
PiQA: An Algebra for Querying Protein Data Sets

Sandeep Tata and Jignesh M. Patel
University of Michigan

{tatas, jignesh}@eecs.umich.edu

Abstract
Life science researchers frequently need to query large

protein data sets in a variety of different ways. Protein
data sets have a rich structure that includes its primary
structure, which is described as a sequence of amino
acids, and its secondary structure, which is described as a
sequence of folding patterns of the protein. Both these
structures are important as the amino acid sequence is
often used to find homologous proteins, and the
secondary structure can produce important hints about
the functionality of proteins. While there are tools for
querying each of these structures independently, there are
no tools for declarative querying on both these structures.
Even the tools that allow querying on either one of these
structures are not based on any formal algebra, and as a
result require complex rewriting of the tools
programming logic when the �query evaluation plan�
changes. This paper introduces PiQA, a Protein Query
Algebra, which provides a rich set of algebraic
operations on both the primary and secondary structure
of proteins. Using PiQA one can pose several interesting
complex queries involving both the primary and the
secondary structure of proteins. In addition, simple
existing tools that query only on the primary structure,
such as BLAST, can also be expressed in this algebra.
PiQA is an important first step in developing an algebra
that can form the basis of a declarative querying
language for querying protein data sets.

1. Introduction

Recent years have seen an enormous explosion in the
sizes and uses of biological data. Several nucleotide and
protein sequence data sets are growing at an exponential
rate, doubling roughly every 16 months [1]. In addition,
the nature of the searches against these databases is also
changing, and scientists today would like to ask more
complex queries against these data sets. Database
management tools have an important role to play in
querying such biological datasets [9, 15]. This paper
focuses on one such aspect, namely the querying of
protein data sets based on different structural attributes
that describe each protein.

Proteins have the following four levels of structural
organizations: primary, secondary, tertiary and quaternary
structures. In this paper, we focus on querying the

primary and secondary structures. The primary structure
is simply a linear sequence of amino acids residues that
forms the protein. The secondary structure describes how
the linear sequence of amino acids residues orients itself,
or folds, in three-dimensional space. There are three basic
types of folds: alpha-helices, beta-pleated sheets, and
turns or loops. Knowledge of a protein�s secondary
structure has been shown to provide important insights
into its evolutionary relationships, and hence its function.

Typically, biologists are interested in finding
similarities between a sequenced protein and others in the
database so that they can understand the function of the
sequenced protein. For instance, given a protein, they may
want to determine if similar proteins exist in other
species, and may also want to determine the function of
the protein. Or they might be interested in knowing if
there are other proteins that have a different primary
structure, but have a similar secondary structure. The
secondary structure of the protein is crucial to
understanding the function that the protein performs [3,
16, 21], and hence it is important to be able to understand
it in relation to the primary structure.

1.1. The Problem

Today when scientists investigate a protein, they
usually search databases of known proteins based on the
primary sequence. The search is typically carried out
using tools such as BLAST [4, 5], Such search tools
essentially finds homologous matches. These search tools
return approximate answers, and often a scientist may
have to post-process these results, or run the search
iteratively (as in PSI-BLAST). In addition, the scientist
may query multiple data sets producing a large number of
approximate matches that may feed into the next stage of
their analysis. With protein queries, in many cases the
next step after matching on the primary sequences may be
to examine the protein of interest with the secondary
structures of other known proteins in the database. The
matching on the secondary structure is important as the
functionality of proteins is strongly influenced by its
actual folding pattern, and even proteins that are not close
homologs may exhibit similar behavior if their folding
patterns are similar.

As an example, a biologist might have just sequenced
the hemoglobin protein in monkeys and may be interested

in hemoglobin and other proteins in other species that are
�similar� to this protein. Such comparisons are also useful
in tracking evolutionary changes in the structure of the
protein [23]. In certain other instances, when a biologist is
trying to find a protein that matches a certain structural
fingerprint � i.e. a certain spatial arrangement, they might
have a secondary structure in mind and want to find
proteins in the database that have a similar structure.

In many cases, these steps of querying on the primary
and secondary structures may be repeated many times,
and for many different databases. Often the iteration
between these steps is driven by a manually coded
program, which may need to be modified every time the
underlying query changes. In addition, this entire process
may needs to be carried out for each distinct experiment
that is undertaken in a lab. A declarative query tool that
permits querying on both the primary and secondary
structures can not only reduce the time spent in posing
such queries, but can also allow the biologist to pose more
complex queries than are currently used today.

As an example, using currently existing tools one
cannot express the following query in a straightforward
way: Match the given primary sequence of length 120, but
ignore mismatches in the segment from positions 44 to 78
if it is on a loop in the secondary structure.

