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Abstract

Data uncertainty is a common problem for the real-time
monitoring of data streams. In this paper, we address the
issue of efficiently monitoring the satisfaction/violation of
user-defined constraints over data streams where the data
uncertainty can be probabilistically characterized. We pro-
pose a monitoring architecture SPMON that can incorpo-
rate probabilistic models of uncertainty in constraint moni-
toring. We adapt the concept of data similarity in real-time
databases to the processing of uncertain data streams. In
doing so, we generalize the data similarity by a new con-
cept psr (probabilistic similarity region) that allows us to
define similarity relations for probabilistic data with respect
to the set of constraints being monitored. This enables the
construction of lightweight filters for saving bandwidth. We
also show how to efficiently update the filter conditions at
run-time.

1 Introduction

With the adoption of wireless technology in process control
applications, the minimization of communication between
field devices and host systems is an important issue because
of the bandwidth and power limitations in the wireless de-
vices. A well-known strategy is for the resource-limited
field devices to report sensor data to the host system only if
the data indicates critical state changes of the industrial pro-
cess under control that the host system must know about [2].
This type of strategy has also been studied to guarantee QoS
(quality of service) in the control-theoretic setting [14, 15].
A simple example of this strategy is for a pressure sensor
to report its data to the host system if the pressure deviates
from some range, say, [500, 1000] psi. This simple rule is
straightforward to implement if there is no uncertainty in the
sensor data. However, this is no longer the case if the sen-
sor measurements are known to have significant errors due
to temporal and spatial uncertainties or other physical lim-
itations, as is the case of many wireless sensor monitoring
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systems. For example, suppose a pressure sensor obtains
a measurement of 990 psi but the measurement can be off
by 20 psi. Then the actual pressure can be as low as 970
psi and as high as 1010 psi. In this case it is easy to see
that there is a 0.25 probability that the actual pressure has
exceeded 1000 psi, assuming that the error probability is
uniformly distributed over the [970, 1010] interval of pos-
sible pressure values. The decision for the sensor to signal
the host system or not can now depend on whether the 0.25
probability is deemed acceptable for the application. For
example, given a user-specified threshold δ in probability,
the monitoring condition can be specified as: “whether or
not the probability that the pressure is in between 500 and
1000 psi is no smaller than δ.” Such probability threshold
requirement is common for query specification in the uncer-
tain database literature [3, 5, 7].

In general, the processing of sensor data to determine
whether or not the host system needs to be signalled can be
rather complex if a constraint specifying the critical state
change involves more than a single data stream, e.g., a join
relation involving pressure data from different locations in
a pipe. This problem can be alleviated by an architecture
that combines “edge filters” and a “stream processor” such
that each data source (or a sensor node) can set up an edge
filter to minimize the transmission of data that does not
cause some query result to change, and the stream proces-
sor can recalibrate the edge filters1. This architecture of
using edge filters has been studied in various areas such as
distributed web caches (e.g., TRAPP system [17]), moving
object databases (e.g., safe region based spatial query pro-
cessing [18, 11]), and stream databases (e.g., adaptive fil-
ters [16, 4]). In [16], Olston et. al. investigated the filter
adaptation for monitoring continuous aggregation queries
over distributed data sources where each source tracks its
exact numerical value and maintains an interval contain-
ing the exact value as the filter condition. Employing edge

1In this paper, we use the term filtering to denote the suppression of
unnecessary data transmission and redundant computation in the context
of monitoring continuous queries in stream data management. This differs
from the filtering in classical signal processing for noise reduction, which
is not our interest in this paper.
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Figure 1. Gaussian pdf s and psr-based filters

filters is also consistent with emerging industrial standards
such as the WirelessHart standard for the process control
industry [10].

In this paper, we address the problem of data uncer-
tainty in monitoring constraint-based queries in the stream
database context and provide an efficient solution for main-
taining edge filters. While aiming at reducing the commu-
nication load in a monitoring system like the related work
above e.g., [16, 4], our problem is distinct in two aspects
that we (1) assume inherent uncertainty in underlying data
and (2) consider user-defined constraints with probability
thresholds as continuous query specification. Because of
these two aspects, the condition of edge filters is formulated
based on the constraint specifications and dynamically set
by the value changes, and furthermore is made consistent
with the uncertainty model. Relating to the uncertainty, we
assume that data values at each data source are taken in dis-
crete timesteps and each data value is only given by a pdf
(probability distribution function).

The efficiency in our method makes explicit use of the
concept of data space similarity from our earlier work [13,
2]. Two values of a data object are similar with respect
to a constraint if the satisfaction of the constraint is unaf-
fected by the choice of which value to use in evaluating the
constraint. This can be expressed by a bound on the dis-
tance between the two values such that two values are sim-
ilar if their distance does not exceed the bound. In related
work, the control-theoretic approach [14, 15] that tracks dy-
namic objects by adaptive pulling methods also relies on the
same bound format for specifying a temporal coherency re-
quirement. Usually, such bounds are assumed to be given
by the user as a part of the system specification. For our
work, we start with a set of user-defined constraints from
which we systematically derive psr (probabilistic similarity
region). Because of the uncertainty in the data values, psr is
more complex in that it specifies a similarity relation in the
parameter space of pdf that characterizes uncertain sensor
measurements.

