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Abstract 
Life science researchers frequently need to query large 

protein data sets in a variety of different ways. Protein 
data sets have a rich structure that includes its primary 
structure, which is described as a sequence of amino 
acids, and its secondary structure, which is described as a 
sequence of folding patterns of the protein. Both these 
structures are important as the amino acid sequence is 
often used to find homologous proteins, and the 
secondary structure can produce important hints about 
the functionality of proteins. While there are tools for 
querying each of these structures independently, there are 
no tools for declarative querying on both these structures. 
Even the tools that allow querying on either one of these 
structures are not based on any formal algebra, and as a 
result require complex rewriting of the tools 
programming logic when the �query evaluation plan� 
changes. This paper introduces PiQA, a Protein Query 
Algebra, which provides a rich set of algebraic 
operations on both the primary and secondary structure 
of proteins. Using PiQA one can pose several interesting 
complex queries involving both the primary and the 
secondary structure of proteins. In addition, simple 
existing tools that query only on the primary structure, 
such as BLAST, can also be expressed in this algebra. 
PiQA is an important first step in developing an algebra 
that can form the basis of a declarative querying 
language for querying protein data sets. 

1. Introduction 

Recent years have seen an enormous explosion in the 
sizes and uses of biological data. Several nucleotide and 
protein sequence data sets are growing at an exponential 
rate, doubling roughly every 16 months [1]. In addition, 
the nature of the searches against these databases is also 
changing, and scientists today would like to ask more 
complex queries against these data sets. Database 
management tools have an important role to play in 
querying such biological datasets [9, 15]. This paper 
focuses on one such aspect, namely the querying of 
protein data sets based on different structural attributes 
that describe each protein. 

Proteins have the following four levels of structural 
organizations: primary, secondary, tertiary and quaternary 
structures. In this paper, we focus on querying the 

primary and secondary structures. The primary structure 
is simply a linear sequence of amino acids residues that 
forms the protein. The secondary structure describes how 
the linear sequence of amino acids residues orients itself, 
or folds, in three-dimensional space. There are three basic 
types of folds: alpha-helices, beta-pleated sheets, and 
turns or loops. Knowledge of a protein�s secondary 
structure has been shown to provide important insights 
into its evolutionary relationships, and hence its function. 

Typically, biologists are interested in finding 
similarities between a sequenced protein and others in the 
database so that they can understand the function of the 
sequenced protein. For instance, given a protein, they may 
want to determine if similar proteins exist in other 
species, and may also want to determine the function of 
the protein. Or they might be interested in knowing if 
there are other proteins that have a different primary 
structure, but have a similar secondary structure. The 
secondary structure of the protein is crucial to 
understanding the function that the protein performs [3, 
16, 21], and hence it is important to be able to understand 
it in relation to the primary structure.  

1.1. The Problem 

Today when scientists investigate a protein, they 
usually search databases of known proteins based on the 
primary sequence. The search is typically carried out 
using tools such as BLAST [4, 5], Such search tools 
essentially finds homologous matches. These search tools 
return approximate answers, and often a scientist may 
have to post-process these results, or run the search 
iteratively (as in PSI-BLAST). In addition, the scientist 
may query multiple data sets producing a large number of 
approximate matches that may feed into the next stage of 
their analysis. With protein queries, in many cases the 
next step after matching on the primary sequences may be 
to examine the protein of interest with the secondary 
structures of other known proteins in the database. The 
matching on the secondary structure is important as the 
functionality of proteins is strongly influenced by its 
actual folding pattern, and even proteins that are not close 
homologs may exhibit similar behavior if their folding 
patterns are similar.  

As an example, a biologist might have just sequenced 
the hemoglobin protein in monkeys and may be interested 



in hemoglobin and other proteins in other species that are 
�similar� to this protein. Such comparisons are also useful 
in tracking evolutionary changes in the structure of the 
protein [23]. In certain other instances, when a biologist is 
trying to find a protein that matches a certain structural 
fingerprint � i.e. a certain spatial arrangement, they might 
have a secondary structure in mind and want to find 
proteins in the database that have a similar structure.  

