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Abstract 
 

We investigate the performance of three index structures to support scalable proximity retrieval 
of images. The development of a general purpose tree-structured database index to support 
proximity search in metric space with formal O(log n) performance guarantees has eluded 
researchers.  Consequently, there has been a proliferation of heuristic-based index methods whose 
performance must be evaluated with respect to individual workloads.  We measure the 
performance and scalability of two variations of M-Trees and Multi-Vantage-Point Trees loaded 
isotropic and anisotropic image descriptors.  

1. Introduction 
Today, a great challenge in database area is to manage various nontraditional types of 
data, such as multimedia, video, image, voice, text and biological data types, sequences, 
protein structure and mass spectra [17, 18].  Among the queries of these data types, 
content-based retrieval plays a dominant role. Answering this kind of query requires 
computing the relative distances between data objects, which is typically a very costly 
operation. As distance measures are refined, the interest will be in large disk-resident data 
sets. Retrieval will have to be supported by external data structures that optimize both 
disk I/O and the number of distance calculations.  

Traditional index structures (such as B+-tree) can handle traditional, ordinal, data types, 
such as numeric data, string data, etc, however, these index structures do not support 
spatial database search. For spatial access geographic information systems exploit R-trees 
[10] and k-d trees. However, the tree indexes are not suitable for high-dimensional space 
data search. Consequently, nontraditional data types require new forms of indexing.  One 
approach is metric space indexing. 

Definition 1: A Metric Space is a set of data objects together with a distance function, d, 
with the following properties [5, 8]: 

(i). d(Ox, Oy) = d(Oy, Ox)                                                                              (symmetry) 
(ii). 0 < d(Ox, Oy), Ox,≠ Oy, and d(Ox, Ox) = 0                                       (non-negativity) 
(iii). d(Ox, Oy) ≤ d(Ox, Oz)  + d(Oz, Oy)                                            (triangle inequality) 

There are two important types of similarity queries in Metric Space, i.e., range query and 
k-nearest neighbor query: 

Definition 2: Range query range(Q,r): find all data objects O such that d(Q, O) ≤ r; k-
Nearest Neighbor query NNk(Q): find k data objects such that they are the k closest 
ones to Q [5, 8]. 
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Since nearest-neighbor queries can be systematically implemented by range queries [5], 
to simplify the discussion, we only consider range queries in this paper. 

The key difference between answering a range query in metric space and in a 
dimensional (Euclidean) space is that there does not exist a total ordering of the data that 
preserves the relative similarity [9]. The only way we can prune distance calculations 
during search of a metric space is to make use of the triangle property of the distance 
function [5]. The value of a metric-space approach is that it is unnecessary to find a 
meaning for the data with respect to the axes of a coordinate system.  

Ciaccia et al.’s M-tree effort stands out as the single investigation of a fully general 
external metric-space index structure [7, 8]. M-tree is a radius-based structure with 
dynamic capabilities [8]. It is page mapped to disk to manage large data sets. However, 
we tried M-tree for some real data sets, and the results were not satisfying.  We then 
developed some improvements on M-trees.  Further, we have implemented a Multi-
Vantage Point index tree algorithm.  We compare the performance of the three methods 
on an image database. 

In radius-based indexing methods, the data is hierarchically clustered, where each cluster 
is defined by a center and the maximum distance from the center to any data element in 
the cluster, the radius [5, 7, 8]. The center and the radius define a bounding sphere.  The 
hierarchical structure is materialized as a tree, each vertex of the tree entailing a bounding 
sphere.  If a query point is too far from the center of a cluster, by virtue of the triangle 
inequality, all the points in the sub-tree, (within the bounding sphere) may be removed 
from consideration without further distance calculations. I.e. the tree branch may be 
pruned.   

A challenge we noted in M-trees is that a single outlier in a cluster may greatly expand 
the volume of a bounding sphere.  Bounding spheres may overlap, and when they do 
search pruning is inhibited.  Since the clustering is driven by the physical volume of a 
disk page, the introduction of outliers into clusters is common, and the performance of 
M-tree’s sensitive to the initial clustering of the data. In the context of MoBIoS 
(Molecular Biology Information System) [16] we optimized the node structure, 
developed an improved initialization scheme for M-tree’s and refined the method for 
calculating the radius of a cluster [17, 18]. 