Consider the example in Figure 1 (the detail is in Exam-
ple 1-2 in Section 2). We have a set of user-defined con-
straints over two objects o1 and o2 that have the same type.
Assume in this case the data values of o1 and o2 are given
by the gaussian distribution with different parameters, and
accordingly each constraint specification contains a given
probability threshold. In figure(a), we have a pair of gaus-

sian distributions u and v that denote the estimate of o1 and
o2 respectively in timestep t1. As time progresses to the
next timestep t2, we have new estimates u′ and v′ for o1

and o2. Figure(b) depicts an example of psr as rectangles
in the 2-dimensional (mean vs. standard deviation) space
of gaussian pdf parameters. A point in this space denotes a
gaussian pdf. The gray (white) rectangle, the psr of o1 (o2),
depicts the area where any point (gaussian pdf ) is similar to
u (v) with respect to the given constraints. Notice that psr
is not given by the user, but is derived from the constraints.
The derivation for psr will be shown in Section 3 and 4. In
figure(b), both estimates of o1 and o2 in timestep t2 are lo-
cated within their respective psr, ensuring that they do not
affect the evaluation result of the given constraints, and so
they do not have to be forwarded to the stream processor.

While the computation of psr for a data object is per-
formed by the stream processor, the filtering of inconse-
quential new data can be done locally at the data sources by
having them maintain their own edge filters (see Figure 2).
As pointed out in [18, 16, 8], it is often critical to reduce
communication load where the underlying infrastructure is
constrained in energy and network resources. In our ap-
proach, psr realizes the construction of edge filters on prob-
abilistic data, thus enabling suppression of unnecessary data
transmission.

1.1 Related Work

In recent years, various adaptive techniques in stream data
management have been proposed [12, 16, 18, 4, 1, 19]. Par-
ticularly the work in [16, 18, 11, 4] can be categorized as
edge filtering on remote data sources, as mentioned above.
The edge filtering approach exploits the specific query se-
mantics (e.g., numerical aggregation queries with abso-
lute precision requirements [16], spatial range queries [11],
and entity-based queries [4]) for efficient filter adaptation.
In [11], a safe region of objects being tracked is used for
efficiently monitoring spatial queries in the moving object
database literature. A safe region ensures the result of its
associated spatial queries to remain unchanged as long as a
newly measured data value does not deviate from the safe
region itself. While none of these previous studies in edge
filtering considered inherent uncertainty in underlying data,
our work specifically addresses the probabilistic models for
uncertain data together with the probabilistic semantics for
constraint-based queries, and concentrates on the efficient
derivation of filter conditions for probabilistic data. It is also
important to note that we consider the probabilistic mod-
els only for capturing the inherent imprecision in measure-
ment data [3, 7, 9]. Such imprecision is generally incurred
by error-prone sensing mechanisms independently from the
monitoring process. Thus our work differs from the approx-
imate processing (e.g., [16, 19]) that trades off the data qual-
ity for the query processing performance.
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The notion of similarity has been formalized in the real-
time database literature to cope with the dynamics of real-
world objects in real-time environments. In [13], Kuo et.
al. employed the similarity to provide a clear semantic
foundation for relaxing the data consistency requirements
on real-time objects and scheduling real-time transactions.
In [2], Chen and Mok generalized the similarity relation in
the form of predicates on data values to support the flex-
ible query semantics in distributed real-time databases. In
comparison, our work adapts the similarity to pdf parameter
spaces for dealing with uncertain data.

1.2 Contribution

The contributions of this paper are as follows.

• In Section 2, we present our monitoring architec-
ture, called SPMON (Similarity-based Probabilistic
MONitoring), which incorporates data uncertainty in
stream data management. In doing so, we specifi-
cally formulate the constraint monitoring over uncer-
tain data streams as an edge filtering problem. SPMON

supports the efficient suppression of unnecessary data
transmission by exploiting the similarity of probabilis-
tic data.

• To demonstrate the applicability of SPMON, we illus-
trate how to efficiently compute psr for edge filters at
run-time. In particular, we exploit precomputed satis-
faction and violation subspaces in the parameter spaces
of the uniform and gaussian distributions, considering
both static variance in Section 3 and dynamic variance
cases in Section 4.

2 SPMON Overview

In this section, we first describe the probabilistic model for
uncertain data streams and introduce the probabilistic con-
straints as our continuous query types. Given the model
on data streams and constraints, we then explain how mon-
itoring with uncertain data is formulated as the psr-based
filtering problem in SPMON.

Figure 2 illustrates the structure of SPMON. The data
sources (ds in the figure) rely on their edge filters (EFil) to
determine if new data values need to be forwarded to the
stream processor which in turn updates the filtering criteria
of the edge filters and returns the evaluation results of mon-
itored constraints. Central to the operation of the edge filter
is the concept of psr.

2.1 Uncertain Data Stream Model

The source of data is a set of real-valued objects
O={oi}i=1,2,...,|O|. In generating data values for the data
sources, each object embodies a stochastic process that is
indexed by time. Throughout this paper, we make the fol-
lowing assumptions. (1) The value of an object is a function

of time. The value can only be estimated at every timestep
by a pdf. A pdf is specified by its parameters as dictated
by the distribution type. For example, a gaussian pdf is de-
fined by its (mean, standard deviation) pair. We shall use
the term p-data to denote the set of parameters that charac-
terize a pdf, and the term p-data space to denote the Carte-
sian space whose coordinates are the parameters of the pdf.
(2) Each object generates a sequence of p-data as measured
by the data sources at each timestep. (3) The data sources
are stateless. The p-data obtained by a sensor is dependent
solely on the true value of the object at the time of measure-
ment and the device characteristics of the sensor.