In the next several sections we shall describe an
algebra that can be used to query protein data sets based
on both the primary and secondary structures. The algebra
supports approximate matching, and also includes
operators that allow extensions of two or more
approximate matches to calculate a �longer� match. We
believe that the algebra is expressive enough to express a
large class of interesting queries on both the primary and
secondary structures of proteins.

The motivations for developing such algebra are fairly
obvious to a database audience. The algebra is a first step
in providing a declarative query language-based interface
to the user, rather than the more cumbersome procedural
paradigm that is currently being used for queries across
both primary and secondary structures. In addition, the
algebra can also be exploited by a query optimizer to
produce efficient query plans.

The key contribution of this paper is the presentation
of PiQA � a Protein Query Algebra that enables us to
express queries on both the primary and secondary
structures of proteins. To the best of our knowledge PiQA
is the first algebra that allows querying on both these
structures. Using PiQA we also show how existing
queries on only the primary structure can be expressed in
this algebra. In addition, we also illustrate the use of the
algebra in query optimization.

In Section 2, we describe related tools and techniques
for querying protein datasets. Section 3 describes the
types and operators in PiQA. Section 4 presents several
sample queries to demonstrate the expressive power of the
algebra. Section 5 uses an example to illustrate the use of
the algebra for query optimization. Section 6 concludes
the paper and points to directions for future work.

2. Related Work

Surprisingly, there is little previous work on
developing an algebraic framework for querying
biological data sets. Recently, Hammer and Schneider
[13] proposed a long-term approach towards developing
an algebra that abstracts several biological processes.
Seshadri et al. [19, 20] describe techniques for querying
sequence databases. However, these techniques primarily
focus on aggregate-based analysis of sequences, and are
not directly applicable for querying biological sequences,
which often require pattern matching and approximate
matching operators. There has been a lot of work in string
matching, including proposals for a declarative language
based on alignment calculus for strings [11]. However,
these techniques can only be applied to primary sequence
matching without approximations.

The algebraic constructs that we develop in this paper
employ many of the constructs that have been developed
for nested relational algebras [2, 14, 18, 22]. However, we
have been able to express the queries that we target using
only a limited form of nesting, namely PNF relations [18],
with only one level of nesting. Consequently, the
optimizations too are simpler than those developed for
more general forms of nesting [8, 10, 17].

2.1. Primary Structure-based Searching

A number of tools have been developed for searching
on nucleotide sequences and primary protein sequences.
The most frequently used tool in this category is the
BLAST [4, 5] family of search programs. BLAST works
in three steps: in the first step it finds all K-mers (strings
from the alphabet of length K) that score above a certain
threshold with some part of the query string. In the next
step, it searches the database to find hits. In the final step,
BLAST extends the hits according to certain heuristics
and returns a list of high-scoring segment pairs. This
score is a measure of similarity.

2.2. Secondary Structure-based Searching

Searching based on the secondary structure of proteins
has recently been examined by Hammel and Patel [12].
The authors define an intuitive query language that can be
used to express queries on secondary structure and also

developed techniques for evaluating and optimizing these
queries.

3. The PiQA Algebra

The algebra that we describe is a multi-sorted algebra.
The operators can be composed to specify complex
queries involving both the primary structure and the
secondary structure. We have formulated the algebra as
an extension to relational algebra so that we still have the
advantage of modeling data as relations. More precisely,
the relations in our model are in the Partitioned Normal
Form (PNF) [18]. (PNF relations restrict the class of
general nested relations to guarantee the desirable
property that a nest operation is the inverse of an unnest
operation.)

We shall first describe all the types in the algebra, and
then describe each of the operators, the types of their
operands, and the type of the result. In the interest of
space, we do not describe the basic relational algebraic
constructs [7], and extensions of these constructs to
accommodate PNF relations [18].

3.1. Types

The basic types in the algebra are:
• Basic Scalar Types � Integers, Characters etc.
• Matches
• Sequences
• Tuples
• Relations (sets)

3.2 Description of the Types

3.2.1. Matches. A Match is used to correlate a query
pattern to a sequence. It is a 2-tuple where the first
component is an identifier. The identifier is a unique key
that identifies a particular sequence. We could have used
a Skolem function instead, but for simplicity we use an
identifier. The second component is a sequence of 3-
tuples. Each 3-tuple is a match element. Match elements
are described by three attributes: position � which refers
to the position of the match element in the string, length �
which refers to the length of that match element, and a
score � which refers to the score of that match element.

For instance, (CG2B, ((22, 7, 6), (44, 12, 9))) is a
match which could have been the result of some
operation, and it means that the sequence referred to by
CG2B matched at position 22 and at position 44 with
lengths of the matches being 7 and 12, and the scores
being 6 and 9 respectively.