In many cases, these steps of querying on the primary 
and secondary structures may be repeated many times, 
and for many different databases. Often the iteration 
between these steps is driven by a manually coded 
program, which may need to be modified every time the 
underlying query changes. In addition, this entire process 
may needs to be carried out for each distinct experiment 
that is undertaken in a lab. A declarative query tool that 
permits querying on both the primary and secondary 
structures can not only reduce the time spent in posing 
such queries, but can also allow the biologist to pose more 
complex queries than are currently used today.  

As an example, using currently existing tools one 
cannot express the following query in a straightforward 
way: Match the given primary sequence of length 120, but 
ignore mismatches in the segment from positions 44 to 78 
if it is on a loop in the secondary structure. 

In the next several sections we shall describe an 
algebra that can be used to query protein data sets based 
on both the primary and secondary structures. The algebra 
supports approximate matching, and also includes 
operators that allow extensions of two or more 
approximate matches to calculate a �longer� match. We 
believe that the algebra is expressive enough to express a 
large class of interesting queries on both the primary and 
secondary structures of proteins.  

The motivations for developing such algebra are fairly 
obvious to a database audience. The algebra is a first step 
in providing a declarative query language-based interface 
to the user, rather than the more cumbersome procedural 
paradigm that is currently being used for queries across 
both primary and secondary structures. In addition, the 
algebra can also be exploited by a query optimizer to 
produce efficient query plans.  

The key contribution of this paper is the presentation 
of PiQA � a Protein Query Algebra that enables us to 
express queries on both the primary and secondary 
structures of proteins. To the best of our knowledge PiQA 
is the first algebra that allows querying on both these 
structures. Using PiQA we also show how existing 
queries on only the primary structure can be expressed in 
this algebra. In addition, we also illustrate the use of the 
algebra in query optimization. 

In Section 2, we describe related tools and techniques 
for querying protein datasets. Section 3 describes the 
types and operators in PiQA. Section 4 presents several 
sample queries to demonstrate the expressive power of the 
algebra. Section 5 uses an example to illustrate the use of 
the algebra for query optimization. Section 6 concludes 
the paper and points to directions for future work. 

2. Related Work 

Surprisingly, there is little previous work on 
developing an algebraic framework for querying 
biological data sets. Recently, Hammer and Schneider 
[13] proposed a long-term approach towards developing 
an algebra that abstracts several biological processes. 
Seshadri et al. [19, 20] describe techniques for querying 
sequence databases. However, these techniques primarily 
focus on aggregate-based analysis of sequences, and are 
not directly applicable for querying biological sequences, 
which often require pattern matching and approximate 
matching operators. There has been a lot of work in string 
matching, including proposals for a declarative language 
based on alignment calculus for strings [11]. However, 
these techniques can only be applied to primary sequence 
matching without approximations.  

The algebraic constructs that we develop in this paper 
employ many of the constructs that have been developed 
for nested relational algebras [2, 14, 18, 22]. However, we 
have been able to express the queries that we target using 
only a limited form of nesting, namely PNF relations [18], 
with only one level of nesting. Consequently, the 
optimizations too are simpler than those developed for 
more general forms of nesting [8, 10, 17]. 

2.1. Primary Structure-based Searching  

A number of tools have been developed for searching 
on nucleotide sequences and primary protein sequences. 
The most frequently used tool in this category is the 
BLAST [4, 5] family of search programs. BLAST works 
in three steps: in the first step it finds all K-mers (strings 
from the alphabet of length K) that score above a certain 
threshold with some part of the query string. In the next 
step, it searches the database to find hits. In the final step, 
BLAST extends the hits according to certain heuristics 
and returns a list of high-scoring segment pairs. This 
score is a measure of similarity. 

2.2. Secondary Structure-based Searching 

Searching based on the secondary structure of proteins 
has recently been examined by Hammel and Patel [12]. 
The authors define an intuitive query language that can be 
used to express queries on secondary structure and also 



developed techniques for evaluating and optimizing these 
queries.  

3. The PiQA Algebra 

The algebra that we describe is a multi-sorted algebra. 
The operators can be composed to specify complex 
queries involving both the primary structure and the 
secondary structure. We have formulated the algebra as 
an extension to relational algebra so that we still have the 
advantage of modeling data as relations. More precisely, 
the relations in our model are in the Partitioned Normal 
Form (PNF) [18]. (PNF relations restrict the class of 
general nested relations to guarantee the desirable 
property that a nest operation is the inverse of an unnest 
operation.) 