2.2 Probabilistic Constraints with Thresholds

In this paper, we consider value-based constraints2 of the
following two forms:

cR : ṙ ≤ oi ≤ r̄, cJ : ṙ ≤ oi − oj ≤ r̄ (1)

where [ṙ, r̄] is an interval such that ṙ, r̄ ∈ R and ṙ < r̄. We
refer to cR and cJ as range constraint and join constraint
respectively. Notice here oi and oj refer to the true values
of the objects that can only measured statistically by their p-
data. Given p-data u of oi and v of oj in timestep t, the sat-
isfaction probability of cR and cJ are defined respectively
as:

prob(cR)|u = P (ṙ ≤ Xi ≤ r̄),
prob(cJ )|u,v = P (ṙ ≤ Xi − Xj ≤ r̄)

where Xi and Xj denote respectively the r.v. (random vari-
ables) associated with oi and oj in timestep t. Notice that
Xi and Xj are represented by their p-data.

We now define the probabilistic constraints for contin-
uous query specification as follows. A probabilistic con-
straint pc is a pair: (c, δ) where c is a constraint and
0 < δ < 1 is a confidence threshold in probability. Corre-
sponding to the range and join constraints, the probabilistic
range and the probabilistic join constraint are denoted by
the pairs:

pcR : (cR, δ) and pcJ : (cJ , δ) (2)

A probabilistic range constraint is satisfied (we write: pcR|u
= satisfaction) if its satisfaction probability is not smaller
than the given confidence threshold, and it is violated (we
write: pcR|u = violation) otherwise. Likewise, pcJ |u,v =
satisfaction if prob(cJ )|u,v ≥ δ.

Example 1. Consider a set of probabilistic constraints:
pc1:(0 ≤ o1 ≤ 60, 0.2), pc2:(−20 ≤ o1 ≤ 75, 0.6),
pc3:(−40 ≤ o1 − o2 ≤ 20, 0.4). And suppose p-data u and v

2In [21], we have investigated the timing constraint monitoring over
uncertain event timestamps using a generalized probabilistic model-based
approach. Our work in this paper is complementary to [21] in that we focus
on the monitoring of value-based constraints on uncertain data attributes of
events.
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Figure 2. SPMON structure: “(k) action” means that
the action occurs at the kth phase of the psr-based filtering
procedure explained in Section 2.3.

are generated for o1 and o2 respectively in timestep t1, and
given by gaussian distribution, e.g., u ∼ N(58, 102) and v
∼ N(79, 22). Then we have prob(0 ≤ o1 ≤ 60)|u = 0.58,
prob(−20 ≤ o2 ≤ 75)|v = 0.02, prob(−40 ≤ o1−o2 ≤ 20)|u,v

= 0.97 (according to the formulae in Section 3.2). Thus
in this case pc1 and pc3 are evaluated to be satisfaction in
timestep t1, but pc2 to be violation.

2.3 Similarity-based Uncertain Data Filtering

Given the object set O and the probabilistic constraint set
C over O, we regard the monitoring process as the updates
of the evaluation result (satisfaction or violation) of each
ck ∈ C over p-data for all oi ∈ O, which are repeatedly
executed in a series of timesteps. In the following, we for-
mulate this monitoring process over uncertain data streams
as the edge filtering problem with the goal of the suppres-
sion of unnecessary data transmission.

We say that two p-data of an object are similar with re-
spect to a probabilistic constraint pc if the evaluation of pc
yields the same result with either p-data. In the context of
data stream processing, a p-data that is similar to the one
in the previous measurement need not be transmitted to the
stream processor. We now define psr (probabilistic similar-
ity region) as follows:

Definition 1. Consider objects oi, oj and the probabilistic
constraints pcR, pcJ in Equation 2. Given p-data u of oi

and v of oj , we define psr of oi with respect to pcR by

psr(oi)|pcR
u = rei s.t. u ∈ rei ∧ ∀u′ ∈ rei, pcR|u = pcR|u′

We define the psr of oi and oj with respect to pcJ by

psr(oi)|pcJ
u,v = rei, psr(oj)|pcJ

u,v = rej s.t.

u ∈ rei ∧ v ∈ rej ∧ ∀u′ ∈ rei∀v′ ∈ rej, pcJ |u,v = pcJ |u′,v′

where rei and rej are regions in the p-data space of the
corresponding objects. We define the overall psr of oi by

psr (oi)|u =
⋂

pc∈C

psr (oi)|pc
u∗ (3)

where C is the constraint set and u∗ is the p-data (i.e., a
single p-data for range constraints or a pair of p-data for
join constraints) of objects specified in pc. Note that if pc
does not involve oi, we assume the psr(oi)|pc

u∗ is the domain
of the p-data space.

Suppose we have object oi, and its corresponding data
source dsi and data stream si. As defined above, psr (oi)|u
denotes the region within which any subsequently obtained
p-data u′ of oi can be considered unnecessary with respect
to monitoring all the constraints (because of Equation 3).
Put differently, if u is the last update in si, then we can
suppress the new updates in si by filtering out all the subse-
quent p-data u′ of oi as long as u′ ∈ psr (oi)|u holds.

As shown in Figure 2, the monitoring process in SPMON

using psr-based filters works in the following 3 phases per
timestep. Suppose u is the last update in si; the filter region
of oi is set as psr (oi)|u.

• In the first phase, suppose dsi acquires new p-data u′

of oi. If u′ does not pass the filter (i.e., u′ ∈ psr(oi)|u),
then u′ should be dropped. Otherwise (u′ /∈ psr(oi)|u,
so the filter is invalidated), u′ is put in si to be pro-
cessed by the stream processor. We assume that all
data sources complete the p-data acquisition, check-
ing p-data against the filter condition (filtering), and
update to the stream in the first phase.