For ease of presentation, in some of the examples
below, we represent the matches in an alternative form. In

this alternative representation, the match is represented as
a 4-tuple where the first component is an identifier. The
remaining components of a match are sequences. The
second component is a sequence of integers which refer to
positions in a string, the third component is a sequence of
integers which refer to the lengths of each of the matches
whose positions are referred to by the previous sequence,
and the fourth sequence in a match comprises the integers
that represents the scores. In this alternative
representation, the previous example would be expressed
as: (CG2B, (22, 44), (7, 12), (6, 9)).

Several operators that we describe operate on sets of
matches. We can view a set of matches as a nested
relation with the first identifying component of the match
serving as a key which functionally determines the other
attributes in the relation. With this interpretation, we
observe that these sets are in Partition Normal Form [18].

For ease of presentation, in some of the examples in
this paper, we represent the third and fourth components
of the match in the alternative representation as a function
from natural numbers (sequence positions) to natural
numbers (the match positions, lengths or the scores).

In addition in this paper, we do not consider null
matches.

3.2.2. Regular Expressions and Matches. A regular
expression is used to represent a match criterion. As in
[12], a regular expression is expressed as a sequence of
segment predicates, each of which must be matched to
satisfy the entire expression. Each segment predicate is
described by the type and the length of the segment. The
type of the segment is drawn from the alphabet of the
underlying sequence, and depends on the sequence being
queried. For the protein secondary structures, the allowed
segment types are h, e, and l, for the alpha-helices, beta-
sheets, and loops, respectively. In addition we also add a
fourth option, �?�, which stands for a gap segment and
allows scientists to represent regions of unimportance in a
query. The length of the segment is specified using an
upper bound and a lower bound, each of which could be
0. In addition the upper bound could be specified as ∞.
Segment predicates over other structures are similar,
except that the type used is set to the symbols in the
underlying alphabet, with the addition of the �?� symbol.

Formally, a regular expression is defined using the
rules shown in Figure 1.

As an example, consider the following expression on a
protein secondary structure: <e 3 5><? 0 ∞><l 7 7>.
This regular expression matches all proteins that contain a
beta-sheet of length 3 to 5 followed at some point by a
loop of length 7.

RegExp → {Segments}
Segments → Segment*
Segment → <type lb ub>
type → e | h | l | ? (for protein secondary structures)
type → A | R | N | D | �| ? (for protein primary
 structures)
type → A | G | C | T | ? (for nucleotide sequences)
lb → any integer ≥ 0
ub → any integer ≥ 0 | ∞
Segment Constraint: lb ≤ ub

Figure 1: Regular Expression Syntax

3.2.3. Sets and Sequences. Sets and Sequences are well
known types. Sequences have the standard position (or
index) operator which allows access to an arbitrary
element in the sequences. For example, the ith position in
a sequence S is simply accessed as S(i).

In this algebra, we only permit a sequence of the basic
scalar types. That is, we may have a sequence of integers,
characters, etc. But we do not have sequences on complex
types such as relations. We do not define operations on
sequences directly, but on the matches that have
sequences as a part. And therefore, not having sequences
of more complex types does not detract from the power of
expressing queries that PiQA targets.

Since a string is merely a sequence of characters (over
a relevant alphabet), we will use the terms string and
character sequence interchangeably.

3.3. Operators

In this section, we describe the PiQA operators.

3.3.1. Match operator (*)

*: Set<strings> × (str ∪ regexp) → Set

The match operator searches the set of strings (the left
operand) to finds substrings that approximately match the
right operand, which could be a string or a regular
expression specifying a set of strings. The result of this
operation is a set of matches, each consisting of the
identifier of the corresponding string, the match-positions
and their lengths and scores. Symbolically, a match
expression is of the form:

T * (str | regexp), where T is a set of strings.

A common use of the match operator is to search on
the primary structures using a string str, or searching on
the secondary structures using a regular expression
regexp.

The match operator is defined under some matching
criterion, for instance PAM-30, PAM-70 or a
BLOSUM62 matrix can be used to determine a match
score between two primary protein structures. One may
also choose to use an exact matching criterion or some
other measure of approximate matching � gapped, un-
gapped, etc. for secondary structures (and even for
primary structures). We will not deal in depth with
specific matching criteria in this paper. Though certain
kinds of optimization may be possible if we know the
matching criterion and scoring function used, in the
interest of generality, our formulation will not be tied to
any choice of matching criteria, except when explicitly
specified.