A multi-vantage point tree, (MVP-tree), is built by first selecting some number of points, 
the vantage points. The distance range from each vantage point is broken into intervals.  
The Cartesian product of the intervals forms a set of data partitions. Each data element is 
allocated to a partition by calculating its distance to each vantage point [2, 3, 5]. The 
construction is applied recursively to form an index tree.  See Bozkaya and Ozsoyoglu 
for details [2, 3]. Our MVP-tree implementation accounts for elements of an external data 
structure by organizing the leaves of the tree as data-pages. 

MVP-trees have a complementary problem with M-tree’s. The data partitions are 
guaranteed to be disjoint.  For larger range queries, the bounding sphere representing the 
query may overlap many MVP-tree partitions, also mitigating search pruning. This paper 
details this trade-off with respect to an image retrieval system. 
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The paper is organized as follows. In Section 2, we present the image distance function 
and prove that it is metric. M-tree and Vantage point tree structures, together with their 
variations are analyzed in Section 3, followed by experimental results in Section 4. 
Section 5 consists of conclusions and future work. 

2. Image Distance Function 

To compute the distance between images, each image is represented by 3 sets of features 
reflecting the image properties in structure, color, and texture. Feature retrieval is based 
on isotropic (structure extraction and color histogram) and anisotropic mappings (texture 
analysis) [13]. Isotropic mappings are defined as mappings invariant to the action of the 
planar Euclidean group on the image space -- invariant to the translation, rotation, and 
reflection of image data. Anisotropic mappings, on the other hand, are defined as those 
mappings that are correspondingly variant. For detailed information on how to retrieve 
features from images, please refer to [13, 14].  

The 3 sets of features, actually 3 vectors for each image, correspond to three different 
metric spaces (structure space, color space and texture space). To compute the distance 
between two image objects, two distance functions are defined.  

The distance in structure space and texture space are computed with the Euclidean norm,  
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Meanwhile, the distance in color space are computed with the distance function,  
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where n is the dimension of the image features, u and v are vectors representing the 
features of two images, respectively. (1) represents a L2 norm, while (2) is a L1 norm.  

After the distances are computed in each metric space, three weights are used to combine 
these quantities together to get the final distance between two image objects. These 
weights should sum to 1.0. In our current model, a weight of 1/3 is used for each of these 
metric spaces.  

3. Index Structures 

All tree-based database index structures may be generalized as follows: Consider a data 
set S of n objects. Arbitrarily partition S into blocks, such that the content of each block 
can be qualified by a predicate P. For example, if the data type is rectangles on a plane, 
then P may be the minimum-bounding rectangle that covers all rectangles in the block. If 
there are B objects per block, roughly n/B blocks are created. Consider as a new data set 
the n/B predicates describing these blocks, and repeat the process until a single block, the 
root, is formed. The result is a balanced tree of height logB n.  

We study two primary methods used to define the predicates for metric-spaces: radius-
based and vantage points. In radius-based structure [5, 7, 8], each partition satisfies a 
predicate P(C, r), i.e., C is the center of the partition and the r is the covering radius. This 
predicate means that any data object in the partition is within the distance r to C. In 
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vantage point methods [2, 3, 5], each partition satisfies a predicate P([Vi, rmin, i, rmax, i ]), 
i.e., each distance from the vantage point Vi to each point in this partition is within the 
range (rmin, i, rmax, i). Details of the two structures are analyzed in the following. 

3.1 Radius-based structure 

We first discuss the node structure of a radius-based metric-space index, and introduce 
initialization algorithms. Both variations of the M-tree use the same search rules as the 
original M-tree algorithm [8]. In radius-based index tree, internal nodes and leaf nodes 
have different structures, which are shown in Figure 1. 

Both internal nodes and leaf nodes have a center, C, and a covering radius, R, within 
which any data object in the sub-tree of the node has a distance to the center. The data 
fields of an internal node are shown in table (a) of Figure 1, where child1, …, childn are 
pointers to all children nodes, c1, …, cn are centers of all children nodes, r1, …, rn are 
covering radii of all children nodes, and d1, …, dn are the distances from the center of 
each child to the center of the node. In leaf nodes, their children are data objects. As 
shown in table (b) of Figure 1, child1, …, childn are pointers to all data objects, c1, …, cn 
are the index keys of all data objects, and d1, …, dn are the distances from the center of the 
node to the index keys of every data objects. 

