Inference in First-Order Logic

First-Order Deduction

® Want to be able to draw logically sound conclusions from a
knowledge-base expressed in first-order logic.

® Several styles of inference:
- Forward chaining
- Backward chaining
- Resolution refutation

® Properties of inference procedures:
- Soundness: IfA|-B then A|=B
- Completeness: IfA|=B thenA|-B

® Forward and backward chaining are sound and can be
reasonably efficient but are incomplete.

® Resolution is sound and complete for FOPC but can be
very inefficient.

Inference Rules for Quantifiers

® Let SUBST(O, o) denote the result of applying a substitution
or binding list 6 to the sentence a.

- SUBST({x/Tom, y,/Fred}, Uncle(x,y)) = Uncle(Tom, Fred)

® Inference rules

- Universal Elimination : Ova |- SUBST({v/g},a)
for any sentence, a, variable, v, and ground term, g

Ox Loves(x, FOPC) |- Loves(Ray, FOPC)

- Existential Elimination :[va |- SUBST({v/k},a)
for any sentence, a, variable, v, and constant symbol, Kk,
that doesn’t occur elsewhere in the KB (Skolem
constant)

X (Owns(Mary,x) OCat(x)) |- Owns(Mary,MarysCat) O
Cat(MarysCat)

- Existential Introduction : a |- Ov SUBST({g/v},a)
for any sentence, a, variable, v, that does not occur in a,
and ground term, g, that does occur in o

Loves(Ray, FOPC) |- [x Loves(x, FOPC)

Sample Proof

1) Ox,y(Parent(x,yJ1Male(x) O Father(x,y))
2) Parent(Tom,John)

3) Male(Tom)

Using Universal Elimination from 1)

4) Oy(Parent(Tom,y)JMale(Tom) O Father(Tom,y))

Using Universal Elimination from 4)
5) Parent(Tom,Johr) Male(Tom) [0 Father(Tom,John)

Using And Introduction from 2) and 3)
6) Parent(Tom,John)] Male(Tom)

Using Modes Ponens from 5) and 6)
7) Father(Tom,John)

Generalized Modus Ponens

® Combines three steps of “natural deduction” (Universal
Elimination, And Introduction, Modus Ponens) into one.

® Provides direction and simplification to the proof process for
standard inferences.

® Generalized Modus Ponens:
P1, P2y --Pn’y (P1 Op2 O..0py O q) |- SUBST(6,0)

where 0 is a substitution such that for all i
SUBST(8,p;)=SUBST(6,p;)

1) Ox,y(Parent(x,yl1Male(x) O Father(x,y))
2) Parent(Tom,John)

3) Male(Tom)

0={x/Tom, y/John)

4) Father(Tom,John)

Canonical Form

® In order to utilize generalized Modus Ponens, all sentences
in the KB must be in the form of Horn sentences:

0vq,Vo,..vq P Opo O..0p O g

¢ Also called Horn clauses , where a clause is a disjunction
of literals, because they can be rewritten as disjunctions
with at most one non-negated literal.
DVl,Vz,...Vn P71 0O ﬂpzl:l Lo O= Pn Dq
If @ is the constant False, this simplifies to

OV1.Vp,..Vy mpg O=p0... O= py

Otherwise the sentence is called a definite clause (exactly
one non-negated literal).

Single positive literals (facts) are Horn clauses with no
antecedent.

® Quantifiers can be dropped since all variables can be
assumed to be universally quantified by default.

® Many statements can be transformed into Horn clauses, but
many cannot (e.g. P(x)0Q(x), = P(x))

Unification

® In order to match antecedents to existing literals in the KB,
need a pattern matching routine.

UNIFY(p,q) takes two atomic sentences and returns a
substitution that makes them equivalent.

UNIFY(p,q)=6 where SUBST(8,p)=SUBST(8,q)

0 is called a unifier .