We shall first describe all the types in the algebra, and 
then describe each of the operators, the types of their 
operands, and the type of the result. In the interest of 
space, we do not describe the basic relational algebraic 
constructs [7], and extensions of these constructs to 
accommodate PNF relations [18].  

3.1. Types  

The basic types in the algebra are: 
• Basic Scalar Types � Integers, Characters etc. 
• Matches 
• Sequences 
• Tuples 
• Relations (sets) 

3.2 Description of the Types 

3.2.1. Matches. A Match is used to correlate a query 
pattern to a sequence. It is a 2-tuple where the first 
component is an identifier. The identifier is a unique key 
that identifies a particular sequence. We could have used 
a Skolem function instead, but for simplicity we use an 
identifier. The second component is a sequence of 3-
tuples. Each 3-tuple is a match element. Match elements 
are described by three attributes: position � which refers 
to the position of the match element in the string, length �
which refers to the length of that match element, and a 
score � which refers to the score of that match element.  

For instance, (CG2B, ((22, 7, 6), (44, 12, 9))) is a 
match which could have been the result of some 
operation, and it means that the sequence referred to by 
CG2B matched at position 22 and at position 44 with 
lengths of the matches being  7 and 12, and the scores 
being 6 and 9 respectively. 

For ease of presentation, in some of the examples 
below, we represent the matches in an alternative form. In 

this alternative representation, the match is represented as 
a 4-tuple where the first component is an identifier. The 
remaining components of a match are sequences. The 
second component is a sequence of integers which refer to 
positions in a string, the third component is a sequence of 
integers which refer to the lengths of each of the matches 
whose positions are referred to by the previous sequence, 
and the fourth sequence in a match comprises the integers 
that represents the scores. In this alternative 
representation, the previous example would be expressed 
as: (CG2B, (22, 44), (7, 12), (6, 9)). 

Several operators that we describe operate on sets of 
matches. We can view a set of matches as a nested 
relation with the first identifying component of the match 
serving as a key which functionally determines the other 
attributes in the relation. With this interpretation, we 
observe that these sets are in Partition Normal Form [18].  

For ease of presentation, in some of the examples in 
this paper, we represent the third and fourth components 
of the match in the alternative representation as a function 
from natural numbers (sequence positions) to natural 
numbers (the match positions, lengths or the scores).  

In addition in this paper, we do not consider null 
matches.  

3.2.2. Regular Expressions and Matches. A regular 
expression is used to represent a match criterion. As in 
[12], a regular expression is expressed as a sequence of 
segment predicates, each of which must be matched to 
satisfy the entire expression.  Each segment predicate is 
described by the type and the length of the segment. The 
type of the segment is drawn from the alphabet of the 
underlying sequence, and depends on the sequence being 
queried. For the protein secondary structures, the allowed 
segment types are h, e, and l, for the alpha-helices, beta-
sheets, and loops, respectively. In addition we also add a 
fourth option, �?�, which stands for a gap segment and 
allows scientists to represent regions of unimportance in a 
query.  The length of the segment is specified using an 
upper bound and a lower bound, each of which could be 
0. In addition the upper bound could be specified as ∞. 
Segment predicates over other structures are similar, 
except that the type used is set to the symbols in the 
underlying alphabet, with the addition of the �?� symbol.  

Formally, a regular expression is defined using the 
rules shown in Figure 1. 

As an example, consider the following expression on a 
protein secondary structure: <e 3 5><? 0 ∞><l 7 7>. 
This regular expression matches all proteins that contain a 
beta-sheet of length 3 to 5 followed at some point by a 
loop of length 7. 



RegExp → {Segments} 
Segments → Segment* 
Segment → <type lb ub> 
type → e | h | l | ?      (for protein secondary structures) 
type → A | R | N | D | �| ? (for protein primary
                                                         structures) 
type → A | G | C | T | ?         (for nucleotide sequences) 
lb → any integer ≥ 0 
ub → any integer ≥ 0 | ∞ 
Segment Constraint:  lb ≤ ub 

Figure 1: Regular Expression Syntax 

3.2.3. Sets and Sequences. Sets and Sequences are well 
known types. Sequences have the standard position (or 
index) operator which allows access to an arbitrary 
element in the sequences. For example, the ith position in 
a sequence S is simply accessed as S(i).  

