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Heuristic Search
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Heuristic Search

• Heuristic or informed search exploits additional
knowledge about the problem that helps direct search to
more promising paths.

• A heuristic function, h(n), provides an estimate of the cost
of the path from a given node to the closest goal state.
Must be zero if node represents a goal state.

- Example: Straight-line distance from current location to
the goal location in a road navigation problem.

• Many search problems are NP-complete so in the worst
case still have exponential time complexity; however a good
heuristic can:

- Find a solution for an average problem efficiently.

- Find a reasonably good but not optimal solution
efficiently.
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Best-First Search

• At each step, best-first search sorts the queue according to a
heuristic function.

function BEST-FIRST-SEARCH( problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing-Fn a function that orders nodes by EVAL-FN

return GENERAL-SEARCH( problem, Queueing-Fn)
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Best-First Example

• Does not find shortest path to goal (through Rimnicu) since it is
only focused on the cost remaining rather than the total cost.
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Best-First Properties

• Not complete, may follow infinite path if heuristic rates each
state on such a path as the best option. Most reasonable
heuristics will not cause this problem however.

• Worst case time complexity is still O(bm) where m is the
maximum depth.

• Since must maintain a queue of all unexpanded states,
space-complexity is also O(bm).

• However, a good heuristic will avoid this worst-case
behavior for most problems.
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Beam Search

• Space and time complexity of storing and sorting the complete
queue can be too inefficient.

• Beam search trims queue to the best n options (n is called the
beam width) at each point.

• Focuses search more but may eliminate solution even for finite
seach graphs

• Example for n=2.
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Hill-Climbing

• Beam search with a beam-width of 1 is called hill-
climbing.

• Pursues locally best option at each point, i.e. the best
successor to the current best node.

• Subject to local maxima, plateaux, and ridges.

evaluation

current
state
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Minimizing Total Path Cost: A* Search

• A* combines features of uniform cost search (complete,
optimal, inefficient) with best-first (incomplete, non-optimal,
efficient).

• Sort queue by estimated total cost of the completion of a
path.

f(n) = g(n) + h(n)

• If the heuristic function always underestimates the distance
to the goal, it is said to be admissible.

• If h is admissible, then f(n) never overestimates the actual
cost of the best solution through n.
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A* Example

• Finds the optimal path to Bucharest through Rimnicu and Pitesti
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Optimality of A*

• If h is admissible, A* will always find a least cost path to the
goal.

• Proof by contradiction:

Let G be an optimal goal state with a path cost f*
Let G2 be a suboptimal goal state supposedly found by A*
Let n be a current leaf node on an optimal path to G

Since h is admissible:
f* >= f(n)

If G2 is chosen for expansion over n then:
f(n) >= f(G2)

Therefore:
f* >= f(G2)

Since G2 is a goal state, h(G2)=0, therefore
f(G2) = g(G2)
f* >= g(G2)

Therefore G2 is optimal.
Contradiction.
Q.E.D.
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Other Properties of A*

• A* is complete as long as

- Branching factor is always finite

- Every operator adds cost at least δ > 0

• Time and space complexity still O(bm) in the worst case
since must maintain and sort complete queue of unexplored
options.

• However, with a good heuristic can find optimal solutions for
many problems in reasonable time.

• Again, space complexity is a worse problem than time.
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Heuristic Functions

• 8-puzzle search space

- Typical solution length: 20 steps

- Average branching factor: 3

- Exhaustive search: 320=3.5 x 109

- Bound on unique states: 9! = 362,880

• Admissible Heuristics:

- Number of tiles out of place (h1): 7

- City-block (Manhattan) distance (h2):
2+3+3+2+4+2+0+2=18
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Heuristic Performance

• Experiments on sample problems can determine the number of
nodes searched and CPU time for different strategies.

• One other useful measure is effective branching factor: If a
method expands N nodes to find solution of depth d, and a
uniform tree of depth d would require a branching factor of b*
to contain N nodes, the effective branching factor is b*

N = 1 + b* + (b*)2 + ...+ (b*)d

• Experimental Results on 8-puzzle problems

Search Cost Effective Branching Factor

d IDS A*( h1) A*( h2) IDS A*( h1) A*( h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26
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Quality of Heuristics

• ISince A* expands all nodes whose f value is less than that
of an optimal solution, it is always better to use a heuristic
with a higher value as long as it does not over-estimate.

• Therefore h2 is uniformly better than h1, or h2 dominates
h1.

• A heuristic should also be easy to compute, otherwise the
overhead of computing the heuristic could outweigh the
time saved by reducing search (e.g. using full breadth-first
search to estimate distance wouldn’t help).
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Inventing Heuristics

• Many good heuristics can be invented by considering
relaxed versions of the problem (abstractions).

• For 8-puzzle:

A tile can move from square A to B if A is adjacent to B and
B is blank

(a) A tile can move from square A to B if A is adjacent to B.
(b) A tile can move from square A to B if B is blank.
(c) A tile can move from square A to B.

• If there are a number of features that indicate a promising
or unpromising state, a weighted sum of these features can
be useful.  Learning methods can be used to set weights.