® Examples
UNIFY (Parent(x,y), Parent(Tom, John)) = {x/Tom, y/John}
UNIFY (Parent(Tom,x), Parent(Tom, John)) = {x/John})
UNIFY (Likes(x,y), Likes(z,FOPC)) = {x/z, y/[FOPC}
UNIFY (Likes(Tom,y), Likes(z,FOPC)) = {z/Tom, y/FOPC}
UNIFY (Likes(Tom,y), Likes(y,FOPC)) = fail
UNIFY (Likes(Tom,Tom), Likes(x,x)) = {x/Tom}

UNIFY (Likes(Tom,Fred), Likes(x,x)) = fail

Unification
(cont.)

® Exact variable names used in sentences in the KB should not
matter.

® But if Likes(x,FOPC) is a formula in the KB, it does not unify
with Likes(John,x) but does unify with Likes(John,y).

® To avoid such conflicts, one can standardize apart one of the
arguments to UNIFY to make its variables unique by
renaming them.

Likes(x,FOPC) -> Likes(xq, FOPC)
UNIFY (Likes(John,x),Likes(x;,FOPC)) = {X;/John, x/FOPC}

® There are many possible unifiers for some atomic sentences.

UNIFY (Likes(x,y),Likes(z,FOPC)) = {x/z, y/[FOPC}
{x/John, z/John, y/FOPC}
{x/Fred, z/Fred, y/FOPC}
UNIFY should return the most genefélul.mifier which makes
the least commitment to variable values.

Forward Chaining

¢ Use modus ponens to always deriving all consequences
from new information.

¢ Inferences cascade to draw deeper and deeper
conclusions

® To avoid looping and duplicated effort, must prevent
addition of a sentence to the KB which is the same as one
already present.

® Must determine all ways in which a rule (Horn clause) can
match existing facts to draw new conclusions.

Forward Chaining Example

Assume in KB
1) Parent(x,y1Male(x) O Father(x,y)
2) Father(x,y)d Father(x,z)1 Sibling(y,z)

Add to KB
3) Parent(Tom,John)

Rule 1) tried but can't “fire”

Add to KB
4) Male(Tom)

Rule 1) now satisfied and triggered and adds:
5) Father(Tom, John)

Rule 2) now triggered and adds:
6) Sibling(John, John) {x/Tom, y/John, z/John}

Add to KB
7) Parent(Tom,Fred)

Rule 1) triggered again and adds:
8) Father(Tom,Fred)

Rule 2) triggered again and adds:
9) Sibling(Fred,Fred) {x/Tom, y/Fred, z/Fred}

Rule 2) triggered again and adds:
10) Sibling(John, Fred) {x/Tom, y/John, z/Fred}

Rule 2) triggered again and adds:
11) Sibling(Fred, John) {x/Tom, y/Fred, z/John}

Forward Chaining Algorithm

® A sentence is arenaming of another if it is the same except for a
renaming of the variables.

® The composition of two substitutions combines the variable
bindings of both such that:

SUBST(COMPOSE(61,62),p) = SUBST(62,SUBST(61,p))

procedure FORWARD-CHAIN(KB, p)

if there is a sentence KB that is a renaming gb then return

Add pto KB

for each (p1 A...A pn = Q) in KB such that for some UNIFY(pi,p) = 6 succeeddo
FIND-AND-INFERKB, [p1, . . . ,Pi—1, Pi+1, - - - pnl, 9,9)

end

procedure FIND-AND-INFER(KB, premises, conclusion, 6)

if premises = [] then
FORWARD-CHAIN (KB, SUBST(#, conclusion))

elsefor each p’ in KB such that WiIFY(p’, SUBST(9, FIRST(premises))) = ¢, do
FIND-AND-INFERKB, REST(premises), conclusion, COMPOSHY, 6))

end

10

Problems with Forward Chaining

¢ Inference can explode forward and may never terminate.
Even(x) O Even(plus(x,2))
Integer(x) O Even(times(2,x))

Even(x) O Integer(x)
Even(2)

<:124—>28<:
2 26

6/1 IS TS
4 22>
2>sz0/{40\(
1 —’18"325'

6\3{'3 >v

s g

® Inference is not directed towards any particular conclusion
or goal. May draw lots of irrelevant conclusions.

