
1

Heuristic Search

2

Heuristic Search

• Heuristic or informed search exploits additional
knowledge about the problem that helps direct search to
more promising paths.

• A heuristic function, h(n), provides an estimate of the cost
of the path from a given node to the closest goal state.
Must be zero if node represents a goal state.

- Example: Straight-line distance from current location to
the goal location in a road navigation problem.

• Many search problems are NP-complete so in the worst
case still have exponential time complexity; however a good
heuristic can:

- Find a solution for an average problem efficiently.

- Find a reasonably good but not optimal solution
efficiently.

3

Best-First Search

• At each step, best-first search sorts the queue according to a
heuristic function.

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns a solution sequence
inputs: problem, a problem

Eval-Fn, an evaluation function

Queueing-Fn a function that orders nodes by EVAL-FN

return GENERAL-SEARCH(problem, Queueing-Fn)

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329
80

199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

4

Best-First Example

• Does not find shortest path to goal (through Rimnicu) since it is
only focused on the cost remaining rather than the total cost.

Arad

h=366
Arad

Timisoara ZerindSibiu
h=253 h=329 h=374

Arad

Timisoara ZerindSibiu

h=329 h=374

Arad OradeaFagaras Rimnicu
h=380 h=193h=366 h=178

Arad

Timisoara ZerindSibiu

h=329 h=374

Arad OradeaFagaras Rimnicu
h=380 h=193h=366

Sibiu
h=253

Bucharest
h=0

5

Best-First Properties

• Not complete, may follow infinite path if heuristic rates each
state on such a path as the best option. Most reasonable
heuristics will not cause this problem however.

• Worst case time complexity is still O(bm) where m is the
maximum depth.

• Since must maintain a queue of all unexpanded states,
space-complexity is also O(bm).

• However, a good heuristic will avoid this worst-case
behavior for most problems.

6

Beam Search

• Space and time complexity of storing and sorting the complete
queue can be too inefficient.

• Beam search trims queue to the best n options (n is called the
beam width) at each point.

• Focuses search more but may eliminate solution even for finite
seach graphs

• Example for n=2.
Arad

h=366
Arad

Timisoara ZerindSibiu
h=253 h=329 h=374

Arad

Timisoara ZerindSibiu

h=329 h=374

Arad OradeaFagaras Rimnicu
h=380 h=193h=366 h=178

Arad

Timisoara ZerindSibiu

h=329 h=374

Arad OradeaFagaras Rimnicu
h=380 h=193h=366

Sibiu
h=253

Bucharest
h=0

7

Hill-Climbing

• Beam search with a beam-width of 1 is called hill-
climbing.

• Pursues locally best option at each point, i.e. the best
successor to the current best node.

• Subject to local maxima, plateaux, and ridges.

evaluation

current
state

8

Minimizing Total Path Cost: A* Search

• A* combines features of uniform cost search (complete,
optimal, inefficient) with best-first (incomplete, non-optimal,
efficient).

• Sort queue by estimated total cost of the completion of a
path.

f(n) = g(n) + h(n)

• If the heuristic function always underestimates the distance
to the goal, it is said to be admissible.

• If h is admissible, then f(n) never overestimates the actual
cost of the best solution through n.

9

A* Example

• Finds the optimal path to Bucharest through Rimnicu and Pitesti

Arad
Arad

Timisoara ZerindSibiu

Sibiu

Arad OradeaFagaras Rimnicu

Arad

Timisoara Zerind

Sibiu

Arad OradeaFagaras Rimnicu

Arad

Timisoara Zerind

Craiova Pitesti Sibiu

f=0+366
 =366

f=140+253
 =393

f=118+329
 =447

f=75+374
 =449

f=280+366
 =646

f=239+178
 =417

f=146+380
 =526

f=118+329
 =447

f=220+193
 =413

f=75+374
 =449

f=280+366
 =646

f=239+178
 =417

f=146+380
 =526

f=118+329
 =447

f=75+374
 =449

f=300+253
 =553

f=317+98
 =415

f=366+160
 =526

10

Optimality of A*

• If h is admissible, A* will always find a least cost path to the
goal.

• Proof by contradiction:

Let G be an optimal goal state with a path cost f*
Let G2 be a suboptimal goal state supposedly found by A*
Let n be a current leaf node on an optimal path to G

Since h is admissible:
f* >= f(n)

If G2 is chosen for expansion over n then:
f(n) >= f(G2)

Therefore:
f* >= f(G2)

Since G2 is a goal state, h(G2)=0, therefore
f(G2) = g(G2)
f* >= g(G2)

Therefore G2 is optimal.
Contradiction.
Q.E.D.

11

Other Properties of A*

• A* is complete as long as

- Branching factor is always finite

- Every operator adds cost at least δ > 0

• Time and space complexity still O(bm) in the worst case
since must maintain and sort complete queue of unexplored
options.

• However, with a good heuristic can find optimal solutions for
many problems in reasonable time.

• Again, space complexity is a worse problem than time.

12

Heuristic Functions

• 8-puzzle search space

- Typical solution length: 20 steps

- Average branching factor: 3

- Exhaustive search: 320=3.5 x 109

- Bound on unique states: 9! = 362,880

• Admissible Heuristics:

- Number of tiles out of place (h1): 7

- City-block (Manhattan) distance (h2):
2+3+3+2+4+2+0+2=18

Start State Goal State

2

45

6

7

8

1 2 3

4

67

81

23

45

6

7

81

23

45

6

7

8

5

13

Heuristic Performance

• Experiments on sample problems can determine the number of
nodes searched and CPU time for different strategies.

• One other useful measure is effective branching factor: If a
method expands N nodes to find solution of depth d, and a
uniform tree of depth d would require a branching factor of b*
to contain N nodes, the effective branching factor is b*

N = 1 + b* + (b*)2 + ...+ (b*)d

• Experimental Results on 8-puzzle problems

Search Cost Effective Branching Factor

d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)

2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 – 1301 211 – 1.45 1.25
18 – 3056 363 – 1.46 1.26
20 – 7276 676 – 1.47 1.27
22 – 18094 1219 – 1.48 1.28
24 – 39135 1641 – 1.48 1.26

14

Quality of Heuristics

• ISince A* expands all nodes whose f value is less than that
of an optimal solution, it is always better to use a heuristic
with a higher value as long as it does not over-estimate.

• Therefore h2 is uniformly better than h1, or h2 dominates
h1.

• A heuristic should also be easy to compute, otherwise the
overhead of computing the heuristic could outweigh the
time saved by reducing search (e.g. using full breadth-first
search to estimate distance wouldn’t help).

15

Inventing Heuristics

• Many good heuristics can be invented by considering
relaxed versions of the problem (abstractions).

• For 8-puzzle:

A tile can move from square A to B if A is adjacent to B and
B is blank

(a) A tile can move from square A to B if A is adjacent to B.
(b) A tile can move from square A to B if B is blank.
(c) A tile can move from square A to B.

• If there are a number of features that indicate a promising
or unpromising state, a weighted sum of these features can
be useful. Learning methods can be used to set weights.

