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Abstract

This paper addresses the problem of processing event-
timing queries over event streams where the uncertainty
in the values of the timestamps is characterizable by his-
tograms. We describe a stream-partitioning technique for
checking the satisfaction of a probabilistic timing constraint
upon event arrivals in a systematic way in order to delimit
the “probing range” in event streams. This technique can
be formalized as a probabilistic timing join (PTJoin) op-
erator where the join condition is specified by a time win-
dow and a confidence threshold in our model. We present
efficient PTJoin algorithms that tightly delimit the probing
range and efficiently invalidate events in event streams.

1 Introduction

The monitoring of data streams requires a new class of
data management systems [2] that has a far different scope
than conventional active databases or reactive programs that
monitor and react to external events in a control loop. For
example, suppose the images of a monitor camera in a haz-
ardous environment are sent back every 5 minutes for pro-
cessing, and the difference between two consecutive images
reveals that a dangerous event has happened within the
time between the two images. In such a scenario, we do not
know for certain when exactly occurs; so if we are to tag
the occurrence of with a timestamp, the timestamp should
have as its domain a time interval and not a time point.
Yet the provision of precise timing information of events
is often crucial for supporting a unified view of the moni-
tored environment. In this paper, we address the problem
of performing query processing of the timing relationship
between events whose occurrence time can be determined
accurate to at most within an interval.

The following example illustrates an anomaly that arises
when events are correlated by using as input the time points
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at which the events are detected from processing the data
streams. This mode of query processing is said to be by
detection semantics. If the exact times of occurrence of the
events are known and are used as input, then we say that
the mode of query processing is by occurrence semantics.
Unqualified use of the detection semantics can easily yield
a wrong answer where occurrence semantics is intended.

Example 1 Consider a continuous query cq that joins two
input events whenever they occur within ms. Figure 1
shows that events and are detected and stamped by
sensors and at time and respectively. Since
cq is defined as a timing relationship between event occur-
rences, the execution of cq relying on the detection times-
tamps may end up missing a join result of and . This
may happen if for example, the sensors and operate
adaptively in low-power sleeping mode, thereby inducing
variable detection delays equal to 20ms and 40ms respec-
tively. The event pair and actually satisfy the join
condition of cq. Unfortunately, the detection delay may not
be known exactly.

It has been shown that probabilistic data models can be
effectively adopted for dealing with time-varying data at-
tributes [3, 4]. However, these models do not address the
issue of the temporal uncertainty in the occurrence times
of the data update events themselves. There are two key
factors that need to be considered regarding temporal mon-
itoring over event streams. First, time is monotonically in-
creasing along the data stream. Second, the correlation of
the temporal relationship among event occurrences often
needs to be performed in real time because the result of
the correlation calculation may determine whether certain

Figure 1. Event occurrences and detections
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timing constraint violation/satisfaction has occurred, which
may in turn decide whether data attributes and occurrence
times further down the data stream are valid or not. We shall
show that the calculation of timing correlation can be cast
into the problem of performing a join operation that cre-
ates an output stream, where each output tuple must satisfy
the probability that the events in the join specification occur
together within a specified time interval. We refer to this
class of band joins over streams with temporal uncertainty
as PTJoin (Probabilistic Timing Join). PTJoin can be made
efficient by exploiting the key factors of monotonicity and
instantaneity as mentioned above.

Example 2 Consider a set of sensor nodes that are spread
densely in a surveillance region where the detection la-
tency of a suspicious activity by an intruder in the region
is probabilistically known according to specific sensor set-
tings (i.e., sensing modalities, power level, hardware mech-
anisms) and environmental conditions (i.e., variations on
terrain and weather) via experiments [1]. To make a more
accurate hypothesis on possible intrusions, events from dif-
ferent modalities and nearby sensor nodes can be joined
based on their temporal proximity, that is, “if the probabil-
ity that acoustic and seismic sensor events occur within, say,

ms exceeds the confidence threshold , then raise
alarm for possible intrusion.”. To adjust the false alarm
rate, this threshold must be updated efficiently.