11

12

Backward Chaining

¢ Start from query or atomic sentence to be proven and look
for ways to prove it.

® Query can contain variables which are assumed to be
existentially quantified.

Sibling(x,John) ?
Father(x,y) ?

Inference process should return all sets of variable bindings
that satisfy the query.

® First try to answer query by unifying it to all possible facts in
the KB.

® Next try to prove it using a rule whose consequent unifies
with the query and then try to recursively prove all of it's
antecedents.

13

Backchaining Examples

KB:

1) Parent(x,y)1Male(x) O Father(x,y)
2) Father(x,y)J Father(x,zJ Sibling(y,z)
3) Parent(Tom,John)

4) Male(Tom)

7) Parent(Tom,Fred)

Query: Parent(Tom,x)
Answers: ({x/John}, {x/Fred})

Query: Father(Tom,s)
Subgoal: Parent(Tom,§)Male(Tom)
{s/John}
Subgoal: Male(Tom)
Answer: {s/John}
{s/Fred}
Subgoal: Male(Tom)
Answer: {s/Fred}
Answers: ({s/John}, {s/Fred})

Backward Chaining Algorithm

¢ Given a conjunction of queries, first get all possible answers to
the first conjunct and then for each resulting substitution try to
prove all of the remaining conjuncts.

® Assume variables in rules are renamed (standardized apart)
before each use of a rule.

function BACK-CHAIN(KB, g) returnsa set of substitutions

BACK-CHAIN-LIST(KB, [d], {})

function BACK-CHAIN-LIST(KB, glist, §) returns a set of substitutions
inputs: KB, a knowledge base
glist, a list of conjuncts forming a query @lready applied)
6, the current substitution
static: answers, a set of substitutions, initially empty

if glist is emptythen return {6}
g+ FIRsT(qlist)
for each qf in KB such that; «+ UNIFY(q, q) succeeddo
Add CoMPOSH#, §;) to answers
end
for each sentencefy A ... A pn = @) in KB suchtha¥; «+ UNIFY(q,q) succeeddo
answer s+ BACK-CHAIN-LIST(KB, SuBST(i, [Pz . . . pn]), COMPOSHE®, §;)) U answers
end
return the union of BCck-CHAIN-LIST(KB, ResT(glist), §) for eachd & answers

14

15

Backchaining Examples
(cont)

Query: Father(f,s)
Subgoal: Parent(f,4) Male(f)
{flTom, s/John}
Subgoal: Male(Tom)
Answer: {f/Tom, s/John}
{flTom, s/Fred}
Subgoal: Male(Tom)
Answer: {f/Tom, s/Fred}
Answers: ({f/Tom,s/John}, {f/Tom,s/Fred})

Query: Sibling(a,b)
Subgoal: Father(f,d) Father(f,b)
{flTom, a/John}
Subgoal: Father(Tom,b)
{b/John}
Answer: {f/Tom, a/John, b/John}
{b/Fred}
Answer: {f/Tom, a/John, b/Fred}
{fITom, a/Fred}
Subgoal: Father(Tom,b)
{b/John}
Answer: {f/Tom, a/Fred, b/John}
{b/Fred}
Answer: {f/Tom, a/Fred, b/Fred}
Answers: ({f/Tom, a/John, b/John},{f/Tom, a/John, b/Fred}
{flTom, a/Fred, b/John}, {f/Tom, a/Fred, b/Fred})

- v

16

Incompleteness

® Rule-based inference is not complete, but is reasonably
efficient and useful in many circumstances.

¢ Still can be exponential or not terminate in worst case.