Example:
Consider a protein table, P, with the following attributes:
id � a unique identifier, p � a string representing the
protein primary structure, and s � a string representing the
protein secondary structure. In this example, we shall use
the short-hand P.p to denote the set of primary sequences,
and P.s to denote the set of secondary sequences.

id p s
1 �GQISDSIEEKRGFF� �HLLLLLLLLLHEE�
2 �EEKKGFEEKRAVW� �LLEEEEEHHHHHL�

P =

3 �QDGGSEEKSTKEEK� �HHHHLLLEEEELLL�

str = �EEK�
regexp = <l 3 5>

P.p * str = {(1, (8), (3), (3)), (2, (1, 7), (3, 3), (2, 1)), (3,
(6, 12), (3, 3), (1, 0))}
P.s * regexp = {(1, (2, 3, 4, 5, 6, 7, 8), (5, 5, 5, 5, 5, 4, 3),
(1, 1, 1, 1, 1, 0, 1)), (3, (5, 12), (3, 3), (2, 2))}

The scores assigned in the example above have been
arbitrarily assigned. However, we can also choose to
explicitly specify the scoring criteria. If we for instance
wished to specify that the matches be scored using the
BLOSUM62 matrix, we would say:

P.p *BLOSUM62 str (1)

This is a simple way of expressing the idea used in
BLAST for similarity searching. The nature of the
matching operation has an effect on the semantics of other
operators that we will describe in subsequent sections.

3.3.2. Nest (υ) and Unnest (µ) Operators

υ: Set<matches> → Set<matches>
µ: Set<matches> → Set<matches>

Unnest (µ) is a simple operator that flattens out a
relation holding matches.

For instance, �µ ({(1, (8), (3), (3)), (2, (1, 7), (3, 3), (2,
1)), (3, (6, 6), (3, 8), (1, 7))})�, produces the relation:

id position length score
1 8 3 3
2 1 3 2
2 7 3 1
3 6 3 1
3 6 8 7

The Nest operation (υ) is merely the reverse. It
collapses the unnested set into a set of matches.

To demonstrate the use of the nest and unnest
operators, consider the simplistic BLAST expression in
Equation 1. We can restrict the matches to only contain
match elements with a score greater than a certain
threshold T, as:
υ(pos, score, len) (σscore>T (µmatch-sequence(P.p *BLOSUM62 str)) (2)

Since the set of matches can be viewed as a PNF
relation, the nest and unnest operators are inverses of each
other. Furthermore, this inverse relationship is preserved
under each of the operations in the algebra. (In the interest
of space, we omit the proof in this paper, which requires
exhaustively examining the operators.)

3.3.3. Union Operator (U)

 U : Set<matches> × Set<matches> → Set<matches>

The union operator generates a set that consists of all
the matches in the two sets it operates on. If match
elements with a common protein exist in the two sets,
then they are combined in a single match in the result.

Symbolically, the operation is represented as:

 T = R U S

where R and S are two sets of matches, and T is their
union.

Example:
R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3,
4))}
S = {(2, (5), (4), (3)), (5, (1, 8), (5, 5), (4, 5))}
T = R U S = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4,
5), (4, 4, 4), (3, 4, 3)), (5, (1, 8), (5, 5), (4, 5))}

3.3.4. Intersection Operator (I)

 I : Set<matches> × Set<matches> → Set<matches>

The intersection of two sets of matches consists only
of matches with proteins common to both sets. Within

each match only match elements common to both sets are
included.

Symbolically, the operation is represented as:

T = R I S

where R and S are two sets of matches, and T is their
exact intersection.

Example:
R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3,
4)), (3, (7, 13, 22), (7, 7, 7), (5, 6, 6))}
S = {(2, (1, 5), (4, 6), (3, 5)), (3, (13), (7), (6)), (5, (1, 8),
(6, 6), (5, 6))}

T = R I S = {(2, (1), (4), (3)), (3, (13), (7))}

We observe that:
T = υ(pos, score, len)(µmatch-sequence(R) I µmatch-sequence (S))

3.3.5. Difference Operator (−)

−: Set<matches> × Set<matches> → Set<matches>

The difference of two sets of matches consists of
matches that are present in the first set and not in the
second set.

Symbolically, the operation is represented as:

T = R − S

where R and S are two sets of matches, and T is their
difference.

Example:
R = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (1, 4), (4, 4), (3,
4)), (3, (7, 13, 22), (7, 7, 7), (5, 6, 6))}
S = {(2, (1, 5), (4, 6), (3, 5)), (3, (13), (7), (6)), (5, (1, 8),
(6, 6), (5, 6))}
T = R − S = {(1, (3, 6, 9), (3, 3, 3), (2, 2, 2)), (2, (4), (4),
(4)), (3, (7, 22), (7, 7), (5, 6))}

The keen reader may notice that the set union,
intersection, and difference operators defined in this paper
are similar to the extended set operators defined in [18].