The above example specifies a join calculation that is
predicated on temporal proximity. A confidence threshold
is embedded in a join condition to denote the uncertainty
of the temporal correlation. We note that the special case
of a uniform distribution over the interval (named interval
timing join) has been studied in [7]. In this paper, we in-
corporate the uncertainty in event timing by using a his-
togram timestamp model. A timestamp is created by parti-
tioning a time interval into a finite number of subintervals
and specifying the probability that the event (instance) oc-
curs during each subinterval, such that the probability of the
event occurring in is 1.0. With this model, we shall show
how to systematically partition a temporally ordered event
stream upon the arrival of a event, by computing the mini-
mum/maximum satisfaction times of a timing constraint so
that we can optimize PTJoin the calculation with the neces-
sary “probing range”.

The contributions of this paper are as follows. First,
we generalize the temporal monitoring problem under event
timing uncertainty by allowing arbitrary probability distri-
butions of event occurrence times to be specified by his-
togram timestamps (Section 2). Second, using the his-
togram timestamp model, we describe a partitioning scheme
which can be used for efficiently checking a timing con-
straint against event streams. Based on the partitioning
scheme, we develop a PTJoin operator that can handle event

timing uncertainty in processing the band join over event
streams. More specifically, we show how to tightly delimit
the probing range and efficiently invalidate events in event
streams (Section 3).

2 Probabilistic Event Timing Data

In this section, we present our histogram timestamp
model and a method for evaluating a probabilistic tempo-
ral relationship.

First, we introduce some notations and functions in our
histogram timestamp model. We use the symbol to denote
a time interval where and are time points
such that . We assume that the domain of time points
is the set of non-negative real numbers. The following aux-
iliary functions are defined for time intervals: ,

, , iff
, and for a real

number .

Definition 1 A histogram timestamp of an event is an -
tuple, where
is called the th bucket consisting of the time interval
and the probability that the event occurs during . A
histogram timestamp has the following properties:

,
,

, the occurrence time is uniformly distributed
over each . Formally, the probability density function
(pdf) is described by if .

Similar to those defined for intervals, the following auxil-
iary functions are defined: = the number of buckets,

, ,
, = for

a real number . Unless stated otherwise, given an event
stream consisting of events , we denote the
occurrence time of an event by and the random vari-
able (r.v) on by 1. The time interval and the prob-
ability of the th bucket in are denoted by and
respectively, and thus we may write for

. The following example illustrates how we
can capture the histogram timestamp of an event by using
the template histogram that models the detection latency of
the event. For clarity, we shall use the symbol to denote
a template histogram that represents a pdf when the the as-
sociated event is not named. Without loss of generality, we
assume that for all template histograms .

1If there is no ambiguity, we drop the letter for an event name in the
subscript of symbols and , e.g., for an event , we may use and

instead of and .
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Figure 2. An event stream with histogram
timestamps

Example 3 Consider a stream consisting of events
from multiple sensor nodes where a sen-
sor node is observed to empirically satisfy a proba-
bility distribution represented by the template histogram

= with respect to the de-
tection latency of its sensing modality for .
For example, suppose the detection latency of satisfies
the distribution 2;
so the template histogram of is defined as =

. In this case, for
an event that is detected at time by , the data
stream processor can probabilistically approximate the oc-
currence time of by . Fig-
ure 2 depicts three timestamps captured from two sensor
nodes, i.e., detects two events and at time and

, and detects an event at time where =
.

In general, we shall assume that the histogram distribu-
tions associated with different event occurrences are inde-
pendent of one another as in [5].

Definition 2 Given two histogram timestamps and ,
is defined as the probability:

(1)

where and .

Even though Equation 1 is conceptually simple, it is non-
trivial to compute in practice because both and
are piecewise functions that depend on the buckets of
and . For computational purposes, we shall use the fol-
lowing alternative equation that makes use of joint proba-
bilities:

(2)

2Note that a bucket may be written in a triple without the inner brackets
enclosing its time interval.

Lemma 1 Given the buckets from and
from , let , , , and denote ,

, , and respectively. The joint
probability is given as
follows:

if
if

if

if

if

otherwise

Proof: Since the proof for non-overlapping intervals is
straightforward, let us show the proof for the cases when
the time intervals and overlap. We can divide
the timeline of into three subintervals: where
definitely precedes , where and intersect,
and where definitely follows . Let us consider
the case (3). In this case, we find and but not

. Since there is no way to satisfy in ,
we only need to consider the probability in
such that

which is equivalent to . This
is because we have =

. Owing to the uniform density on each time interval,
the probability for subintervals can be easily calculated by

= and = .
The other cases can be similarly established. In particular,
we can derive the fomular for the case (5) (or the case (6))
from that of the case (3) (or the case (4)) using the inverse
relation, i.e., .

