We used the M-tree open source release v0.91,
which is written in C++ [13]. Our own implementation
of the RBT and the MVP-index are written in Java.
Therefore, we report on language independent
measurements such as the number of distance
computations and the number of page accesses rather
than execution time. For the RBT and the MVP-index,
since the node sizes are equal to disk page size, we
measure the number of nodes visited and present that as
the number of disk I/O operations.

The image dataset [10] consists of 10221 images.
A number of data points are randomly selected as
queries. For each index structure, range queries are run
with multiple radii. For each radius the average
number of distance calculations and nodes visited are
computed as the performance measurements.

The query performance of the M-tree, the RBT and

the MVP-index are first compared. The average
number of distance calculations of all range queries
with different radii is shown in Figures 2. From the
figures we can see that the RBT always outperforms
the M-tree. For small radii, the MVP-index yields the
best performance, while for large radii, MVP-index
performs the worst. The average number of I/O
operations demonstrates similar relationship and is
therefore not shown in this paper.

We focus our discussion on radii that are neither too
small nor too large. If the radius is too small, only a
very small fraction of the database is qualified. This is
makes the query like an exact match but not a range
query. For a large radius, a major part of the database
is returned, which makes the search degrade to a linear
scan. For example, Figure 2 shows that the cross over

Figure 2. Num. of dist. calc. vs. radius

Figure 1. Clustering Partition

ClusteringPartition (D: dataset, P: pivots, s: number
of partitions from each pivot) {
// each cluster is associated with a set of pivots,

initially, D is associated with all the pivots
while (exists a cluster C with non-empty pivots set

P){
for (each Pi in P) {

compute the distances from all points to Pi;
find s-1 split values by 1-d kmeans clustering;
compute the sizes of sub-clusters;
compute the variance of the sizes;

}
find the pivot P-mv resulting in least variance;
split C based on the clustering resulted by P-mv;
remove P-mv from P;
copy P as the pivot set for each sub-clusters;
remove C;

}
return all the clusters;

}

of RBT and MVP-index is at radius 0.8, where the
distance calculation number is about 3000, 29.4%
(3000/10221) of the total number of images.
Therefore, this radius is too large to be of interest.
Consequently, MVP-index is the best.

Next, we compare the MVP-index bulkload

heuristics. Since the figures of number of distance
calculations and number I/O operations show are
similar, to save space, we only show the number of
distance calculation for typical radii.

Figure 3 compares the pivot selection heuristics,

and the cardinality-balanced partition is used for all
experiments. From the figure, we can see that center-
pivot always outperforms corner-pivot by FFT
algorithm. Also, center-pivot and random-pivot have
similar performance. Note that the query radius, 0.1, is
fairly small. An advantage of random selection is that
it usually leads to relatively balance clustering of the
dataset compared to other heuristics. For very small
range query radii, the result of a range query is a very
small fraction of the whole dataset, and at each level of

the index tree, the search usually descends to only one
child. In this case, like the B+-tree for traditional exact
match query, balanced trees lead to better performance.
Therefore, we expect that random selection leads to
better performance for very small radii.

The data comparing the partition algorithms is
shown in Figure 4. Since we consider the clustering
partition as a derivation of the distance-balanced
partition, for simplicity we only show the data of the
cardinality-balanced partition and the clustering
partition. From the figure, we can clearly see that the
clustering partition outperforms balance clustering for
most of the cases.

In the following, we present the scalability of the

MVP-index in Figure 5 by showing the average number
of distance calculations for each range query result
with search radius 0.3 as database size increases. From
the figure we can see that as database size increases
from 2000 to 10221, nearly 400%, the average number
of distance calculations per query result only increases
from 2.1 to 2.7, just 29%, indicating good scalability.

6. MoBIoS and mSQL of image retrieval

MoBIoS [17] is a project that aims at inventing a
new generation database management system (DBMS)
targeting life-science data. MoBIoS is built on top of
Mckoi [16], an open source Java RDBMS. MoBIoS
contains built-in biological data types entailing the
semantics of biological dogma, general-purpose metric-
space indices, storage and retrieval of sequences and
spectra based on similarity metrics, and a query
language (mSQL) (Figure 6).