• In the second phase, a stream processor, on receiving
u′ of oi that passes the corresponding filter, retrieves
all the associated constraints in the constraint table
and re-evaluates the constraints. The constraint table
provides the indexing structure of the associated con-
straints per object. To re-evaluate a probabilistic join
constraint that involves the objects oi and, say oj (e.g.,
when the constraint (10 ≤ oi − oj ≤ 20, 0.8) is being
monitored), it might be necessary to probe (retrieve)
the new p-data of oj if it was filtered out in the previ-
ous phase. Once probed, the satisfaction probability of
the join constraint can be computed using p-data for oi

and oj to be compared with the threshold.

• In the third phase, the stream processor reports to the
host system the results of the constraint evaluation,
and finally it re-calculates the filter region of oi (i.e.,
psr(oi)|u′ ) and oj , and sends the re-calculated filter
regions to the respective data sources.

We use a simple predicate form for representing psr to
minimize the cost of processing continuous data with psr-
based filters. In our notation, we adopt the following coordi-
nate system for defining rectangular regions (in pdf param-
eter space) on an 〈x, y〉-plane where x is the horizontal axis
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and y is the vertical axis. A rectangle having the lower-left
corner point (ẋ, ẏ) and the upper-right corner point (x̄, ȳ) is
given by [ẋ, ẏ, x̄, ȳ].

Example 2. Continuing from Example 1, suppose
we have psr-based filters on the data sources o1

and o2 for monitoring the constraints pc1, pc2, and
pc3. From the given p-data u and v in timestep
t1, we obtain psr(o1)|pc1

u = [−5.3, 6.4, 65.3, 112.7],
psr(o2)|pc2

v = [74.9, 0.4,∞,∞], psr(o1)|pc3
u,v =

[48.1, 3.3, 78.9, 36.2], psr(o2)|pc3
u,v = [58, 0, 88.9, 28.2].

Then we have psr(o1)|u = [48.1, 6.4, 65.3, 36.2],
psr(o2)|v = [74.9, 0.4, 88.9, 28.2] by Equation 3. Note
that these two rectangles correspond to those in Figure 1(b)
where x-axis and y-axis represent mean and standard
deviation respectively. Now consider new p-data for o1

and o2 acquired in the next timestep t2 (as illustrated in
Figure 1(a)). If such p-data are each located in the filter
region, that is psr(o1)|u and psr(o2)|v above, then they
can be dropped from the corresponding streams, e.g., the
pair of u′ ∼ N(62, 72) and v′ ∼ N(83, 42) in t2 can be
suppressed. The calculation for this rectangular psr will be
explained in Section 4.

In the subsequent sections, we shall show how to calcu-
late psr for uncertain data streams that are characterized by
uniform or gaussian distribution. The gaussian distribution
is common in modeling statistical properties for tracking
and monitoring physical objects [6, 9]. The uniform distri-
bution is often used for query processing on uncertain data
because of its simplicity for probability computation, anal-
ysis and index construction [5].

3 psr Formation with Static Variances

3.1 psr for Uniform data

We denote p-data characterized by the uniform distribution
by Ui: (mi, wi), noting that P (X = x) = 1

wi
if x ∈ [mi −

wi

2 , mi+ wi

2 ] and P (X = x) = 0 otherwise, where mi, wi ∈
R, wi > 0, and X is the r.v. characterized by Ui. We
shall call Ui uniform data. Regarding a set of uniform data
Ui that satisfy a probabilistic range constraint pcR: (ṙ ≤
oi ≤ r̄, δ) (Equation 2), we obtain the following inequality:
prob(ṙ ≤ oi ≤ r̄)|Ui =

max(min(r̄, mi + wi

2 ) − max(ṙ, mi − wi

2 ), 0)
wi

≥ δ (4)

From this inequality, it is possible to derive the satisfaction
and violation areas in a 2-dimensional parameter space, so-
called 〈m, w〉-plane3. Figure 3(a) shows an example graph
of the satisfaction probability with various uniform data and
Figure 3(b) depicts its contour graph. Each contour line
denotes the satisfaction and violation areas for a specific
value of δ. For satisfying pcR, we have

(δ − 1
2
)wi + ṙ ≤ mi ≤ (

1
2
− δ)wi + r̄ ∧ wi ≤ r̄ − ṙ

δ
(5)

regarding Ui: (mi, wi).
Note that throughout Section 3, the variance of each ob-

ject oi is assumed to be time-invariant. For example, in
the uniform data model, for all possible uniform data of oi

during the monitoring period, wi is a constant and thus a
single data item for mi is transmitted, whenever necessary.
Accordingly, the filter condition (psr) is represented as an
interval regarding mi.

3.1.1 Interval psr for Range Constraints
Consider pcR and Ui:(mi, wi) of oi. Corresponding to a
specific constant wi ≤ r̄−ṙ

δ and a value of δ, we have the
partitioned satisfaction and violation ranges regarding mi

(e.g., from Figure 3(b)). Thus, we have

psr(oi)|pcR
Ui

=

8><
>:

(xu,∞] if mi > xu ∧ wi ≤ r̄−ṙ
δ

[xl, xu] if xl ≤ mi ≤ xu ∧ wi ≤ r̄−ṙ
δ

[-∞, xl) if mi < xl ∧ wi ≤ r̄−ṙ
δ

[-∞,∞] otherwise

(6)

where xl = (δ − 1
2 )wi + ṙ and xu = (1

2 − δ)wi + r̄.