Given a time interval of , let =
be the list of time intervals of

that overlap with . As part of the task of computing
, the probability from each pair of and

needs to be determined by the formulae in Lemma 1.
As explained in the proof, the formulae are obtained by
the process that divides an interval into subintervals and
distributes the probability to the subintervals.

Definition 3 Let = , , , ,
be the list of the time points in and

let = , ,. . . , ,
where and . By merging and

in ascending order without repetition of any time point
that appears more than once, we can obtain the time points

, and construct the time in-
tervals . The histogram
consisting of the buckets ,. . . ,
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will be called the adjusted histogram of and simi-
larly the histogram consisting of the buckets

,. . . , will be called the adjusted his-
togram of .

The idea of histogram adjustment is to perform a union
on all time points and to distribute the probabilities to new
time intervals accordingly so that the histograms share the
identical time interval set while each histogram maintains
its original probability density.

Theorem 1 Given two histogram timestamps and ,
let the corresponding adjusted histograms be

and respectively
where . Then, we have

(3)

3 PTJoin: Probabilistic Timing Join

In this section, we describe PTJoin in our histogram
timestamp model. A SQL-style query representation for
Example 2 takes the following form:

select * from SEISMIC A, ACOUSTIC B
where WINDOW(A, B) = 2000 with THRESHOLD 0.6

The join condition of PTJoin above is specified by two pa-
rameters, the time window and the confidence
threshold . In general, we shall denote such a
join condition by jc: ; an event in a stream
and an event in a stream qualify jc iff

holds.
A straightforward method to perform PTJoin is as fol-

lows. Upon a new event arrival in a stream (or ), first
retrieve all events in a stream (or ) and then keep eval-
uating the join condition with each of the possible event
pairs. The evaluation of the join condition may require
performing the task of histogram adjustment to check the
temporal relationship between two events. Three problems
arise with this approach. First, how can we tightly delimit
the set of event pairs being probed upon an event arrival?
Second, how can we efficiently evaluate the join condition
for an event pair? Third, how can we effectively manage
stream buffers? Based on the nested loop join model for
sliding time windows [6], we investigate the stream parti-
tioning technique that tightly identifies the probing range
for an arriving event by parameterizing the uncertain tem-
poral properties of streams and keeping events in the tem-
poral order. It is possible to keep such a temporal order
in a stream without incurring significant overheads owing
to the fact that events normally arrive in ascending order
of their occurrence times [9]. The partitioning allows us

to prune unnecessary join tests and furthermore derive the
tightest sliding time window over a stream, rendering the
events outside the sliding time window obsolete.

Obviously, if network delays and the degree of timing
uncertainty in streams cannot be bounded, it is impossible to
determine the probing range for an arriving event to within a
finite interval. Henceforth, we consider only streams where
the temporal uncertainty of all the events can be parame-
terized (bounded). We shall introduce several parameters
for capturing the temporal uncertainty of the events in a
stream and call them stream parameter; a stream parameter
denotes some quantitative property that applies everywhere
in a stream.

Definition 4 We use the stream parameter
to denote the set of template histograms

in a stream , i.e., if an event in is detected at time ,
then it must be the case , = .
We shall write to denote that is the template his-
togram of the event .

Definition 5 The stream parameter denotes the max-
imum length of template histograms that can occur in a
stream , i.e., , holds.

Definition 6 The stream parameter denotes the maxi-
mum transmission latency in a stream to the stream pro-
cessor, i.e., for any event in , the datum must arrive at
the stream processor by time .

Definition 7 Given a timing constraint c:
where are time terms corresponding to occurrence
times of events and is a delay or deadline constant, we
define a probabilistic timing constraint (PTC) as c

where is the confidence threshold. The term
c is known as the satisfaction probability of c [8].