In this algebra, we only permit a sequence of the basic 
scalar types. That is, we may have a sequence of integers, 
characters, etc. But we do not have sequences on complex 
types such as relations. We do not define operations on 
sequences directly, but on the matches that have 
sequences as a part. And therefore, not having sequences 
of more complex types does not detract from the power of 
expressing queries that PiQA targets.  

Since a string is merely a sequence of characters (over 
a relevant alphabet), we will use the terms string and 
character sequence interchangeably.  

3.3. Operators 

In this section, we describe the PiQA operators. 

3.3.1.  Match operator (*) 

*: Set<strings> ×  (str ∪ regexp) → Set 

The match operator searches the set of strings (the left 
operand) to finds substrings that approximately match the 
right operand, which could be a string or a regular 
expression specifying a set of strings. The result of this 
operation is a set of matches, each consisting of the 
identifier of the corresponding string, the match-positions 
and their lengths and scores. Symbolically, a match 
expression is of the form: 

T * (str | regexp), where T is a set of strings. 

A common use of the match operator is to search on 
the primary structures using a string str, or searching on 
the secondary structures using a regular expression 
regexp.  

The match operator is defined under some matching 
criterion, for instance PAM-30, PAM-70 or a 
BLOSUM62 matrix can be used to determine a match 
score between two primary protein structures. One may 
also choose to use an exact matching criterion or some 
other measure of approximate matching � gapped, un-
gapped, etc. for secondary structures (and even for 
primary structures). We will not deal in depth with 
specific matching criteria in this paper. Though certain 
kinds of optimization may be possible if we know the 
matching criterion and scoring function used, in the 
interest of generality, our formulation will not be tied to 
any choice of matching criteria, except when explicitly 
specified. 

Example: 
Consider a protein table, P, with the following attributes: 
id � a unique identifier, p � a string representing the 
protein primary structure, and s � a string representing the 
protein secondary structure. In this example, we shall use 
the short-hand P.p to denote the set of primary sequences, 
and P.s to denote the set of secondary sequences. 

id p s 
1 �GQISDSIEEKRGFF� �HLLLLLLLLLHEE� 
2 �EEKKGFEEKRAVW� �LLEEEEEHHHHHL� 

 
 
P =

3 �QDGGSEEKSTKEEK� �HHHHLLLEEEELLL�

str = �EEK� 
regexp = <l 3 5> 

P.p * str = {(1, (8), (3), (3)), (2, (1, 7), (3, 3), (2, 1)), (3, 
(6, 12), (3, 3), (1, 0))} 
P.s * regexp = {(1, (2, 3, 4, 5, 6, 7, 8), (5, 5, 5, 5, 5, 4, 3), 
(1, 1, 1, 1, 1, 0, 1)), (3, (5, 12), (3, 3), (2, 2))} 

The scores assigned in the example above have been 
arbitrarily assigned. However, we can also choose to 
explicitly specify the scoring criteria. If we for instance 
wished to specify that the matches be scored using the 
BLOSUM62 matrix, we would say: 

P.p *BLOSUM62 str      (1) 

This is a simple way of expressing the idea used in 
BLAST for similarity searching. The nature of the 
matching operation has an effect on the semantics of other 
operators that we will describe in subsequent sections. 

3.3.2. Nest (υ) and Unnest (µ) Operators 

υ: Set<matches> →  Set<matches> 
µ: Set<matches> →  Set<matches> 

Unnest (µ) is a simple operator that flattens out a 
relation holding matches.  



For instance, �µ ( {(1, (8), (3), (3)), (2, (1, 7), (3, 3), (2, 
1)), (3, (6, 6), (3, 8), (1, 7))} )�, produces the relation: 

id position length score 
1 8 3 3 
2 1 3 2 
2 7 3 1 
3 6 3 1 
3 6 8 7 

The Nest operation (υ) is merely the reverse. It 
collapses the unnested set into a set of matches.  

To demonstrate the use of the nest and unnest 
operators, consider the simplistic BLAST expression in 
Equation 1. We can restrict the matches to only contain 
match elements with a score greater than a certain 
threshold T, as: 
υ(pos, score, len) (σscore>T (µmatch-sequence(P.p *BLOSUM62 str))     (2) 

Since the set of matches can be viewed as a PNF 
relation, the nest and unnest operators are inverses of each 
other. Furthermore, this inverse relationship is preserved 
under each of the operations in the algebra. (In the interest 
of space, we omit the proof in this paper, which requires 
exhaustively examining the operators.) 

