Heuristic Search

Best-First Search

® At each step, best-first search sorts the queue according to a

heuristic function.

inputs: problem, a problem
Eval-Fn, an evaluation function

Queueing-Fn « afunction that orders nodes by EvAL-FN
return GENERAL-SEARCH(problem, Queueing-Fn)

function BEST-FIRST-SEARCH(problem, EVAL-FN) retur ns a solution sequence

sibiu Fagaras
O 99 9

[Hirsova
86

Dobreta []

Eforie
O Giurgiu

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vasdui
Zerind

36€
C
16(
24;
161
17¢
7i
151
22¢
24¢
241
23¢
38(
9¢
19t
25
32¢
8C
19¢
37¢

Heuristic Search

® Heuristic or informed search exploits additional
knowledge about the problem that helps direct search to
more promising paths.

® A heuristic function, h(n), provides an estimate of the cost
of the path from a given node to the closest goal state.
Must be zero if node represents a goal state.

- Example: Straight-line distance from current location to
the goal location in a road navigation problem.

® Many search problems are NP-complete so in the worst
case still have exponential time complexity; however a good
heuristic can:

- Find a solution for an average problem efficiently.

- Find a reasonably good but not optimal solution

efficiently.
\ J
2
4 N
Best-First Example
Arad 15)
h=366
Arad
SibiuA{%' Zerind
h=253 h=329 h=374

Arad

Timisoara Zerind

Arad

Arad
h=366 h=178 h=380 h=193

Zerind
h=374

h=253 h=0

® Does not find shortest path to goal (through Rimnicu) since it is
only focused on the cost remaining rather than the total cost.

Best-First Properties

* Not complete, may follow infinite path if heuristic rates each
state on such a path as the best option. Most reasonable
heuristics will not cause this problem however.

* Worst case time complexity is still O(b™) where m is the
maximum depth.

¢ Since must maintain a queue of all unexpanded states,
space-complexity is also O(b™).

® However, a good heuristic will avoid this worst-case
behavior for most problems.

Beam Search

® Space and time complexity of storing and sorting the complete
gueue can be too inefficient.

® Beam search trims queue to the best n options (n is called the
beam width) at each point.

® Focuses search more but may eliminate solution even for finite
seach graphs

® Example for n=2.

Arad [0}
h=366

Zerind
h=}74

Hill-Climbing

® Beam search with a beam-width of 1 is called hill-
climbing.

® Pursues locally best option at each point, i.e. the best
successor to the current best node.

® Subject to local maxima, plateaux, and ridges.

evaluation

current
dtate

Minimizing Total Path Cost: A* Search

® A* combines features of uniform cost search (complete,
optimal, inefficient) with best-first (incomplete, non-optimal,
efficient).

® Sort queue by estimated total cost of the completion of a
path.

f(n) = g(n) + h(n)

* If the heuristic function always underestimates the distance
to the goal, it is said to be admissible.

¢ If h is admissible, then f(n) never overestimates the actual
cost of the best solution through n.

*
A* Example
Arad

1=0+366 Arad
=366
Sibiu Timisoara Zerind

f=140+253 f=118+329 f=75+374 Arad

=393 =447 =449

Timisoara Zerind
f=118+329 f=75+374
=447 =449

Sibiu

Arad
f=280+366 f=239+178 f=146+380 f=220+193
=646 =417 =526 =413

Timisoara Zerind
f=118+329 f=75+374
=447 =449

Sibiu

1=280+366
=641

f=239+178 f=146+380

=417 =526

Craiova Pitesti Sibiu
f=366+160 f=317+98 f=300+253
=526 =415 =553

® Finds the optimal path to Bucharest through Rimnicu and Pitesti

Other Properties of A*

® A* is complete as long as
- Branching factor is always finite
- Every operator adds cost at least 6 > 0

* Time and space complexity still O(b™) in the worst case
since must maintain and sort complete queue of unexplored
options.

® However, with a good heuristic can find optimal solutions for
many problems in reasonable time.

® Again, space complexity is a worse problem than time.

Optimality of A*

¢ If h is admissible, A* will always find a least cost path to the
goal.

® Proof by contradiction:

Let G be an optimal goal state with a path cost f*
Let G, be a suboptimal goal state supposedly found by A*
Let n be a current leaf node on an optimal path to G

Since h is admissible:
f* >=f(n)

If G, is chosen for expansion over n then:
f(n) >=f(Gy)

Therefore:
f*>=(Gy,)

Since G, is a goal state, h(G,)=0, therefore
f(G2) = 9(Gy)
f>=9(Gyp)

Therefore G, is optimal.
Contradiction.
Q.E.D.

10

11

Heuristic Functions

® 8-puzzle search space
- Typical solution length: 20 steps
- Average branching factor: 3
- Exhaustive search: 32°=3.5 x 10°

- Bound on unique states: 9! = 362,880

el 2 le]
e i)

Start State Goal State

® Admissible Heuristics:
- Number of tiles out of place (hq): 7

- City-block (Manhattan) distance (h,):
2+3+3+2+4+2+0+2=18

12

Heuristic Performance

® Experiments on sample problems can determine the number of
nodes searched and CPU time for different strategies.

® One other useful measure is effective branching factor: If a
method expands N nodes to find solution of depth d, and a
uniform tree of depth d would require a branching factor of b*
to contain N nodes, the effective branching factor is b*

N =1+ b* + (b2 + ...+ (b*)¢

Experimental Results on 8-puzzle problems

Search Cost Effective Branching Factor

d IDS A*(hy) A*(hp) IDS A*(hy) A*(hy)
2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26

13

Inventing Heuristics

® Many good heuristics can be invented by considering
relaxed versions of the problem (abstractions).

® For 8-puzzle:

A tile can move from square A to B if A is adjacent to B and
B is blank

(a) A tile can move from square A to B if A is adjacent to B.
(b) A tile can move from square A to B if B is blank.
(c) A tile can move from square A to B.

* |f there are a number of features that indicate a promising
or unpromising state, a weighted sum of these features can
be useful. Learning methods can be used to set weights.

15

Quality of Heuristics

® |Since A* expands all nodes whose f value is less than that
of an optimal solution, it is always better to use a heuristic
with a higher value as long as it does not over-estimate.

® Therefore h, is uniformly better than h,, or h, dominates
hy.

® A heuristic should also be easy to compute, otherwise the
overhead of computing the heuristic could outweigh the
time saved by reducing search (e.g. using full breadth-first
search to estimate distance wouldn’t help).

14