In the following, we restrict our discussion to the cases
where (1) the stream parameters in Definition 4-6 are known
a priori as part of system specification, say, via sensor cali-
brations and (2) the time window size in PTJoin queries is
relatively large such that holds. In par-
ticular, with such values, the evaluation of the join condi-
tion jc in PTJoin transforms to that of its associated PTC:

or for a
pair of events and .

Lemma 2 Consider a join condition jc:
, and a pair of events in a stream ,

in a stream such that . The event
pair satisfy the join condition jc iff .
Likewise, given a pair of events and such that

, it must be the case that they satisfy
the join condition jc iff .
Proof: Due to the given condition
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and , we obtain
, which is equivalent to .

Thus, ensures the satisfaction of jc;
conversely, ensures the violation of
jc. We omit the proof for the other case.

Evaluating an event pair for PTJoin requires checking
the PTC imposed on the event pair by the join condition.
Notice that we can check a PTC such as

by computing where .
For convenience, we shall assume the availability of

max-time sorted streams, for which stream buffers are set
up to contain events in ascending order of their maximum
possible occurrence times, that is, for an event .

Here, we describe the partitioning technique to be ap-
plied to max-time sorted streams and for performing
PTJoin with the join condition jc: . Upon arrival of
event in the stream , we partition the stream into

Satisfaction range (SR) which contains all events in
for which SR satisfies jc with ,

Violation range (VR) which contains all events in for
which VR violates jc with ,

Probing range (PR) which contains all events in for
which PR may or may not satisfy jc with .
With these partitions, we can limit probing events in to
only those in PR. Regardless of the value of , we can have
the partitions constructed by two PRs:

LPR (4)

RPR (5)

Therefore, only events in such that

will be checked with .
Not surprisingly,

SR (6)

is surrounded by two PRs, and VR is necessarily confined
by the ranges that are neither PRs nor SR.

Given a specific , we can find the tightest PRs for an
event that triggers the probing over a stream of its join part-
ners. Lemma 3 will show that the satisfaction probability of
a timing constraint monotonically decreases (or increases)
as one histogram timestamp in the timing constraint
slides forward (or backward) in time while the other his-
togram timestamp in the timing constraint is fixed in
time. Motivated by this observation, we construct a par-
titioning method based on the satisfaction time (in Defini-
tion 8 below) of template histogram pairs.

Lemma 3 Suppose .
It must be the case that

holds for any .

Definition 8 Consider the histogram timestamps , ,
and . The satisfaction time,
is a time point such that

holds.

It is clear that for any real number , we have

(7)

By Lemma 3, given any time point
, we can conclude

holds; likewise, given any
time point , we can conclude

holds.
Before proceeding to our partitioning method, let us first

explain how to find the satisfaction time .
Consider the histograms and . Let and be the
list of the time points in and where and

as in Definition 3. We use the term configuration to
denote a tuple where if

, if , and
if for . Then,

for where is a variable, we may
enumerate all possible configurations that pertain to and

by increasing where
. For each configuration, we compute

the lower and upper bounds of . By
Lemma 3, these bounds in a configuration are achieved by
calculating with the minimum and
maximum possible values of in the configuration. Once
the configuration bounding is identified, we formulate the
quadratic equation corresponding to

in the configuration and then we get
exactly by solving the equation3.

In practice, we can find the configuration bounding ef-
ficiently by using the binary search, delimiting the range
of to

where is the time
point such that and is the time point
such that . In particular, this method ef-
ficiently prunes unnecessary configurations in case that the
number of buckets in histogram timestamps is large.

Example 4 Consider the satisfaction time
where and are the his-

togram timestamps of and in Example 3. From
= 0.925 and

, we obtain the bounding configuration

3We restrict overlapping histograms to the case where there are at least
a pair of intersecting buckets with non-zero probability.
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for where . Let
and

for notational convenience, and we obtain the ad-
justed histograms

and

of and respectively where =

for . Then,
following Theorem 1, we have

where and denote the probabilities in and .
By solving the equation, we have and subse-
quently we have = =

= = .

Theorem 2 Let in a stream and in a
stream . If the inequality

(8)
holds, then it must be the case .
Otherwise, holds.
Proof: Let =

. Then we have =
by Equation 7 and subsequently we have

according to
Definition 8. Consider the case and let

. Then we have

by Equation 7 and Lemma 3. We
omit the proof for the other case.