3.3.3. Union Operator (U ) 

   U : Set<matches> ×  Set<matches> → Set<matches> 

The union operator generates a set that consists of all 
the matches in the two sets it operates on. If match 
elements with a common protein exist in the two sets, 
then they are combined in a single match in the result.  

Symbolically, the operation is represented as:  

 T = R U  S 

where R and S are two sets of matches, and T is their 
union. 

Example: 
R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3, 
4))} 
S = {(2, (5), (4), (3)), (5, (1, 8), (5, 5), (4, 5))} 
T = R U  S = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4, 
5), (4, 4, 4), (3, 4, 3)), (5, (1, 8), (5, 5), (4, 5))} 

3.3.4. Intersection Operator (I ) 

    I : Set<matches> ×  Set<matches> → Set<matches> 

The intersection of two sets of matches consists only 
of matches with proteins common to both sets. Within 

each match only match elements common to both sets are 
included.  

Symbolically, the operation is represented as:  

T = R I  S 

where R and S are two sets of matches, and T is their 
exact intersection. 

Example: 
R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3, 
4)), (3, (7, 13, 22), (7, 7, 7), (5, 6, 6))} 
S = {(2, (1, 5), (4, 6), (3, 5)), (3, (13), (7), (6)), (5, (1, 8), 
(6, 6), (5, 6))} 

T = R I  S = {(2, (1), (4), (3)), (3, (13), (7))} 

We observe that:  
T = υ(pos, score, len)(µmatch-sequence(R) I  µmatch-sequence (S)) 

3.3.5. Difference Operator (−) 

−: Set<matches> ×  Set<matches> → Set<matches> 

The difference of two sets of matches consists of 
matches that are present in the first set and not in the 
second set.  

Symbolically, the operation is represented as:  

T = R − S 

where R and S are two sets of matches, and T is their 
difference. 

Example: 
R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3, 
4)), (3, (7, 13, 22), (7, 7, 7), (5, 6, 6))} 
S = {(2, (1, 5), (4, 6), (3, 5)), (3, (13), (7), (6)), (5, (1, 8), 
(6, 6), (5, 6))} 
T = R − S = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (4), (4), 
(4)), (3, (7, 22), (7, 7), (5, 6))} 

The keen reader may notice that the set union, 
intersection, and difference operators defined in this paper 
are similar to the extended set operators defined in [18]. 

3.3.6. Match Extension Operators (|, ||) 

|: Match ×  Match → Match 
||: Set<Matches> ×  Set<Matches> →  Set<Matches>  
 

The match extension operator | operates on two 
matches and returns a match that is the list of all matches 
that can be formed by concatenating a match from Match-
1 with a match from Match-2. That is, the result of the 



operator is the list of matches in its left operand that could 
be extended in length using the right operand. The new 
scores in the extended matches can be specified using a 
general function that takes as input the two matches. 

Symbolically, let 
 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and 
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match. 
 m1 | m2 is defined only when pid1 = pid2,  
 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),  
 where ci = aj, and for some k,  
 aj + L1(j) = bk, and L3(i) = L1(j) + L2(k) 

Clearly, the operator is not commutative. 

If R and S are sets of matches, then the match 
extension is specified as follows: 

T = R || S = {M | M =  m1 | m2,  m1∈R, m2∈S } 

Example: 
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), 
(3, 3))}  
S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5)) 
T = R || S = {(1, (1, 22), (14, 13), (13, 11))}, assuming 
that the final score is the sum of the two scores.  

The general form of the match extension operator 
concatenates two matches that are at most at a distance d 
and recomputes the score of the new match. The match 
extension operator described above is obtained by putting 
k=0 in the generalized form. One can mathematically 
describe the operator as follows: 

 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and 
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match. 
 m1 |d m2 is defined only when pid1 = pid2,  
 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),  
 where ci = aj, and for some k,  
 bk � ( aj + L1(j) ) ≤ d , and L3(i) = L1(j) + L2(k) + d 

If R and S are sets of matches, then the operation of 
match extension can be written as 

T = R || d S = {M | M = m1 |d m2,  m1∈R, m2∈S } 

Example: 
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), 
(3, 3))}  
S = {(1, (7, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))} 
T = R ||2 S = {(1, (1, 22), (16, 13), (12, 11))} 

 

3.3.7. Contains Operators ( Φ ,φ ) 

φ : Match ×  Match → Match 
Φ : Set<Matches> ×  Set<Matches> → Set<Matches>  

The contains operator φ  is in a certain sense a 
generalization of the exact intersection operator, i.e., a 
weaker definition of intersection over a set of matches. It 
returns a match position in Match-1 (the first match 
input), if the corresponding string contains (is a superset 
of) the string that corresponds to a match position in 
Match-2.  