3.1.2 psr for Join Constraints
We now consider a probabilistic join constraint pcJ (Equa-
tion 2) and Ui:(mi, wi) of oi, Uj :(mj , wj) of oj . We have
prob(cJ)|Ui,Uj = ov

wiwj
where ov is the overlapping area by

the rectangle rcij: [mi − wi

2 , mj − wj

2 , mi + wi

2 , mj + wj

2 ]
and the constraint cJ : ṙ ≤ oi−oj ≤ r̄ on the 〈oi, oj〉-plane.

To find the psr of oi and oj , we take two steps; we first
derive the partitioned satisfaction and violation ranges re-
garding mi − mj from pcJ by transforming pcJ to the
constraint on mi − mj , and then get the appropriate range
predicate for each mi and mj depending on the partitioned
ranges and the given uniform data. The detail of this two-
step procedure can be found in [20]. For simplicity, sup-
pose we obtain sl ≤ mi − mj ≤ su by the first step. We

3The plane of uniform data parameters, middle m and width w.
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now consider the partitioned area on 〈mi, mj〉-plane. Let
m1 and m2 be the given specific value of mi and mj re-
spectively. First, consider the violation case such that (a)
m2 > m1 − sl. By constructing a non-closed rectangle that
is tangent to the line mj = mi − sl and contains the point
(m1, m2) on 〈mi, mj〉-plane, we can derive psr regarding
mi and mj . Each side of the rectangle corresponds to psr.
Although there might exist an infinite number of possible
psr formations in this case, we can choose a formation that
stands a smaller chance of having its filters invalidated by
p-data in the relatively near future. To do so, we take the
tangent point (x, x − sl) such that

γmi,mj(x − m1) = m2 − x + sl (7)

where γmi,mj > 0 is a weight parameter4. Note that in
general γ can be specifically set if the change pattern of ob-
jects, e.g., the rate of max (or mean) change per timestep
or the rate of filter invalidations, is modeled, and otherwise
simply set γ=1. We will discuss our adaptive approach to
γ settings in the experiments (e.g., Figure 10). We call this
psr formation policy, weighted middle partition (see Fig-
ure 4(a)). In the same sense, we have psr formations for the
other cases (Figure 4(b)-(c)): (b) m2 < m1 − su and (c)
sl ≤ m1 − m2 ≤ su. Finally, given specific Ui of oi and
Uj of oj , we have psr(oi)|pcJ

Ui
, psr(oj)|pcJ

Uj
=(

[-∞, g(sl)), (g(−γsl),∞] if mj > mi − sl

(g(su),∞], [-∞, g(−γsu)) if mj < mi − su

[g(sl), g(su)], [g(−γsu), g(−γsl)] otherwise

(8)

where g(x) = x+γmi+mj

γ+1 in case that sl and sh exist.

3.2 psr for Gaussian data

We denote p-data that is characterized by the gaussian dis-
tribution by Gi: (µi, σi), noting that X ∼ N(µi, σ

2
i ) where

X is the r.v. characterized by Gi. Such Gis will be called
gaussian data. We represent the standard normal distribu-
tion function and its inverse function by

Φ(x) = P (z ≤ x) and Φ−1(Φ(x)) = x where z ∼ N(0, 1).

For simplicity in explanation, we will use, besides pcR and
pcJ , the following constraint with a unit-length range [0, 1],
the so-called unit-length constraint.

4γmi,mj specifies the partitioning weight with respect to the p-data
parameters related in the satisfaction probability calculation, in this case
mi and mj . We omit the subscripts and use γ loosely without confusion.
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Figure 5. Constrained graph for gaussian data: (a)
X-axis represents −2.5 ≤ µi ≤ 3, Y-axis represents
0 ≤ σi ≤ 2.5, and Z-axis represents prob(cU )|(µi,σi)

where cU is defined in Equation 9. (b) X-axis represents
−2.5 ≤ µi ≤ 3.5, Y-axis represents 0 ≤ σi ≤ 2.5,
and the curves represent prob(cU )|(µi,σi) = δ where δ =
0.1, 0.2, . . . , 0.9 (from the most outer curve).

cU : 0 ≤ oi ≤ 1, pcU : (cU , δ) (9)

Given a set of gaussian data satisfying pcU , we obtain a
non-linear curve on the 2-dimensional mean and standard
deviation parameter space, i.e., 〈µ, σ〉-plane, by using the
following inequality.

prob(cU )|Gi = Φ(
1 − µi

σi
) − Φ(

0 − µi

σi
) ≥ δ (10)

Although it might appear simple to locate individual points
on the constraint curve, there is no analytical solution, i.e.,
we do not have a closed form solution to obtain an x that
satifies prob(cU )|(µi,x) = δ for specific values of µi and δ

except for µi= 1
2 . Figure 5(a) shows an example graph of the

satisfaction probability with various gaussian data and Fig-
ure 5(b) depicts its contour lines, which can be numerically
found. Each contour line corresponds to the constrained
curve by Equation 10 and thus describes the satisfaction and
violation areas for pcU with a specific value of δ, similarly
as shown in Figure 3(b).

Lemma 1. Given a range constraint cR: ṙ ≤ oi ≤ r̄ and
gaussian data (µi, σi) of oi, we have

prob(cR)|(µi,σi) = prob(0 ≤ oi ≤ 1)|(µu,σu)

where µu = µi−ṙ
r̄−ṙ and σu = σi

r̄−ṙ .

Lemma 1 allows us to transform a constrained curve of
the unit-length constraint to that of any arbitrary range con-
straint with the same value of δ. Furthermore, we can ex-
ploit the symmetry of constrained curves. Note that all the
curves in Figure 5(b) are symmetric about ṙ+r̄

2 = 1
2 , to be

consistent with the following lemma.