Theorem 2 and Lemma 2 provide a join method that uses
the satisfaction time of the respective template histograms
for evaluating the join condition jc. Consider events

and . If holds, as shown
above, we can check Equation 8 for evaluating

; otherwise, we can check if the inequality

(9)
holds for evaluating . Due to
the inverse relation such as

, we have
holds iff holds.

2500 4500 6500
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)min()6( RPR

Figure 3. An example graph for partitions: The
time points and represent the partitions by
Theorem 3 while the time points and rep-
resent the partitions by Equation 5 and 6.

Notice that such a satisfaction time for a specific thresh-
old, i.e., and , can be pre-computed for a set of tem-
plate histograms at query installation time, and thus evalu-
ating the join condition for an event pair in PRs can be done
in constant time. Given a set of template histograms, we
can determine PRs tightly by the following theorem.

Theorem 3 Consider jc: ( . Upon
arrival of in a stream , we have the partitions in
a stream as follows:

LPR

RPR

where .
Proof: Let us denote two time points of RPR by =

and
= . Consider an

event ( ) such that
and hold. And further let

. By Theo-
rem 3, then, we conclude that since
holds, holds, and thus the event
pair and do not qualify jc. Conversely, consider an
event such that and

. By Theorem 3, then, we conclude that since
holds,

holds, and thus the event pair and qualify jc. As ex-
plained in Lemma 2, guarantees

. We omit the further proof since
we can use the inverse relation for LPR.
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Example 5 Figure 3 depicts an example graph of partitions
over the max-time sorted stream for performing PTJoin
with upon arrival of event as formulated in
Theorem 3. In this example, we randomly create 500 tem-
plate histograms for and , and get ’s timestamp by

where is the detection time of
the event and is a template histogram randomly chosen
from . In the graph, the X-axis represents the timeline
of the max-time sorted stream in milliseconds and Y-axis
represents the probability. The figure clearly shows two PRs
and SR when and , highlighting their
tightness with the comparison of those by Equation 5 and 6.

Whereas most conventional sliding window joins include
an explicit clause for the time window in their join specifi-
cation and rely on event buffering for dealing with any pos-
sibly delayed event arrivals, we can derive the sliding time
window tightly by exploiting the join condition of PTJoin
and stream parameters.

Theorem 4 Consider jc: ( . When
the join operation triggered by in a stream is pro-
cessed, any event in a stream such that

must be obsolete where =
.

Proof: According to Definition 6, when processing
in , we may have the maximum possibly delayed event

in such that . As-
suming such an event , consider time =

as similarly shown in Theorem 3. Any event whose
time is earlier than cannot be a join partner of due to
the property of PRs. The minimum possible by all possi-
ble template histograms guarantees that any pos-
sible pair of in and in such that
must violate the join condition.

A stream buffer can be implemented as a circular buffer
such that front and rear pointers are maintained to locate the
valid sliding time window over a max-time sorted stream. A
stream buffer grows as a new event is placed at the rear po-
sition, but it shrinks as obsolete events are removed by ad-
vancing the front pointer. Based on Theorem 4, the sliding
time window over a stream for PTJoin can be tightly con-
structed whenever a newly arrived event is processed and
inserted into the stream buffer by setting the front pointer
to just after the latest obsolete event. Notice that the time
offset to the latest obsolete events is a constant that can be
calculated at query installation time by comparing the sat-
isfaction time of all template histogram pairs. It should be
noted that the stream parameter for denoting the maximum
possible network delays, i.e., is needed to ensure that

the invalidated events cannot be joined even if some event
triggering the join operation may arrive late within the pa-
rameter value.

4 Conclusion

In this paper, we have addressed the issue of processing
timing joins over temporally uncertain event streams where
the exact time of event detection may be known only proba-
bilistically. This paper generalizes all previous work in that
our probabilistic model allows arbitrary histograms to be
used for quantifying the uncertainty in event timing. For
this model, we develop a partitioning scheme for check-
ing the satisfaction of a timing constraint by exploiting the
probabilistic properties and the temporal ordering of event
arrivals in a data stream. By using this partitioning scheme,
we showed how to implement a timing join operator effi-
ciently.
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