® Incompleteness example:

P() 0 Q(x)
=P(x) 0 R(x) (not Horn)
Q(x) O S(x)
R(x) O S(x)

Entails S(A) for any constant A but not inferable from modus
ponens

Completeness

* In 1930 GOdel showed that a complete inference
procedure for FOPC existed, but did not demonstrate one
(non-constructive proof).

® |In 1965, Robinson showed a resolution inference
procedure that was sound and complete for FOPC.

® However, the procedure may not halt if asked to prove a
thoerem that is not true, it is said to be semidecidable
(a type of undecidability).

If a conclusion C is entailed by the KB then the procedure
will eventually terminate with a proof. However if it is not
entailed, it may never halt.

® |t does not follow that either C or = C is entailed by a KB
(may be independent). Therefore trying to prove both
a conjecture and its negation does not help.

® Inconsistency of a KB is also semidecidable.

17

18

Resolution

® Propositional version.
{a OB, ~BOY} [Faly OR {-~al B,B0 v} -~aly

Reasoning by cases OR transitivity of implication

® First-order form

For two literals p; and gy in two clauses

P O... P Opm
Oy 0. gk ... Oap

such that 6=UNIFY(p;, = qy), derive

SUBST(6, py O...pj.100j41---Pm DA L. dkg kg -+ Loln)
® Can also be viewed in implicational form where all negated

literals are in a conjunctive antecedent and all positive

literals in a disjunctive conclusion.

-p, 0...0-pndq, 0..00, =

p:0.. Opm O g7 0..0q,

Conjunctive Normal Form
(CNF)

® For resolution to apply, all sentences must be in
conjunctive normal form , a conjunction of disjunctions of
literals

(a,; 0..0ay) O
(b, 0...0by) O

..... |
(x¢ O... Oxy)

® Representable by a set of clauses (disjunctions of literals)

® Also representable as a set of implications (INF).

° Example
Initial CNF INF
P(x) 0 Q) =P(x) DQ(x) P(x) 0 Q(x)
=P(x) 0 R(x) P(X) OR(x) True O P(x) OR(X)
Q(x) 1 S(x) = Q(x) US(x) Q(x) O S(x)
R(x) O S(x) =R(x) OS(x) R(x) O S(x)

19

20

Resolution Proofs

® INF (CNF) is more expressive than Horn clauses.
® Resolution is simply a generalization of modus ponens.

¢ As with modus ponens, chains of resolution steps can be
used to construct proofs.

Pw) = Qw) Q) = Sy)
{y/w}
Pw) = Sw) True= P(x) VR(x)
{wix}
True= S(X) VR(X) R2 = 2

(XA, ZA}

True = SA)

® Factoring removes redundant literals from clauses

S(A) OS(A) —> S(A)

Refutation Proofs

® Unfortunately, resolution proofs in this form are still
incomplete.

® For example, it cannot prove any tautology (e.g. P(HP)
from the empty KB since there are no clauses to resolve.

® Therefore, use proof by contradiction (refutation,
reductio ad absurdum). Assume the negation of the
theorem P and try to derive a contradiction (False, the
empty clause).

(KBO-P O False) = KBO P

EREINECTEED

{y/w}
| PM) = Sw) | | True = P(X) VR(Y) |

{wix}

| True= SX) VR(X) | R@ = Y2

{4

| True = Sx) | | SA) = False|

XAy

True = False

21

Resolution Theorem Proving

® Convert sentences in the KB to CNF (clausal form)

® Take the negation of the poposed theorem (query), convert
it to CNF, and add it to the KB.

* Repeatedly apply the resolution rule to derive new clauses.

* If the empty clause (False) is eventually derived, stop and
conclude that the proposed theorem is true.