3.3.6. Match Extension Operators (|, ||)

|: Match × Match → Match
||: Set<Matches> × Set<Matches> → Set<Matches>

The match extension operator | operates on two
matches and returns a match that is the list of all matches
that can be formed by concatenating a match from Match-
1 with a match from Match-2. That is, the result of the

operator is the list of matches in its left operand that could
be extended in length using the right operand. The new
scores in the extended matches can be specified using a
general function that takes as input the two matches.

Symbolically, let
 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match.
 m1 | m2 is defined only when pid1 = pid2,
 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),
 where ci = aj, and for some k,
 aj + L1(j) = bk, and L3(i) = L1(j) + L2(k)

Clearly, the operator is not commutative.

If R and S are sets of matches, then the match
extension is specified as follows:

T = R || S = {M | M = m1 | m2, m1∈R, m2∈S }

Example:
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4),
(3, 3))}
S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))
T = R || S = {(1, (1, 22), (14, 13), (13, 11))}, assuming
that the final score is the sum of the two scores.

The general form of the match extension operator
concatenates two matches that are at most at a distance d
and recomputes the score of the new match. The match
extension operator described above is obtained by putting
k=0 in the generalized form. One can mathematically
describe the operator as follows:

 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match.
 m1 |d m2 is defined only when pid1 = pid2,
 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),
 where ci = aj, and for some k,
 bk � (aj + L1(j)) ≤ d , and L3(i) = L1(j) + L2(k) + d

If R and S are sets of matches, then the operation of
match extension can be written as

T = R || d S = {M | M = m1 |d m2, m1∈R, m2∈S }

Example:
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4),
(3, 3))}
S = {(1, (7, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}
T = R ||2 S = {(1, (1, 22), (16, 13), (12, 11))}

3.3.7. Contains Operators (Φ ,φ)

φ : Match × Match → Match
Φ : Set<Matches> × Set<Matches> → Set<Matches>

The contains operator φ is in a certain sense a
generalization of the exact intersection operator, i.e., a
weaker definition of intersection over a set of matches. It
returns a match position in Match-1 (the first match
input), if the corresponding string contains (is a superset
of) the string that corresponds to a match position in
Match-2.

Let
 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match.
 m1φ m2 is defined only when pid1 = pid2

 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),
 where ci = aj,
 and for some k, aj ≤ bk and aj + L1(j) ≥ bk + L2(k)

Symbolically, if R and S are sets of matches, then the
contains operation on these sets can be expressed as:

T = R Φ S = {m | m1 ∈R, m2 ∈S, m = m1φ m2}

Example:
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4),
(3, 3))}
S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}
T = R Φ S = {(1, (8), (10), (8))}

3.3.8. Not-contains Operators (Ψ ,ψ)

ψ : Match × Match → Match
Ψ : Set<Matches> × Set<Matches> → Set<Matches>

The not-contains operator ψ is in some sense a
generalization of the difference operator. Over matches,
the operation produces a match from its left operand if a
match element from the right operand is not contained in
the left operand.

Let
 m1 = (pid1, (a1, a2, a3, � ap), L1, S1) be a match, and
 m2 = (pid2, (b1, b2, b3, � bq), L2, S2) be another match.
 m1ψ m2 is defined only when pid1 = pid2

 and is equal to (pid1, (c1, c2, c3, �, cr), L3, S3),
 where ci = aj,
 and for no k, aj ≤ bk and aj + L1(j) ≥ bk + L2(k)

Symbolically, if R and S are sets of matches, then the
result of the not-contains operation can be written as:

T = R Ψ S = {m | m1∈R, m2∈S, m = m1ψ m2}

We note that R Ψ S = R � (R Φ S). A formal proof for
this statement requires showing that R Φ S includes all
the match elements in R that contain some S element, and
the matches produced by this operation are precisely the
ones that need to be excluded from R.

Example:
R = {(1, (1, 8, 22), (4, 10, 6), (4, 8, 5)), (2, (3, 7), (3, 4),
(3, 3))}
S = {(1, (5, 15, 28), (10, 2, 7), (9, 2, 6)), (5, (1), (7), (5))}
T = R Ψ S = {(1, (1, 22), (4, 6), (4, 5)), (2, (3, 7), (3, 4),
(3, 3))}

4. Examples of Queries in PiQA

In this section, we present examples of queries to
demonstrate the expressive power of PiQA. These
examples are expressed on a protein table P, which has
the same structure as the example used in Section 3.3.1.

