First-Order Logic (First-Order Predicate Calculus)

Propositional vs. Predicate Logic

- In propositional logic, each possible atomic fact requires a separate unique propositional symbol.

- If there are n people and m locations, representing the fact that some person moved from one location to another requires nm^2 separate symbols.

- Predicate logic includes a richer ontology:
 - objects (terms)
 - properties (unary predicates on terms)
 - relations (n-ary predicates on terms)
 - functions (mappings from terms to other terms)

- Allows more flexible and compact representation of knowledge

Move(x, y, z) for person x moved from location y to z.

Syntax for First-Order Logic

Sentence \rightarrow AtomicSentence
 $|$ Sentence Connective Sentence
 $|$ Quantifier Variable Sentence
 $|$ \negSentence
 $|$ (Sentence)

AtomicSentence \rightarrow Predicate(Term, Term, ...)
 $|$ Term=Term

Term \rightarrow Function(Term,Term,...)
 $|$ Constant
 $|$ Variable

Connective \rightarrow \lor $|$ \land $|$ \Rightarrow $|$ \Leftrightarrow

Quantifier \rightarrow \exists $|$ \forall

Constant \rightarrow A $|$ John $|$ Car1

Variable \rightarrow x $|$ y $|$ z $|$...

Predicate \rightarrow Brother $|$ Owns $|$...

Function \rightarrow father-of $|$ plus $|$...

First-Order Logic: Terms and Predicates

- Objects are represented by terms:
 - Constants: Block1, John
 - Function symbols: father-of, successor, plus

An n-ary function maps a tuple of n terms to another term: father-of(John), successor(0), plus(plus(1,1),2)

- Terms are simply names for objects. Logical functions are not procedural as in programming languages. They do not need to be defined, and do not really return a value. Allows for the representation of an infinite number of terms.

- Propositions are represented by a predicate applied to a tuple of terms. A predicate represents a property of or relation between terms that can be true or false: Brother(John, Fred), Left-of(Square1, Square2) GreaterThan(plus(1,1), plus(0,1))

- In a given interpretation, an n-ary predicate can defined as a function from tuples of n terms to $\{\text{True}, \text{False}\}$ or equivalently, a set tuples that satisfy the predicate:

$$\{<\text{John, Fred}>, <\text{John, Tom}>, <\text{Bill, Roger}>, ...\}$$
Sentences in First-Order Logic

- An atomic sentence is simply a predicate applied to a set of terms.

 \[\text{Owns(John, Car1)} \]
 \[\text{Sold(John, Car1, Fred)} \]

 Semantics is True or False depending on the interpretation, i.e., is the predicate true of these arguments.

- The standard propositional connectives (\(\lor \), \(\neg \), \(\land \), \(\Rightarrow \), \(\Leftarrow \)) can be used to construct complex sentences:

 \[\text{Owns(John, Car1)} \lor \text{Owns(Fred, Car1)} \]
 \[\text{Sold(John, Car1, Fred)} \Rightarrow \neg \text{Owns(John, Car1)} \]

 Semantics same as in propositional logic.

Quantifiers

- Allows statements about entire collections of objects rather than having to enumerate the objects by name.

- Universal quantifier: \(\forall x \)

 Asserts that a sentence is true for all values of variable \(x \)

 \[\forall x \text{ Loves(x, FOPC)} \]
 \[\forall x \text{ Whale(x) } \Rightarrow \text{ Mammal(x)} \]
 \[\forall x \text{ Grackles(x) } \Rightarrow \text{ Black(x)} \]
 \[\forall x (\forall y \text{ Dog(y) } \Rightarrow \text{ Loves(x,y)}) \Rightarrow (\forall z \text{ Cat(z) } \Rightarrow \text{ Hates(x,z)}) \]

- Existential quantifier: \(\exists x \)

 Asserts that a sentence is true for at least one value of a variable \(x \)

 \[\exists x \text{ Loves(x, FOPC)} \]
 \[\exists (\text{Cat(x) } \land \text{ Color(x,Black) } \land \text{ Owns(Mary,x)}) \]
 \[\exists (\forall y \text{ Dog(y) } \Rightarrow \text{ Loves(x,y)}) \land (\forall z \text{ Cat(z) } \Rightarrow \text{ Hates(x,z)}) \]

Use of Quantifiers

- Universal quantification naturally uses implication:

 \[\forall x \text{ Whale(x) } \land \text{ Mammal(x)} \]

 Says that everything in the universe is both a whale and a mammal.

- Existential quantification naturally uses conjunction:

 \[\exists x \text{ Owns(Mary,x) } \Rightarrow \text{ Cat(x)} \]

 Says either there is something in the universe that Mary does not own or there exists a cat in the universe.

 \[\forall x \text{ Owns(Mary,x) } \Rightarrow \text{ Cat(x)} \]

 Says all Mary owns is cats (i.e., everything Mary owns is a cat). Also true if Mary owns nothing.

 \[\forall x \text{ Cat(x) } \Rightarrow \text{ Owns(Mary,x)} \]

 Says that Mary owns all the cats in the universe. Also true if there are no cats in the universe.