Let  
 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and 
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match. 
 m1φ m2 is defined only when pid1 = pid2  

 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),  
 where ci = aj,  
 and for some k, aj ≤ bk and aj + L1(j) ≥ bk + L2(k) 

Symbolically, if R and S are sets of matches, then the 
contains operation on these sets can be expressed as:  

T = R Φ S = {m | m1 ∈R, m2 ∈S, m = m1φ m2} 

Example: 
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), 
(3, 3))} 
S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))} 
T = R Φ S = {(1, (8), (10), (8))} 

3.3.8. Not-contains Operators ( Ψ ,ψ ) 

ψ : Match ×  Match → Match  
Ψ : Set<Matches> ×  Set<Matches> → Set<Matches> 

The not-contains operator ψ  is in some sense a 
generalization of the difference operator. Over matches, 
the operation produces a match from its left operand if a 
match element from the right operand is not contained in 
the left operand.  

Let  
 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and 
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match. 
 m1ψ m2 is defined only when pid1 = pid2  

 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),  
 where ci = aj,  
 and for no k, aj ≤ bk and aj + L1(j) ≥ bk + L2(k) 



Symbolically, if R and S are sets of matches, then the 
result of the not-contains operation can be written as: 

T = R Ψ S = {m | m1∈R, m2∈S, m = m1ψ m2} 

We note that R Ψ S = R � (R Φ S). A formal proof for 
this statement requires showing that R Φ S includes all 
the match elements in R that contain some S element, and 
the matches produced by this operation are precisely the 
ones that need to be excluded from R.  

Example: 
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4), 
(3, 3))} 
S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))} 
T = R Ψ S = {(1, (1, 22), (4, 6), (4, 5)), (2, (3, 7), (3, 4), 
(3, 3))} 

4. Examples of Queries in PiQA 

In this section, we present examples of queries to 
demonstrate the expressive power of PiQA. These 
examples are expressed on a protein table P, which has 
the same structure as the example used in Section 3.3.1. 

4.1. Sample Queries 

1. Find all proteins that contain the primary structure 
sequence �QISDSIE� with the secondary structure of 
�DSI� being <H 3 3> or <L 3 3>. 
(P.p * �QIS�) || ((P.p * �DSI�) Φ  ((P.s * <H 3 3>) 
U (P.s * <L 3 3>))) || (P.p * �E�) 

2. Find all proteins that contain the secondary structure 
<E 1 5><L 2 2><E 3 9> and a primary structure 
sequence �SSDGTQ� nowhere within it. 
(P.s * <E 1 5> <L 2 2> <E 3 9>) Ψ (P.p * �SSDGTQ�) 

3. Find all proteins that contain the primary structure 
sequence �SPPNKD� with the condition that the 
secondary structure for �PP� is not <E 2 2>. 
(P.p * �S�) || ((P.p * �PP�) � (P.s * <E 2 2>)) ||  
(P.p * �NKD�) 

 4. Find all proteins that have the secondary structure   
<H 3 6> or <E 4 5> and the primary structure �NKN� 
contained in it. 
((P.s * <H 3 6>) U (P.s * <E 4 5>)) Φ  (P.p * �NKN�) 

5. Match �AAANBPPPPSDF� with the database, but 
ignore mismatch in the segment NBPPP if it is on a loop. 
(P.p * �AAA�) || ((P.p * �NBPPP�) U (P.s * <L 5 5>)) || 
(P.p * �PSDF�)  

6. Match a protein with secondary structure <L 20 
40><E 10 30> that has the fragment �AAPQS� in the 
loop segment. 
((P.s * <L 20 40>) Φ  (P.p * �AAPQS�)) ||  
(P.s * <E 10 30>)  

4.2. Expressing BLAST 

As mentioned earlier in the paper, BLAST is a family 
of similarity searching tools. One of the tools called 
blastp is used for searching protein datasets. The blastp 
operation was simplistically expressed in Equation 2 in 
Section 3.3.2. However, we can express this operation at a 
finer detail as described below. 