4.1. Sample Queries

1. Find all proteins that contain the primary structure
sequence �QISDSIE� with the secondary structure of
�DSI� being <H 3 3> or <L 3 3>.
(P.p * �QIS�) || ((P.p * �DSI�) Φ ((P.s * <H 3 3>)
U (P.s * <L 3 3>))) || (P.p * �E�)

2. Find all proteins that contain the secondary structure
<E 1 5><L 2 2><E 3 9> and a primary structure
sequence �SSDGTQ� nowhere within it.
(P.s * <E 1 5> <L 2 2> <E 3 9>) Ψ (P.p * �SSDGTQ�)

3. Find all proteins that contain the primary structure
sequence �SPPNKD� with the condition that the
secondary structure for �PP� is not <E 2 2>.
(P.p * �S�) || ((P.p * �PP�) � (P.s * <E 2 2>)) ||
(P.p * �NKD�)

 4. Find all proteins that have the secondary structure
<H 3 6> or <E 4 5> and the primary structure �NKN�
contained in it.
((P.s * <H 3 6>) U (P.s * <E 4 5>)) Φ (P.p * �NKN�)

5. Match �AAANBPPPPSDF� with the database, but
ignore mismatch in the segment NBPPP if it is on a loop.
(P.p * �AAA�) || ((P.p * �NBPPP�) U (P.s * <L 5 5>)) ||
(P.p * �PSDF�)

6. Match a protein with secondary structure <L 20
40><E 10 30> that has the fragment �AAPQS� in the
loop segment.
((P.s * <L 20 40>) Φ (P.p * �AAPQS�)) ||
(P.s * <E 10 30>)

4.2. Expressing BLAST

As mentioned earlier in the paper, BLAST is a family
of similarity searching tools. One of the tools called
blastp is used for searching protein datasets. The blastp
operation was simplistically expressed in Equation 2 in
Section 3.3.2. However, we can express this operation at a
finer detail as described below.

Consider a blastp query for matching the sequence
�QAANVP�. To express this query in PiQA, we introduce
the following notation: Let ∆k denote the set of all
possible protein strings of length k. If we are considering
proteins from only the basic 20 amino acids, then the size
of ∆k would be 20k.

The first step of BLAST, in which we prune out all the
k-mers below a certain threshold T, can be expressed as:

A = υ(pos, score, len) (σscore>T (µmatch-sequence (B *BLOSUM62 ∆3))),
where B = {�QAA�, �AAN�, �ANV�, �NVP�}

The second step of BLAST, in which the database is
searched to find hits that match with any of the k-mers
from the previous step, can be expressed as:

R = A *Exact P.p

The third step of BLAST involves extending the hits to
form high-scoring segment pairs (HSPs). The first version
of BLAST extends the hits residue by residue on both
sides. In the second version, a two-hit method is used
which extends hits only when two of the hits are within a
certain distance. There are several variations on the
heuristic for this step. We express this step as:

C = R ||Maxdist R ||Maxdist R ||Maxdist R ...

We could incorporate a transitive closure for the match
extension operator in the algebra so that all possible ways
of extending the hits are captured in the algebra. BLAST
stops extending the hits when the score of the extended hit
drops below a certain value of the maximum that it had
reached since the start of the third step. A simple selection
can be used to only output matches with a minimum score
from C. When writing this programmatically, a while loop
structure can be used to stop the hit-extension process
precisely when it is desired. This is much like the use of
while in SQL even though it is not part of the relational
algebra.

5. Query Evaluation

To generate an optimal query plan, a query optimizer
needs to estimate the cost of the various operations, and
also needs to exploit the properties of the operators to
generate all possible equivalent query plans. We explore
these issues in turn in this section.

5.1. Cost Model

Simple cost formulae for the various operations are
shown in Table 1. In the formulae, we omit the cost of
producing the output, which in a practical implementation
should be estimated and added to each formula. We also
assume that the match sequences are not empty.

5.2. Generation of Query Plans

In generating query plans, the optimizer considers
various reordering of the operators. For the set of
operators that we have proposed, Table 2 shows the
properties that can be exploited in query optimization.

5.3. Example of Query Optimization

Next, we illustrate the generation of query plans using
the following query: Match the primary structure
sequence AAANBPPPPF with the database, but ignore a
mismatch in the segment NBPPP if it is on a loop.

 In our algebra, this query is expressed as:
(P.p * �AAA�) || ((P.p * �NBPPP�) U (P.s * <L 5 5>)) ||
(P.p * �PF�)
Since the match extension operator (||) is associative and
distributive over the union operator (U), we can generate
a number of equivalent algebraic expressions, as listed
below:
i. (P.p * �AAA�) ||
 ((P.p * �NBPPP�) U (P.s * <L 5 5>)) ||
 (P.p * �PF�)

ii. ((P.p * �AAA�) || (P.p * �NBPPP�) || (P.p * �PF�)) U
 ((P.p * �AAA�) || (P.s * <L 5 5>) || (P.p * �PF�))

iii. ((P.p * �AAA� || P.p * �NBPPP�) U
 (P.p * �AAA� || P.s * <L 5 5>)) ||
 P.p * �PF�

iv. (P.p * �AAA�) || ((P.p * �NBPPP� || P.p * �PF�) U
(P.s * <L 5 5> || P.p * �PF�))

Observe that in executing each of the plans listed
above, we would need to perform three match operations.
Also notice that all the strings that are in the result of the
expression are likely to be in the result of each of the
match operations. Instead of evaluating each match by
reading the entire protein table P, we may be able to
optimize this query by picking one of the three match
operations and using the set of proteins that it matches to
constitute the set over which the other matches are
evaluated. This set is likely to be smaller than the full
dataset P, which may lead to a more optimal query plan.