Both internal nodes and leaf nodes are sized as disk pages, so that to read or write a node 
needs exactly one I/O operation. Furthermore, the number of children of an index node is 
also a function of a page occupancy parameter. 

Initialization of a radius-based tree comprises a hierarchical clustering of the data.  We 
consider the original M-tree initialization of repeated inserts.  This is equivalent to a 
greedy, bottom-up clustering of the data. Since an insert has amortized time complexity 
O(log n), the total initialization time complexity is O(nlog n).  We have evaluated M-
tree’s explicit top-down bulk-loading algorithm. The bottom-up method performed better, 
so we do not detail those results. 

Our improvement on M-tree comprises a bi-directional initialization algorithm. Briefly, 
bi-directional is a bottom-up method. For each level of the tree, starting at the bottom we 
first run a simple top-down hierarchical clustering algorithm. The clusters returned by 
simple top-down first form the leaves of the tree. Then, the predicates for the set of leaves 

Figure 1 Radius-based index tree structure 
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are treated as data, and reapplying the top-down clustering algorithm we construct the 
clusters that form the first level of interior nodes. The procedure repeats recursively, 
terminating when the predicate set fits on one disk page. The algorithm to cluster a 
dataset to sub-clusters is farthest-first-traversal [12]. It is a greedy k-center algorithm, and 
is guaranteed to produce clustering result within a constant factor of two of optimal. 

Further, we refine M-tree’s determination of the radius by setting it as the maximum 
distance between the center and each data objects in the sub-tree. In M-tree, the radius is 
the maximum sum of the radius of a child and the distance between the centers of the 
child and the parent, i.e., r = max {ri + d(C, ci)}. 

3.2 Vantage point tree and variation 

The precise form of the bounding predicates in an MVP-tree is: P([Vi, rmin, i, rmax, i ]). 
Specifically, the predicate comprises, for each vantage point Vi the distance from Vi to 
any data object in the sub-tree of the node is within the range [rmin, i, rmax, i]. We refer the 
reader to Bozkaya and Ozsoyoglu for detail of the search process [2, 3]. Although our 
implementation remains in main-memory we organized our node structures and 
initialization algorithm in a manner consistent with disk-mapped storage structures. 

The node structure of an MVP-tree is shown in Figure 2. There are two key differences 
between our node and node structures in [2, 3]. First, to accommodate the large data set 
that needs to use secondary storage, the sizes of internal nodes and leaf nodes are equal to 
the disk page size so that to read or write a node needs exactly one disk I/O. Second, in 
leaf nodes in [2, 3], each data object stores a list of distances between it and the vantage 
points of the nodes on the path from the leaf to the root of the tree. This list of distances 
is used to save some distance calculations when the leaf node is searched. However, more 
space is needed to accommodate a data object in the leaf node, and thus reduce the fanout 
for a fixed node size. Therefore, we don’t use the distance list in the leaf node. 

To initialize the MVP-tree we use a simple top-down hierarchical clustering algorithm. 
For the first level we first select some data objects as vantage points, and the remaining 
data objects are split evenly into partitions based on their distances to the vantage points. 
The process is applied recursively until disk-page size cluster are achieved. The 

Figure 2 Vantage point index tree structure 
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difficulties are how to select vantage points, and how to partition the remaining data 
objects. 

We want to select m vantage points, and for each vantage point, we partition the data set 
into n equal sized clusters. Therefore, we have altogether nm sub-clusters. The values of 
m and n are decided by the disk page size, index key size and node occupancy constraint. 
To select vantage points, we first run farthest-first-traversal algorithm with a randomly 
selected first center to select k, k>=m, centers, and then compute the pair-wise distances 
of all the k centers.  We determine center, C, with the maximum distance to a remaining 
point. Then using C as the first center we run farthest-first-traversal algorithm again to 
find m centers.  These m points are used as the vantage points. 

We partition the data sequentially for each vantage point. For the first vantage point, we 
first compute the distance from all remaining points to it, and then computing n-median 
we determine intervals that partition the data set into n equal size sets. This is repeated 
for the second vantages point and so on.  This yields a fanout of nm.   Since the subsets are 
of equal size, recursive application of the procedure yields a balanced tree.  