Consider a blastp query for matching the sequence 
�QAANVP�. To express this query in PiQA, we introduce 
the following notation: Let ∆k denote the set of all 
possible protein strings of length k. If we are considering 
proteins from only the basic 20 amino acids, then the size 
of ∆k would be 20k.  

The first step of BLAST, in which we prune out all the 
k-mers below a certain threshold T, can be expressed as: 

A = υ(pos, score, len) (σscore>T (µmatch-sequence (B *BLOSUM62 ∆3))), 
where B = {�QAA�, �AAN�, �ANV�, �NVP�} 

The second step of BLAST, in which the database is 
searched to find hits that match with any of the k-mers 
from the previous step, can be expressed as: 

R = A *Exact P.p 

The third step of BLAST involves extending the hits to 
form high-scoring segment pairs (HSPs). The first version 
of BLAST extends the hits residue by residue on both 
sides. In the second version, a two-hit method is used 
which extends hits only when two of the hits are within a 
certain distance. There are several variations on the 
heuristic for this step. We express this step as: 

C = R ||Maxdist R ||Maxdist R ||Maxdist R ... 

We could incorporate a transitive closure for the match 
extension operator in the algebra so that all possible ways 
of extending the hits are captured in the algebra. BLAST 
stops extending the hits when the score of the extended hit 
drops below a certain value of the maximum that it had 
reached since the start of the third step. A simple selection 
can be used to only output matches with a minimum score 
from C. When writing this programmatically, a while loop 
structure can be used to stop the hit-extension process 
precisely when it is desired. This is much like the use of 
while in SQL even though it is not part of the relational 
algebra. 



5. Query Evaluation 

To generate an optimal query plan, a query optimizer 
needs to estimate the cost of the various operations, and 
also needs to exploit the properties of the operators to 
generate all possible equivalent query plans. We explore 
these issues in turn in this section. 

5.1. Cost Model 

Simple cost formulae for the various operations are 
shown in Table 1. In the formulae, we omit the cost of 
producing the output, which in a practical implementation 
should be estimated and added to each formula. We also 
assume that the match sequences are not empty. 

5.2. Generation of Query Plans 

In generating query plans, the optimizer considers 
various reordering of the operators. For the set of 
operators that we have proposed, Table 2 shows the 
properties that can be exploited in query optimization. 

5.3. Example of Query Optimization 

Next, we illustrate the generation of query plans using 
the following query: Match the primary structure 
sequence AAANBPPPPF with the database, but ignore a 
mismatch in the segment NBPPP if it is on a loop. 

 In our algebra, this query is expressed as:  
(P.p * �AAA�) || ((P.p * �NBPPP�) U  (P.s * <L 5 5>)) || 
(P.p * �PF�) 
Since the match extension operator (||) is associative and 
distributive over the union operator (U ), we can generate 
a number of equivalent algebraic expressions, as listed 
below: 
i.   (P.p * �AAA�) ||  
     ((P.p * �NBPPP�) U  (P.s * <L 5 5>)) || 
     (P.p * �PF�) 

ii.  ((P.p * �AAA�) || (P.p * �NBPPP�) || (P.p * �PF�)) U    
     ((P.p * �AAA�) || (P.s * <L 5 5>) || (P.p * �PF�)) 

iii.  ((P.p * �AAA� || P.p * �NBPPP�) U   
      (P.p * �AAA� || P.s * <L 5 5>)) ||  
      P.p * �PF� 

iv.  (P.p * �AAA�) || ((P.p * �NBPPP� || P.p * �PF�) U   
(P.s * <L 5 5> || P.p * �PF�)) 

Observe that in executing each of the plans listed 
above, we would need to perform three match operations. 
Also notice that all the strings that are in the result of the 
expression are likely to be in the result of each of the 
match operations. Instead of evaluating each match by 
reading the entire protein table P, we may be able to 
optimize this query by picking one of the three match 
operations and using the set of proteins that it matches to 
constitute the set over which the other matches are 
evaluated. This set is likely to be smaller than the full 
dataset P, which may lead to a more optimal query plan.  