Lemma 2. Given a range constraint cR: ṙ ≤ oi ≤ r̄ and
gaussian data (µi, σi) of oi, we have

prob(cR)|(µi,σi) = prob(cR)|(ṙ+r̄−µi,σi).
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3.2.1 Interval psr for Range Constraints

Similarly as in the case of uniform data, psr for gaus-
sian data with static variances is given by an interval re-
garding µ. However, such an interval must be found nu-
merically, unlike uniform data. For efficiently updating
psr-based filters at run-time, we can pre-calculate a table,
named G-table, that contains the approximate points of the
constrained curve (e.g., derived by Equation 10) for various
values of δ of pcU . This requires using a numerical method.
In particular, to prune unnecessary sampling points in our
numerical calculation, we use a rectangle tightly enclosing
the constrained curve. Such rectangle is called a minimum
violation rectangle. The implementation of our numerical
method can be found in [20]. In the following, suppose we
have the minimum violation rectangle for pcU , denoted by

rcv : [µ̇v, σ̇v, µ̄v, σ̄v] (11)

and the following auxiliary function that provides the inter-
face to the G-table.

Definition 2. For the unit-length constraint pcU :(cU , δ), we
define the constrained curve function:

G(x)|δ = µi s.t. prob(cU )|(µi,x) = δ ∧ µi ≥ 1

2
(12)

for x ≥ 0. Note that given µi = G(σi)|δ , we have
prob(cU )|(1−µi,σi) = δ by Lemma 2.

It is obvious that given a specific value of σi ≤ σ̄v ,
we have the partitioned satisfaction and violation ranges re-
garding µi. These ranges immediately specify psr, and thus

psr(oi)|pcu
Gi

=

8><
>:

(x,∞] if µi > x ∧ σi ≤ σ̄v

[-∞, 1 − x) if µi < 1 − x ∧ σi ≤ σ̄v

[1 − x, x] if 1 − x ≤ µi ≤ x ∧ σi ≤ σ̄v

[-∞,∞] otherwise

(13)

where x = G(σi)|δ .

Generalization for arbitrary ranges. We have shown psr
formation for the unit-length constraint pcU above. For an
arbitrary range [r̄, ṙ], the psr with respect to pcU can be
adjusted by Lemma 1. For example, from (i) calculated by
Equation 13, we obtain (ii) below where l = r̄ − ṙ.

(i) psr(oi)|pcU

(
µi−ṙ

l
,

σi
l

)
= [µ̇, µ̄], (ii) psr(oi)

pcR
(µi,σi)

= [lµ̇+ṙ, lµ̄+ṙ]

(14)

3.2.2 psr for Join Constraints
Based on the linear property of the difference of indepen-
dent gaussian r.v., that is, given Gi:(µi, σi) and Gj :(µj , σj),

prob(cJ )|Gi,Gj = Φ(
r̄ − µi + µjq

σ2
i + σ2

j

) − Φ(
ṙ − µi + µjq

σ2
i + σ2

j

),

it is possible to find the partitioned ranges regarding µi −
µj by using gaussian data Gk: (µi − µj ,

q
σ2

i + σ2
j ) and

Equation 13-14. This allows us to find the satisfaction range
of µi−µj , denoted as sl ≤ µi−µj ≤ su. Assume a weight
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Figure 6. psr for pcU : X-axis and Y-axis represent µi

and σi. The solid line rectangle denotes the minimum vio-
lation rectangle. The gray rectangle in figure(a) depicts the
third case psr in Equation 15 for the given specific gaussian
data (µ1, σ1).

parameter γ and let g(x) = x+γµi+µj

γ+1 . By the policy of
weighted middle partition, then, the respective psr of oi and
oj are given same as Equation 8 except for here using µi,
µj instead of mi, mj .

4 psr Formation with Dynamic Variances

Thus far, we have focused on psr formation with static vari-
ances. The static variance assumption is normally suit-
able for modeling the tracking of object values that are
not highly dynamic i.e., they do not change drastically in
a short time. In reality, however, there are situations where
the uncertainty degree of an object fluctuates for subsequent
timesteps and so it should be modeled as a variable. In this
section, we consider the gaussian data streams and focus
on the rectangular psr formation, incorporating the contin-
uous updates of both µ and σ parameters to the psr for-
mation and filter construction. In addition to the minimum
violation rectangle rcv (Equation 11), we notate σµ̄ such
that the point (µ̄v, σµ̄) is located on rcv (see Figure 6(b);
(µ̄v, σµ̄) is called max-µ point). And let us denote psr (e.g.,
psr(oi)|pcU

Gi
) by a rectangle rcpsr on 〈µ, σ〉-plane. We will

then show how to determine rcpsr. Because of the symmet-
ric property of Lemma 2, we only consider the case µi ≥ 1

2 .

4.1 Rectangular psr Formation
Here suppose pcU |Gi = violation. First, consider the case of
0.5 ≤ δ < 1. As shown in Figure 6(a), the constrained
curve (i.e., G(.)) is monotonically decreasing with respect
to σi. Thus, in this case, we prefer rcpsr the lower-left cor-
ner (x, y) of which is tangent to the constrained curve, so
rcpsr is in the form [x, y,∞,∞]. As describe before, such
(x, y) is determined based on the weighted middle partition;
if (x, y) cannot exist by the relation of rcv and the given
gaussian data, we take either the upper-side or the right-side
of rcv instead. Then, given specific Gi such that pcU |Gi=
violation, we have (x, y) =(

(-∞, σ̄v) if γ(µi − 1
2
) + σ̄v ≤ σi

(µ̄v , 0) if γ(µi − µ̄v) ≥ σi

(G(y)|δ , y = γ(G(y)|δ − µi) + σi) otherwise

(15)
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Figure 7. psr for σ part: Each gray rectangle with solid
lines denotes the range predicates (or psr part) on σi and σj

depending on the given specific σ pair (σ1, σ2).

where γ is a weight parameter for modeling the change
pattern of oi (e.g., the change ratio between gaussian pa-
rameters).