Operation Approximate Cost Notes

Match (*),

O(|A|*avg-size of a
tuple*query length)

Assuming that a full
scan of the input table
A is required, and using
an FSA-style pattern
matching as in [12].

nest (υ),
unnest(µ)

O(|A|*avg-size of a
tuple)

Assuming a full scan of
the input table A.

Set
Operations
(U ,I , −)

O()()(BA νν +) The two inputs are sets
A and B; assuming an
in-memory hash-based
evaluation.

Contains
and not-
contains
(Φ , Ψ) ,
and match
extension
(||)

O(|A| + | B| +

A
BA)()(νν ∗

)

The two inputs are sets
A and B; cost assumes
an in-memory hash-
based implementation
for pairing matches,
and a nested-loops like
algorithm for joining
match elements.

Table 1: Costs Formulae

Oper-
ator

Comm-
utative

Assoc-
iative Distributes Over

U Yes Yes I

I Yes Yes U , −, Φ

− No No

Φ No No U , I , −

Ψ No No

|| No Yes U , I , −

υ n/a n/a U , I , −, ||, Φ , Ψ

µ n/a n/a U , I , −, ||, Φ , Ψ

Table 2: Properties of Operators

�AAA�P

*

<L 5 5>P�NBPPP� P

U

* *

�PF� P

*||

||

Figure 2: Query Plan for Sample Query

�AAA�P

*

Cache

<L 5 5>�NBPPP�

**

U

�PF�

*||

||

P

id

Cache

Figure 3: Alternative Query Plan

To pick an optimal query plan, the optimizer needs to

accurately estimate the selectivities of the various
predicates. In this example, we define selectivity as the
fraction of the number of matching proteins in the data set
that are selected by the predicate.

Consider the two predicates using �NBPPP� and
�AAA� in the sample query. Let p1 and p2 denote these
two predicates respectively. For the purpose of this
example, consider the following protein table:

id p s
1 �AAATTRTAAUNBPPPPSTTT� �
2 �PSSSQRRTTSTRRASAUWVV� �
3 �UIPPSTTTGGGNBPPPTTTARAR� �
4 �QQQPPLSSTTRRWRNNNBBB� �
5 �AQATTTNBPPPVVVWUIPLAAR� �

In this example, the selectivity of the predicates p1 is
0.6 while that of p2 is 0.2. Consequently, it is beneficial to
evaluate the p2 before evaluating p1.

Two alternative query plans for evaluating the sample
query are presented in Figures 2 and 3. In Figure 3, we
use an operator Cache to store an intermediate result
(either in memory or on disk) which can be consumed by
multiple operators. If the selectivity of the predicate using
�AAA� is significantly lower than the other predicates,
the plan shown in Figure 3 is likely to be more efficient
than the plan shown in Figure 2.

Finally, we note that if the query is required to produce
all matches above a certain score, then the query
optimizer is limited in the number of alternative query
plans that it can consider.

6. Conclusions and Future Work

In this paper we have presented PiQA, an algebra for
expressing queries on both the primary and secondary
structures of proteins. The algebra provides a rich set of
operators that permits approximate matching,
combination of two or more matches, and various set
operations on the matches. The algebra provides a unified
approach to querying on both primary and secondary
structures of proteins, and can also be used to optimize
complex queries.

The next step in our research is to design and
implement algorithms for the PiQA operators. We plan on
building these algorithms in a system called Periscope
that we are building to manage and query biological data
sets. In addition, we also plan on designing and
implementing a query language, called PiQL, based on
the proposed algebra.

PiQA is the first step in developing a more
comprehensive declarative querying interface on all
protein structures. In the future, we plan on extending the
algebra to allow querying on the tertiary and quaternary
structures of proteins. Currently, the tertiary and
quaternary structures are only known for a small subset of
proteins [6], but this is likely to change in the future,
making a fully integrated querying approach very useful.

In addition, in the future we also plan on investigating
more complex probabilistic operations on sequences, and
data types such as trees (e.g. phylogenetic trees) and
graphs (e.g. protein interaction maps) that are often
produced using sequence analysis. A key challenge is to
keep the algebra manageable (i.e. implementable), while
extending its functionality.

Finally, we note that although this paper concentrates
on the protein structures, the algebra can also be used for
querying nucleotide sequence data sets, which are similar
in nature (from the querying perspective) to the protein
primary sequences.