Operation Approximate Cost Notes 

Match (*), 
 

O(|A|*avg-size of a 
tuple*query length) 

Assuming that a full 
scan of the input table 
A is required, and using 
an FSA-style pattern 
matching as in [12]. 

nest (υ), 
unnest(µ) 

O(|A|*avg-size of a 
tuple) 

Assuming a full scan of 
the input table A. 

Set 
Operations  
(U ,I , −) 

O( )()( BA νν + ) The two inputs are sets 
A and B; assuming an 
in-memory hash-based 
evaluation. 

Contains 
and not-
contains 
( Φ , Ψ ) , 
and match 
extension 
(||) 

O(|A| + | B| + 

A
BA )()( νν ∗

) 

The two inputs are sets 
A and B; cost assumes 
an in-memory hash-
based implementation 
for pairing matches, 
and a  nested-loops like 
algorithm for joining 
match elements. 

Table 1: Costs Formulae 

Oper- 
ator 

Comm- 
utative 

Assoc- 
iative Distributes Over 

U  Yes Yes I  

I  Yes Yes U , −, Φ  

− No No  

Φ  No No U , I , − 

Ψ  No No  

|| No Yes U , I , − 

υ n/a n/a U , I , −, ||, Φ , Ψ  

µ n/a n/a U , I , −, ||, Φ , Ψ  

Table 2: Properties of Operators 
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Figure 3: Alternative Query Plan 

  
To pick an optimal query plan, the optimizer needs to 

accurately estimate the selectivities of the various 
predicates. In this example, we define selectivity as the 
fraction of the number of matching proteins in the data set 
that are selected by the predicate.  

Consider the two predicates using �NBPPP� and 
�AAA� in the sample query. Let p1 and p2 denote these 
two predicates respectively. For the purpose of this 
example, consider the following protein table: 

id p s 
1 �AAATTRTAAUNBPPPPSTTT� � 
2 �PSSSQRRTTSTRRASAUWVV� � 
3 �UIPPSTTTGGGNBPPPTTTARAR� � 
4 �QQQPPLSSTTRRWRNNNBBB� � 
5 �AQATTTNBPPPVVVWUIPLAAR� � 

In this example, the selectivity of the predicates p1 is 
0.6 while that of p2 is 0.2. Consequently, it is beneficial to 
evaluate the p2 before evaluating p1.  

Two alternative query plans for evaluating the sample 
query are presented in Figures 2 and 3. In Figure 3, we 
use an operator Cache to store an intermediate result 
(either in memory or on disk) which can be consumed by 
multiple operators. If the selectivity of the predicate using 
�AAA� is significantly lower than the other predicates, 
the plan shown in Figure 3 is likely to be more efficient 
than the plan shown in Figure 2.  

Finally, we note that if the query is required to produce 
all matches above a certain score, then the query 
optimizer is limited in the number of alternative query 
plans that it can consider. 

6. Conclusions and Future Work 

In this paper we have presented PiQA, an algebra for 
expressing queries on both the primary and secondary 
structures of proteins. The algebra provides a rich set of 
operators that permits approximate matching, 
combination of two or more matches, and various set 
operations on the matches. The algebra provides a unified 
approach to querying on both primary and secondary 
structures of proteins, and can also be used to optimize 
complex queries.  

The next step in our research is to design and 
implement algorithms for the PiQA operators. We plan on 
building these algorithms in a system called Periscope 
that we are building to manage and query biological data 
sets. In addition, we also plan on designing and 
implementing a query language, called PiQL, based on 
the proposed algebra.  

PiQA is the first step in developing a more 
comprehensive declarative querying interface on all 
protein structures. In the future, we plan on extending the 
algebra to allow querying on the tertiary and quaternary 
structures of proteins. Currently, the tertiary and 
quaternary structures are only known for a small subset of 
proteins [6], but this is likely to change in the future, 
making a fully integrated querying approach very useful.  

In addition, in the future we also plan on investigating 
more complex probabilistic operations on sequences, and 
data types such as trees (e.g. phylogenetic trees) and 
graphs (e.g. protein interaction maps) that are often 
produced using sequence analysis. A key challenge is to 
keep the algebra manageable (i.e. implementable), while 
extending its functionality. 



Finally, we note that although this paper concentrates 
on the protein structures, the algebra can also be used for 
querying nucleotide sequence data sets, which are similar 
in nature (from the querying perspective) to the protein 
primary sequences. 
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