Second, consider the other case 0 < δ < 0.5. Different
from the previous case, G(.) is convex around the max-µ
point (µ̄v, σµ̄) as shown in Figure 6(b). Due to the space
limitation, we omit the further detail of this case and the
satisfaction case (see [20] for these cases).

Generalization for arbitrary ranges. Equation 14 is ex-
tended for rectangular psr, psr(oi)

pcR
(µi,σi)

as in (ii) below.

(i) psr(oi)|pcU

(
µi−ṙ

l
,

σi
l

)
= [µ̇, σ̇, µ̄, σ̄], (ii) [lµ̇ + ṙ, lσ̇, lµ̄ + ṙ, lσ̄]

(16)
4.2 psr for Join Constraints

By the property of gaussian data explained in Section 3.2.2,
given Gi of oi and Gj of oj , it is possible to calculate the

intermediate psr form regarding µi − µj and
q

σ2
i + σ2

j ,
from which the respective psr of oi and oj can be derived.
Suppose we obtain such intermediate psr as a rectangle
[µ̇p, σ̇p, µ̄p, σ̄p] by the formulae in Section 4.1. Since we
have presented our method to derive the respective psr part
for µi and µj in Section 3.2.2, here we explain its com-

plementary part. From the condition σ̇p ≤
q

σ2
i + σ2

j ≤ σ̄p

given by the aforementioned intermediate psr, we derive the
individual range predicates on each σi and σj . Note that
combining the range predicate on σi and that on µi com-
pletes the psr of oi. In the following, assume a weight pa-
rameter γ for modeling the difference of the change patterns
of σi and σj , supposing given specific σ1 of oi and σ2 of oj .
For notational simplicity, let

g(x) =
γ2σ1 − γσ2 +

p
x2 − (σ2 + (x − σ1)γ)(σ2 − (σ1 + x)γ)

1 + γ2
.

First, if σ̇p > 0 and σ̄p = ∞, we have

σi ≥ x and σj ≥
q

σ̇p
2 − x2

where

x =

8<
:

0 if γσ1 + σ̇p ≤ σ2

g(σ̇p) if γ(σ1 − σ̇p) < σ2 < γσ1 + σ̇p

σ̇p otherwise.

Note that Figure 7(a)-(b) show the different psr forma-
tions according to the first two cases in the above equation.
Due to the space limitation, we omit the detail including the
other cases corresponding to the examples in figure(c)-(d).

p(b)

(c)

(a)

0

1

timestep

-50

50

150

13000 13500 14000

m_1 m_2
1µ 2µ

Figure 8. Stream monitoring example: X-axis rep-
resents timesteps from 13K to 14.5K. Y-axis represents (a)
the changes of µ1 (for o1 with static σ1=4) and µ2 by the
random walk model where λ=3 (Equation 17), (b) satisfac-
tion probability of c1, and (c) the stream suppression by
psr-based filters where each vertical line corresponds to a
message.

5 Evaluation

To evaluate the effectiveness of our approach, we imple-
mented the SPMON simulator and performed several exper-
iments using the parameters in Table 1.

Parameter Description
nt number of timesteps (= 50K)
no number of tracked objects
co number of constraints per object
λ max change (of a p-data parameter) per timestep

Table 1. Experiment parameters
For uncertain data streams, we used a random walk

model to produce continuous streams of p-data, uniform or
gaussian data, where the possible value difference of subse-
quent p-data parameters can be specified. In all cases, we
used stream data sets of 50K timesteps.

The experiments in Figure 8-10 take a join constraint and
gaussian data streams with static variances. For example,
Figure 8(a)-(b) show part of gaussian data streams of o1, o2

where their variance is constant, that is σ1=σ2=4, and the
corresponding satisfaction probability of a join constraint
c1:(−50 ≤ o1 − o2 ≤ 50). Each stream was generated by a
random walk model, i.e.,

µt+1
i = µt

i + U(-λ, λ) (17)

where µt
i denotes µi in timestep t, λ ∈ R

+ denotes the
maximum of a random walk, and U(-λ, λ) denotes uni-
form distribution on the interval [-λ, λ]. Given the thresh-
old δ=0.8, figure(c) demonstrates the benefit of SPMON (by
Section 3.2.2 where we set γ=1) such that update messages
during most timesteps were suppressed while monitoring
the probabilistic constraint pc1:(c1, 0.8).