The storage manager is the foundation of MoBIoS.
It uses a B+-tree as the primary index. At this time,
metric-space indexes are only used as secondary dense
indexes. The storage manager is built by integrating
our metric-space index library with Mckoi [16]. The

2
2.2
2.4
2.6
2.8

2000 5000 8000 11000
Database size

A
ve

ra
ge

 n
um

. o
f

di
st

. C
al

c.
 /

se
ar

ch
 r

es
ul

t

Figure 5. Scalability: average num. of
dist. Calc. per query result vs db. size

Figure 6. MoBIoS architecture

Figure 3. Comp. of VP
selection heuristics, radius: 0.1

Figure 4. Comp. of partition
heuristics, radius: 0.1

600

1000

1400

1800

2200

2000 4000 6000 8000 10000
db size

di

st
an

ce
 c

al
cu

la
tio

n

random, balanced

fft, balanced

center, balanced

500

800

1100

2000 4000 6000 8000 10000
db size

di

st
an

ce
 c

al
cu

la
tio

n

center,
balanced
center,
clustering

metric-space index library is written in Java below an
interface, called the MoBIoS Java Interface (MJI).
With MJI, the library can easily be integrated with
other Java DBMSs.

mSQL is an extension to the standard SQL language

and is under development for MoBIoS. It embodies
the semantics of genomics and proteomics and allows
for concise expression of Bioinformatics studies.
Syntactically mSQL is consistent with the SQL99
object-relational extensions to SQL. Its syntax design
also refers to standard spatial database extensions to
SQL [7]. mSQL extends standard SQL in three
aspects: metric-space indices, built-in biological data
types, and biologically related functions and operators.

Since the choice of metric is sometimes a
parameter, mSQL departs from the standards on
occasion. To specify that an index is a metric-space
index, we introduce the reserved word “using” as an
argument to create index. The name of a built-in or
user-defined metric distance function on which the
index is built follows “using” (see Figure 7. (c)).

In mSQL, any data type with a metric distance can
be used to create metric-space indices to support
similarity queries. The following four steps detail the
mSQL statements for image retrieval.

(a) Define a new (nontraditional) object, and use it to
define an attribute of a table. (Figure 7 (a))
As in SQL99, mSQL supports user-defined types.

(b) Define the metric distance function. (Figure 7 (b))
There is a built-in type named METRIC, which is

the super type of any metric distance function. The
user can define his or her own distance function as a
sub-type of METRIC.

(c) Create a metric-space index on the table using the
user’s metric-distance function (Figure 7. (c)).
The index is created by adding a keyword, USING,

to the traditional SQL statements to create index. The
corresponding distance function is provided in the
statement in the form of the USING clause.

(d) Execute the range query or nearest neighbor query
(Figure 7. (d)).
mSQL also consists of some built-in biological data

types such as k-mer, sequence, and mass spectra. The
semantics of these data types include subsequence
operators and the concept of local alignment. Some
functions and operators are defined or extended based
on these types. Query optimization rules are given
based on these operator extensions. Some biological
application procedures are available, such as homology
search and conserved primer pair discovery [19].

7. Conclusion and future work

In this paper, we explore the application of MoBIoS
to support distance-based image similarity retrieval.
Curse of dimensionality has prohibited the application
for multi-dimensional partitioning and clustering index
methods to high dimensional uniform vector space.
However, real data is seldom uniform, and its intrinsic
dimension can be far less than the dimension of its
feature vector. By two methods, we show that our
image data has very low intrinsic dimension. Then, we
apply distance-based indexing, or metric-space
indexing, methods to images. The merit of distance-
based indexing is that the distance function is treated as
a black box and the interpretation to coordinate system
is not necessary.

Many distance-based index methods have been
proposed, but their performance on real image data are
not compared enough. We applied three methods, i.e.
M-tree, RBT-index and MVP-index to images, and the
results show that MVP-index is the one of choice.

More importantly, we further propose new heuristics
for pivot selection and data partition of the MVP-index
bulkload, aiming at reflecting the intrinsic clustering of
real data in the index tree. In the research of database
indexing, a prevailing idea is that balance index trees

CREATE TYPE imagekey_type
AS (IMAGE_ID INTEGER,
 STRUCTURE DOUBLE . 3],
 COLOR DOUBLE . 48],
 TEXTURE DOUBLE . 15])
INSTANTIABLE
REF (IMAGE_ID) ;

CREATE TABLE image
(FILENAME VARCHAR(256),
 KEY REF(imagekey_type));
(a) Create image index key type, and table of images

CREATE TYPE image_distance UNDER METRIC
INSTANCE METHOD
 getDistance (FIRST imagekey_type,
 SECOND imagekey_type)
 RETURNS DOUBLE;

(b) Declare the image distance function

CREATE INDEX image_index on image(KEY)
 USING image_distance;
(c) Create metric-space index on the image index key

SELECT * FROM image
WHERE image_distance.getDistance(KEY,
 imagekey_type(“query.jpg”) <= 5;
SELECT NN(“query.jpg”, 10) FROM image;

(d) Execute an image range query

Figure 7. mSQL statements for image
similarity query

result in better performance than unbalance trees.
However, although our heuristics usually lead to
unbalance trees, empirical results show that they
outperform heuristics that in favor of balance trees.