23

22

Conversion to Clausal Form
¢ Eliminate implications and biconditionals by rewriting
them.
pOqg —>-plq p-q->(pdaglEi-q)
® Move - inward to only be a part of literals by using
deMorgan’s laws and quantifier rules.
-=(pOg) —> -plU-q
-=(pUg) —=> -pbq
-=0xp > [k-p
- 4k p => [OXx = p
- aap -> P
¢ Standardize variables to avoid use of the same variable
name by two different quantifiers.
Ox P(x) Ox P(x) —> [Oxq P(xq) OOy P(x5)
® Move quantifiers left while maintaining order. Renaming
above guarantees this is a truth-preserving transformation.
Oxq P(xq) OB P(xp) —> Ox10%; (P(x1) OP(X2))
-

24

Conversion to Clausal Form
(cont)

® Skolemize : Remove existential quantifiers by replacing
each existentially quantified variable with a Skolem
constant or Skolem function as appropriate.

- If an existential variable is not within the scope of any
universally quantified variable, then replace every
instance of the variable with the same unique constant
that does not appear anywhere else.

X (PC)OQM) —> P(Cy OQ(Cy)

- If it is within the scope of n universally quantified
variables, then replace it with a unique n-ary function over
these universally quantified variables.

Ox10xz (P(xq) OP(X2)) —> Oxq(P(xq) OP(f1(x1)))
Ox(Person(x) O Oy(Heart(y) OHas(x,y))) —>

Ox(Person(x) O Heart(HeartOf(x)) O
Has(x,HeartOf(x)))

- Afterwards, all variables can be assumed to be
universally quantified, so remove all quantifiers.

25

Conversion to Clausal Form
(cont)

¢ Distribute O over Oto convert to conjunctions of clauses

(@adb)dc —> (aOc)O(bOc)
(alb)d(cOd) —> (alc)O(Oc)O(add) d(b Od)

Can exponentially expand size of sentence.
° Flatten nested conjunctions and disjunctions to get
final CNF
(@alb)dc —> (abOb0c)
(@0Ob)Uc —-> (@aOb0Oc)
® Convert clauses to implications if desired for readability

(raO-b0OcOd) —> alObO cOd

Sample Clausal Conversion

Ox((Prof(x) O Student(x))d (Oy(Class(y)dHas(x,y))O
Cy(Book(y) O Has(x.y))))

Ox(= (Prof(x) O Student(x)) O (Oy(Class(y)d Has(x,y))O
Oy(Book(y) 0 Has(x.y))))

Ox((=Prof(x) 0~ Student(x)) O (Oy(Class(y)O Has(x,y))O
y(Book(y) 0 Has(x,y))))

Ox((=Prof(x) 0 - Student(x)) O (Oy(Class(y)d Has(x,y))O
z(Book(z)T Has(x,2))))

OxOyz((= Prof(x)= Student(x))] ((Class(y)d Has(x,y))O
(Book(#jas(x,2))))

(= Prof(x)d- Student(x))I (Class(f(x))J Has(x,f(x)) O
Book(g(¥)Has(x,g(x))))

(= Prof(x) O Class(f(x)))O

(= Prof(x) O Has(x,f(x)))O

(= Prof(x) O Book(g(x)))O

(= Prof(x) O Has(x,g(x)))C

(= Student(x)d Class(f(x)))O
(= Student(x)d Has(x,f(x)))O
(= Student(x)d Book(g(x)))O
(= Student(x)d Has(x,g(x))))

26

27

Sample Resolution Proof

¢ Jack owns a dog.
Every dog owner is an animal lover.
No animal lover kills an animal.
Either Jack or Curiosity killed Tuna the cat.
Did Curiosity kill the cat?