7. Acknowledgements

This work is supported in part by an IBM Faculty
Award. We would like to thank the anonymous reviewers
of SSDBM, H. V. Jagadish, Magesh Jayapandian, and
Sidharth Sivasailam for their valuable comments and
suggestions on earlier drafts of this paper.

8. References

[1] "Growth of GenBank," in
http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html:
NCBI (National Center for Biotechnology Information),
Feb 2002.

[2] S. Abiteboul and N. Bidoit, "Non 1st Normal-Form
Relations - an Algebra Allowing Data Restructuring,"
Journal of Computer and System Sciences, 33 (3), pp.
361-393, 1986.

[3] B. Alberts, Molecular Biology of the Cell, 4th ed.
New York: Garland Science, 2002.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman, "Basic Local Alignment Search Tool,"
Journal of Molecular Biology, 215 (3), pp. 403-10, 1990.

[5] S. F. Altschul, et al., "Gapped BLAST and PSI-
BLAST: A New Generation of Protein Database Search
Programs," Nucleic Acids Research, 25 (17), pp. 3389-
402, 1997.

[6] H. M. Berman, et al., "The Protein Data Bank," Acta
Crystallographica, D58, pp. 899-907, 2002.

[7] E. F. Codd, "A Relational Model of Data for Large
Shared Data Banks," Communications of the ACM, 13
(6), pp. 377-387, 1970.

[8] L. S. Colby, "A Recursive Algebra and Query
Optimization for Nested Relations," presented at
SIGMOD'89, Portland, Oregon, USA, 1989, pp. 273-283.

[9] S. B. Davidson, "Tale of Two Cultures: Are There
Database Research Issues in Bioinformatics?," presented
at SSDBM'02, Edinburgh, Scotland, UK, 2002, pp. 3.

[10] L. Fegaras and D. Maier, "Optimizing Object
Queries Using an Effective Calculus," ACM Transactions
on Database Systems, 25 (4), pp. 457-516, 2000.

[11] R. Hakli, M. Nykänen, H. Tamm, and E. Ukkonen,
"Implementing a Declarative String Query Language with

String Restructuring," presented at PADL'99, San
Antonio, Texas, USA, 1999.

[12] L. Hammel and J. M. Patel, "Searching on the
Secondary Structure of Protein Sequences," presented at
VLDB'02, Hong Kong, China, 2002, pp. 634-645.

[13] J. Hammer and M. Schneider, "Genomics Algebra:
A New, Integrating Data Model, Language, and Tool for
Processing and Querying Genomic Information,"
presented at CIDR'02, Asilomar, California, USA, 2002,
pp. 176-187.

[14] G. Jaeschke and H.-J. Schek, "Remarks on the
Algebra of Non First Normal Form Relations," presented
at PODS'82, Los Angeles, California, USA, 1982, pp.
124-138.

[15] F. Moussouni, et al., "Database Challenges for
Genome Information in the Post Sequencing Phase,"
presented at DEXA'99, Florence, Italy, 1999, pp. 540-
549.

[16] C. A. Orengo, A. E. Todd, and J. M. Thornton,
"From Protein Structure to Function," Currrent Opinions
in Structural Biology, 9 (3), pp. 374-82, 1999.

[17] Z. M. Özsoyoglu and J. Wang, "A Keying Method
for a Nested Relational Database Management System,"
presented at ICDE'92, Tempe, Arizona, USA, 1992, pp.
438-446.

[18] M. A. Roth, H. F. Korth, and A. Silberschatz,
"Extended Algebra and Calculus for Nested Relational
Databases," ACM Transactions on Database Systems, 13
(4), pp. 389-417, 1988.

[19] P. Seshadri, M. Livny, and R. Ramakrishnan,
"Sequence Query Processing," presented at SIGMOD'94,
Minneapolis, Minnesota, USA, 1994, pp. 430-441.

[20] P. Seshadri, M. Livny, and R. Ramakrishnan, "SEQ:
A Model for Sequence Databases," presented at ICDE'95,
Taipei, Taiwan, 1995, pp. 232-239.

[21] S. A. Teichmann, A. G. Murzin, and C. Chothia,
"Determination of Protein Function, Evolution and
Interactions by Structural Genomics," Currrent Opinions
in Structural Biology, 11 (3), pp. 354-63, 2001.

[22] S. J. Thomas and P. C. Fischer, "Nested Relational
Structures," in Advances in Computing Research, vol. 3,
1986, pp. 269-307.

[23] J. L. Thorne, N. Goldman, and D. T. Jones,
"Combining Protein Evolution and Secondary Structure,"
Molecular Biology and Evolution, 13 (5), pp. 666-73,
1996.