Nesting Quantifiers

- The order of quantifiers of the same type doesn’t matter

 \[\forall x \forall y(\text{Parent(x,y) } \land \text{ Male(y) } \Rightarrow \text{ Son(y,x)}) \]
 \[\exists x \exists y(\text{Loves(x,y) } \land \text{ Loves(y,x)}) \]

- The order of mixed quantifiers does matter:

 \[\forall x \exists y(\text{Loves(x,y)}) \]

 Says everybody loves somebody, i.e., everyone has someone whom they love.

 \[\exists y \forall x(\text{Loves(x,y)}) \]

 Says there is someone who is loved by everyone in the universe.

 \[\forall y \exists x(\text{Loves(x,y)}) \]

 Says everyone has someone who loves them.

 \[\exists x \forall y(\text{Loves(x,y)}) \]

 Says there is someone who loves everyone in the universe.
Variable Scope

- The scope of a variable is the sentence to which the quantifier syntactically applies.

- As in a block structured programming language, a variable in a logical expression refers to the closest quantifier within whose scope it appears.

 \[\exists x \ (\text{Cat}(x) \land \forall x (\text{Black}(x))) \]

 The x in Black(x) is universally quantified

 Says cats exist and everything is black

- In a well-formed formula (wff) all variables should be properly introduced:

 \[\exists x P(y) \] not well-formed

- A ground expression contains no variables.

Relation Between Quantifiers

- Universal and existential quantification are logically related to each other:

 \[\forall x \neg \text{Love}(x, \text{Saddam}) \iff \neg \exists x \text{Loves}(x, \text{Saddam}) \]

 \[\forall x \text{Love}(x, \text{Princess-Di}) \iff \neg \exists x \neg \text{Loves}(x, \text{Princess-Di}) \]

- General Identities

 - \[\forall x \neg P \iff \neg \exists x P \]
 - \[\neg \forall x P \iff \exists x \neg P \]
 - \[\forall x P \iff \neg \exists x \neg P \]
 - \[\exists x P \iff \neg \forall x \neg P \]

 \[\forall x P(x) \land Q(x) \iff \forall x P(x) \land \forall x Q(x) \]

 \[\exists x P(x) \lor Q(x) \iff \exists x P(x) \lor \exists x Q(x) \]

Equality

- Can include equality as a primitive predicate in the logic, or require it to be introduced and axiomitized as the identity relation.

- Useful in representing certain types of knowledge:

 \[\exists x \exists y (\text{Owns(Mary, x)} \land \text{Cat}(x) \land \text{Owns(Mary, y)} \land \neg (x=y)) \]

 Mary owns two cats. Inequality needed to insure x and y are distinct.

 \[\forall x \exists y (\text{married}(x,y) \land \forall z (\text{married}(x,z) \Rightarrow y=z)) \]

 Everyone is married to exactly one person. Second conjunct is needed to guarantee there is only one unique spouse.

Higher-Order Logic

- FOPC is called first-order because it allows quantifiers to range over objects (terms) but not properties, relations, or functions applied to those objects.

- Second-order logic allows quantifiers to range over predicates and functions as well:

 \[\forall x \forall y [\ (x=y) \iff (\forall p p(x) \iff p(y))] \]

 Says that two objects are equal if and only if they have exactly the same properties.

 \[\forall f \forall g [\ (f=g) \iff (\forall x f(x) = g(x))] \]

 Says that two functions are equal if and only if they have the same value for all possible arguments.

- Third-order would allow quantifying over predicates of predicates, etc.

 For example, a second-order predicate would be Symetric(p) stating that a binary predicate p represents a symmetric relation.
Notational Variants

• In Prolog, variables in sentences are assumed to be universally quantified and implications are represented in a particular syntax.

 son(X, Y) :- parent(Y,X), male(X).

• In Lisp, a slightly different syntax is common.

 (forall ?x (forall ?y (implies (and (parent ?y ?x) (male ?x)) (son ?x ?y)))

• Generally argument order follows the convention that P(x,y) in English would read “x is (the) P of y”

Logical KB

• KB contains general axioms describing the relations between predicates and definitions of predicates using ⇔.

 ∀x,y Bachelor(x) ⇔ Male(x) ∧ Adult(x) ∧ ¬∃y Married(x,y).
 ∀x Adult(x) ⇔ Person(x) ∧ Age(x) ≥18.

• May also contain specific ground facts.

 Male(Bob), Age(Bob)=21, Married(Bob, Mary)

• Can provide queries or goals as questions to the KB:

 Adult(Bob) ?
 Bachelor(Bob) ?

• If query is existentially quantified, would like to return substitutions or binding lists specifying values for the existential variables that satisfy the query.

 ∃x Adult(x) ?
 ∃x Married(Bob,x) ?
 (x/Bob)
 (x/Mary)

 ∃x,y Married(x,y) ?
 (x/Bob, y/Mary)

Sample Representations

• There is a barber in town who shaves all men in town who do not shave themselves.

 ∃x (Barber(x) ∧ InTown(x) ∧ ∀y (Man(y) ∧ InTown(y) ∧ ¬Shave(y,y) ⇒ Shave(x,y)))

• There is a barber in town who shaves only and all men in town who do not shave themselves.

 ∃x (Barber(x) ∧ InTown(x) ∧ ∀y (Man(y) ∧ InTown(y) ∧ ¬Shave(y,y) ⇔ Shave(x,y)))

• Classic example of Bertrand Russell used to illustrate a paradox in set theory: Does the set of all sets contain itself?