* A) [k Dog(x) OOwns(Jack,x)
B) Ox (Oy Dog(y) OOwns(x,y)) O AnimalLover(x))
C) Ox AnimalLover(x) O (Oy Animal(y) O =Kills(x,y))
D) Kills(Jack,Tuna) OKills(Cursiosity, Tuna)
E) Cat(Tuna)
F) Ox(Cat(x) O Animal(x))

Query: Kills(Curiosity, Tuna)

® Al) Dog(D)
A2) Owns(Jack,D)
B) Dog(y) O Owns(x,y) O AnimalLover(x)
C) AnimalLover(x) OAnimal(y) OKills(x,y) O False
D) Kills(Jack,Tuna) OKills(Curiosity, Tuna)
E) Cat(Tuna)
F) Cat(x) O Animal(x)

Query: Kills(Curiosity,Tuna) 00 False

28

Resolution Proof

[Dog(D)] [Dog(y) A Owns(xy) = AnimalLover(x)] lAnimaILover(x) A Animal(y) A Kills(xy) >Fajse]
{y/D}
l Owns(x,D) = AnimalLover(x) l l Owns(Jack,D) l l Cal(Tuna)l l Cat(x) = Animal(x) l
{x/Jack} {x/Tuna}
[AnimalLoverJack) | [Animal (Tuna)]

{y/Tuna}

l Kills(Jack,Tuna} VvKills(Curiosity,Tuna) l l AnimalLover(x) AKills(x, Tuna) $False]

{x1Jack}

Kills(Jack,Tuna) = False

Kills(Curiosity,Tuna) = False

29

Resolution Strategies

® Need heuristics and strategies to decide what resolutions to
make in order to control the search for a proof.

® Unit preference : Prefer to make resolutions with single
literals (facts, unit clauses) since this generates a shorter
clause and the goal is to derive the empty clause.

P + -POQ;0.0Q, -> Q;0.0Q,

® Set of Support : Always resolve with a clause from the
query or a clause previously generated from such a
resolution. Directs search towards answering the query
rather than deducing arbitrary consequences of the KB.
Assuming the original KB is consistent, this strategy is
complete.

® Input Resolution : One of the resolving clauses should
always be from the input (i.e. from the KB or the negated
query). Complete for Horn clauses but not in general.

31

Answer Extraction

¢ |f the query contains existentially quantified variables, these
become universally quantified in the negation.

Ow Kills(w,Tuna) —> Kills(w,Tuna) O False
¢ |f you compose the substitutions from all unifications made

in the course of a proof, you obtain an answer substitution
that gives a binding for the query variables.

* To find all answers, must find all distinct resolution proofs
since each one may provide a different answer.

30

Resolution Strategies
(cont)

¢ Linear Resolution : Generalization of input resolution.
Allow resolutions of clauses P and Q if P is in the input or is
an ancestor of Q in the proof tree.

¢ Subsumption : Clauses that are more specific than other
clauses should be eliminated as redundant. Such clauses
are said to be subsumed .

P(x) subsumes P(A)
P subsumes P OQ
P(x,y) subsumes P(z,z) OQ(y)

Clause A subsumes clause B is there exists a substitution
0 such that the literals in SUBST(6,A) are a subset of the
literals in B.

32

GOdel’'s Incompleteness Theorem

® |f FOPC is extended to allow for the use of mathematical
induction for showing that statements are true for all natural
numbers, there are true statements that can never be
proven.

® The logical theory of numbers starts with a single constant
0, the function S (successor) for generating the natural
numbers, and axioms defining functions for multiplication,
addition, and exponentiation.

® Proof relies on producing a unique number for each
sentence in the logic (GOdel number) and constructing a
sentence whose number is n which states “Sentence
number n is not provable.”

® |If this sentence is provable from the axioms, then it is a
false statement which is provable and therefore the axioms
are inconsistent.

e |f this sentence is not provable from the axioms, then it is a
true statement which is not provable and inference is
incomplete.

Logicist Program

® Encode general knowledge about the world and/or any
given domain as a set of sentences in first-order logic.

® Use general logical inference to solve problems and answer
questions.

® Focus on epistemological problems of what and how to
represent knowledge rather than the heuristic problems of
how to efficiently conduct search.

® Problems with the logicist program:
- Knowledge representation problem
- Knowledge acquisition problem
- Intractable search problem

33

34