4. Experimental results 

Our test image database has contains features for 10221 images. Each image has features 
for the three different metrics detailed above.  All of our testing comprises a linear 
combination of the three metrics, each weighted by 1/3. Our experimental results 
comprise data to compare the query performance and the scalability of the 3 index 
structures. We use the M-tree open source release v0.91, which is written in C++ [15]. 
Our own implementation of radius-based tree (RBT) and multi-vantage point tree (MVP) 
are written in JAVA. Therefore, we report on implementation independent measurements 
such as counting the number of distance computations and number of pages accesses 
rather than actual execution times.  For RBT and MVP, since the node sizes are equal to 
disk page size, we measure the number of nodes visited and present that as the number of 
disk I/O operations. The same source data and parameters, such as node utilization, 
dataset size, are used for both the original M-tree release and our Java implementation. 

We first compare the query performance of M-tree, RBT and MVP. The number of I/O 
and the number distance calculation are shown in Figure 3 and Figure 4 respectively. 
Specifically, a number of data objects are randomly selected from the database as query 

Figure 4 Number of dist. calculations VS radius Figure 3 Number of I/Os VS radius 
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objects. For each query objects, we run range query and compute the average value of the 
number of distance calculations. 

From the figures we can see that RBT always outperforms M-tree, which means the bi-
directional initialization algorithm works well. For small radii, MVP yields the best 
performance. There is a cross-over such that for larger ranges RBT is the best. The reason 
is that only a small number of data objects satisfy the query when the radius is small. 
These data objects distribute in a small number of clusters. Since partitions in vantage 
point tree do not overlap while those of radius-based tree do, fewer index nodes are 
accessed in MVP. As the radius increases, due to the curse of dimensionality [6], more 
and more data objects satisfy the query. The answer set distributes in a larger number of 
clusters. Ultimately the performance curves of the MVP-trees crossover the curves for the 
radius-based methods. For large radii the queries overlap too many MVP partitions and 
pruning becomes impossible. The crossover with M-trees is later than for RBT since the 
raw performance of RBT is better. 

Next, we show the scalability of the index structure. The scalability can be represented by 
the relationship between query performance and database size. In Figure 5, we show the 
relationship between number of distance calculation and database size. The data is the 
average value of range queries with small radii of the 3 index structures. When the radius 
increases, more data objects, and ultimately all the data objects will be accessed. 
Therefore, the best scalability that could possibly be obtained is linear for large radii. The 
corresponding figure for number of I/Os very similar to Figure 5 and is not presented.. 

Figure 5 reveals that MVP is a very scalable index structure to support proximity query 
with small radii. Recall, 
partitions in vantage points 
tree don’t overlap. When the 
radius is small, only a small 
number of nodes are to be 
accessed. Therefore, when 
searching an internal index 
node, only a small portion of 
its children is visited next. 
Consequently, the scalability 
is nearly to be logarithmic. 
From Figure 5, we can also 
see that RBT also scales, 
although not as well as MVP. 
For M-tree, it shows little 
scalability, and it’s weakness 
for small radii queries 
magnified as the size of the database is increased. Conclusions and Future Work 
In this paper, we explore the application of metric-space index to support proximity query 
in image databases. Since no domain-related meaning of data is needed, these index 
techniques can be possibly used in all multimedia databases to support proximity query.  
Our study reveals a crossover in performance with respect to the radius of the search.  
One might anticipate for small nearest-neighbor searches, small radii will always be 

Figure 5 Scalability: average number of distance 
calculations VS database size of range queries with 

small radii for 3 index structures 
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sufficient and MVP-trees the method of choice, e.g. find the 10 closest matching images.  
But for range queries, the correct choice becomes domain specific.  E.g. find all images 
that match within tolerance t. For each method of feature extraction and concomitant 
metric, a value of t that corresponds to meaningful similarity will be different. 
Developers will have to assess for their particular workload if their value of t is to the left 
or to the right of the crossover. 

In ongoing work we are exploring index structures and clustering algorithms in hopes of 
finding a single generally applicable solution.  There is considerable flexibility in the 
choice of vantage points and partitioning in MVP-trees.  Just as we were able to improve 
the initial clustering of M-trees and improve performance, we anticipate that MVP-trees 
will admit similar tuning.  Besides absolute performance, we will seek to push the 
crossover point in the performance to much larger radii queries.  Hopefully sufficiently 
large that MVP-trees may support a broad-class of applications.  In addition to radius-
based methods and vantage-point methods, taxonomically there is a third family of 
metric-space index structures, generalized-hyperplane techniques.  We are developing 
overlayable results from this family as well [19,4]. 
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