As discussed above, because of curse of
dimensionality, indexing methods are usually
outperformed by sequential scan. In out case, since the
data is intrinsically low dimensional, with distance-
based indexing and heuristics designed for real
clustered data, our MVP-index show good scalability.

Last of all, under the framework of MoBIoS, we
have extended the SQL language to support image
similarity retrieval syntactically. Just a few lines of
mSQL statements are enough to express the whole
process from creating an image data type, creating a
metric-space index to executing a similarity query.

In addition to image retrieval, we have also applied
MoBIoS to other applications successfully, such as
scalable protein sequence retrieval, indexing mass-
spectra data and finding conserved primer pairs [19].
Similar results are reported.

In ongoing work we are continue to explore index
structures and clustering algorithms in hopes of finding
a single generally applicable solution. There is
considerable flexibility in the choice of the predicate of
subsets, pivot selection and data partition heuristics

References

[1] Bentley, J. L., “Multidimensional binary search trees

used for associative searching”, Communications of the
ACM, September (1975), 18(9):509-517.

[2] Bozkaya, T. and Ozsoyoglu, M., “Indexing Large
Metric Spaces for Similarity Search Queries”, ACM
Transactions on Database System, (1999) 1-34.

[3] Brin, S., “Near Neighbor Search in Large Metric
Spaces”, In Proc. 21st. Int. Conf. Very Large Data
Bases (VLDB), (1995), 574-584.

[4] Chavez, E., Navarro, G., Baeza-Yatesand R.,
Marroquin, J. L., “Searching in metric spaces”, ACM
Computing Surveys, (2001), 33(3): 273-321.

[5] Ciaccia, P. and Patella, M., “Bulk loading the M-tree”,
In Proceedings of the 9th Australasian Database
Conference (ADC'98), Perth, Australia, February
(1998), 15--26.

[6] Ciaccia, P., Patella, M., and Zezula, P., “M-tree: an
efficient access method for similarity search in metric
spaces”, Proc. 23rd Int. Conf. Very Large Databases
(VLDB), (1997).

[7] Eisenberg, A., Melton, J, “SQL: 1999, formerly known
as SQL 3”, SIGMOD Record, 1999, 28(1): 131-138.

[8] Guttman, A., “R-trees: A Dynamic Index Structure for
Spatial Searching”. Proc. of SIGMOD, (1984).

[9] Hochbaum, D.S. and Shmoys, D.B., “A best possible
heuristic for the k-center problem”, Mathematics of
Operational Research, (1985), Vol. 10(2), pp.180-184.

[10] Image dataset:
http://mobios.csres.utexas.edu/~rmao/imagedata

[11] Iqbal, Q. and Aggarwal, J. K., “Image Retrieval via
Isotropic and Anisotropic Mappings”, Pattern
Recognition Journal, (2002), Vol. 35, no. 12, 2673-
2686.

[12] Kaufman, L. and Peter, J.R., Finding groups in data:
An introduction to cluster analysis. John Wiley & Sons
(1990)

[13] M-tree project home page. http://www-
db.deis.unibo.it/Mtree/index.html

[14] Mao R., Xu W., Ramakrishnan S., Nuckolls G.,
Miranker D. P., "On Optimizing Distance-Based
Similarity Search for Biological Databases". In the
Proceedings of the 2005 IEEE Computational Systems
Bioinformatics Conference, Stanford University,
California, USA, August 8-11, (2005).

[15] Mao, R., Xu, W., Singh, N. and Miranker, D. P., “An
Assessment of a Metric Space Database Index to
Support Sequence Homology”, In the proceeding of the
3rd IEEE Symposium on Bioinformatics and
Bioengineering, Washington D.C, March 10-12 (2003)

[16] Mckoi project: http://mckoi.com/database/
[17] Miranker, D. P., Xu, W., and Mao, R.,, “Architecture

and Application of MoBIoS, a Metric-Space DBMS to
Support Biological Discovery”, The 15th International
Conference on Scientific and Statistical Database
Management, (2003)

[18] OGIS, Open GIS consortium: Open GIS simple
features specification for SQL (Revision 1.1) (1999). At
URL: htt://www.opengis.org/techno/specs.htm

[19] Xu, W., Briggs, W. J., Padolina, J., Liu, W., Linder,
C. R. & Miranker, D.P., “Using MoBIoS' Scalable
Genome Joins to Find Conserved Primer Pair
Candidates Between Two Genomes”, ISMB04,
Glasgow, Scottish (2004).

[20] Weber R., Schek H.-J., and Blott S., “A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces”, In Proceedings of
the Int. Conf. on Very Large Data Bases, New York
City, New York, August 1998, pages 194-205.

[21] Yianilos, P., “Data structures and algorithms for
nearest neighbor search in general metric spaces”, In
Proc. 4th ACM-SIAM. Symposium on Discrete
Algorithms (SODA'93), (1993)311-321.