As a performance metric, we compare the number of
messages by SPMON to that by a traditional central monitor
where p-data are transmitted to a stream processor in every
timestep: msg (= message transmission rate) = nm

nt×no where
nm is the number of messages. For messages in SPMON,

nm = nivd + 2nprb + nudt (18)
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Figure 9. msg with various settings: Figure(a) shows
the number of constraint result updates depending on the
join constraint range size. In figures(b)-(d), Y-axis repre-
sents msg and X-axis represents (b) join constraint range
size rs, (c) threshold δ, and (d) max change per timestep λ.
Figures(b)-(d) show msg of monitoring (−rs

2
≤ o1 − o2 ≤

rs
2

, δ) where (b) δ=0.8, λ=3, (c) rs=100, λ=3, (d) rs=100,
δ=0.8. We set γ=1 for all the cases.

where nivd denotes the number of psr-based filters that are
invalidated by p-data; nprb denotes the number of probes
initiated by a stream processor to retrieve the p-data of the
other object in the join when the filter of one object is inval-
idated; and nudt denotes the number of psr-based filter up-
dates. Recall that the re-evaluation of a join constraint upon
invalidation by the p-data of an object oi passing through
its filter may require probing to the other object in the join
in which oi appears. Owing to these probes (more specifi-
cally, probing request and reply messages) and filter update
messages, in general, query-aware filtering methods are not
always of benefit to message reduction. We will show the
effect of the overhead in Figure 11, in some cases with rel-
atively large λ and co. It is also important to note that one
cannot simply use a variant of central monitor that uses
“constant” filter ranges for our problem, since even a mini-
mum value change of a p-data parameter in the domain of
real numbers may require the revalidation of its associated
constraints; in fact, this is also a reason why monitoring
specific continuous queries (e.g., probabilistic constraints
in this paper, spatial queries [18]) is different from tracking
time-varying data [14, 15] which is independent of query
types, although both often aim at the same goal of low com-
munication overhead.
Single join constraint. Figure 9 shows msg of monitoring a
single join constraint. As expected and shown in figures(a)-
(b), msg is heavily dependent on the degree of fluctuation
in the results of constraint evaluation over time; more dy-
namicity in the tracked objects (i.e., larger λ) is likely to
change the constraint results rapidly and accordingly break
psr-based filters more, thus resulting in larger msg as shown
in the figure(d).

As explained in the previous sections, psr consists of
simple predicates on p-data parameters and our psr for-
mation formulae contain weight parameters γ. Figure 10
demonstrates the impact of this γ setting against streams
with different properties. For the different stream proper-
ties, we created streams by increasing the max change of µ1

per timestep (denoted by λ1) and setting λ2=3 constantly,

(a) Max change rate
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(b) Adaptive weight

Figure 10. Adaptive weight: Y-axis represents msg
of monitoring (−50 ≤ o1 − o2 ≤ 50, 0.8) and X-axis
represents (a) γ, (b) max change rate λ2

λ1
.

e.g., in figure(a), x0.13 denotes the stream being generated
with λ2

λ1
= 0.13. In figure(a), we observe that setting γ close

to λ2
λ1

yields low msg. The reason is that such γ enables the
weighted range partitions in psr formation to be consistent
with the skewness of random walks for each p-data parame-
ter. However, such λs for real uncertain streams may not be
a priori known. Thus, we tested a simple heuristics named
adaptive weight: for each p-data parameter, the number of
time its predicate as part of the psr-based filter is broken in a
sliding window (e.g., during the 20 recent timesteps) is used
instead of λs. In figure(b), we observe the effectiveness of
our adaptive method, that is, its msg (denoted by adp wgt) is
fairly competitive in comparison with the best case when λ2

λ1
is explicitly used (denoted by chg rate). Moreover, adaptive
methods normally can remain promising under the condi-
tion of time-varying stream properties.
Multiple constraints. Thus far, we have studied the per-
formance issue with a single constraint using psr. Two ma-
jor observations were that (1) msg is mainly influenced by
the dynamicity of p-data and (2) our adaptive weight policy
works quite well, not needing a priori knowledge of stream
properties. Here we discuss the case of multiple constraints
with dynamic variances (for gaussian data streams in Sec-
tion 4). We created different sets of objects and constraints
randomly using given values for the parameters no, co, the
range size of each constraint rs ∈ [50, 120], and the thresh-
old δ ∈ (0, 1). Given co=k, we created 
k

2� range con-
straints and �k

2  join constraints for each object. We also
created different sets of data streams using given λ of µ and
σ for each object. Figure 11 shows that msg is also influ-
enced by co while it is not directly influenced by the size
of object or constraint set as long as co is same. This is
because psr of an object is achieved by the intersection of
psr with respect to all the constraints being imposed on the
object. In other word, a filter region is likely to shrink more
along with larger co, implying that the benefit of SPMON

could increase with small co and thus SPMON must be used
conservatively otherwise; e.g., it seems advantageous to use
SPMON for the cases where co≤ 4 and λ < 3. Finally
we note that adaptiveness of SPMON such as combining the
psr-based filter and non-filtering of central monitor for dif-
ferent stream and constraint properties is an interesting is-
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Figure 11. Multiple constraints: Y-axis represents
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2
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no and (b) co. We set (a) co=2 and (b) no=10.

sue but is not included here due to the space limit.

6 Conclusion

As usage of sensor-based real-time monitoring systems
grows, probabilistic data processing based on statistical
modeling techniques has gained much attention in both
the stream database and real-time database literature [5, 7,
12]. This paper introduces SPMON, a monitoring architec-
ture that incorporates data value uncertainty in monitoring
constraint-based queries. In particular, we generalize the
notion of data similarity to cover data objects whose val-
ues can only be determined probabilistically. To the best
of our knowledge, SPMON is the first to attempt monitor-
ing and filtering of uncertain data streams in pdf param-
eter spaces. As shown in the previous sections, the filter
conditions based on the new psr concept can be systemati-
cally derived for well-known distributions. Our future work
includes investigating a unified framework for monitoring
uncertain events that is able to cover two different types
of uncertainty: event timing in [21] and data value in this
work. We also plan to explore complex constraint types in
our monitoring queries, e.g., constraints on arbitrary aggre-
gate (linear or non-linear) functions of multiple uncertain
data streams.
Acknowledgement. The authors would like to thank prof.
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