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Inference in First-Order Logic
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First-Order Deduction

• Want to be able to draw logically sound conclusions from a
knowledge-base expressed in first-order logic.

• Several styles of inference:

- Forward chaining

- Backward chaining

- Resolution refutation

• Properties of inference procedures:

- Soundness:  If A |− B  then  A |= B

- Completeness: If A |= B  then A |− B

• Forward and backward chaining are sound and can be
reasonably efficient but are incomplete.

• Resolution is sound and complete for FOPC but can be
very inefficient.

3

Inference Rules for Quantifiers

• Let SUBST(θ, α) denote the result of applying a substitution
or binding list θ to the sentence α.

- SUBST({x/Tom, y,/Fred}, Uncle(x,y)) = Uncle(Tom, Fred)

• Inference rules

- Universal Elimination : ∀v α |−  SUBST({v/g},α)
for any sentence, α, variable, v, and ground term, g

∀x Loves(x, FOPC)  |−  Loves(Ray, FOPC)

- Existential Elimination : ∃v α |−  SUBST({v/k},α)
for any sentence, α, variable, v, and constant symbol, k,
that doesn’t occur elsewhere in the KB (Skolem
constant )

∃x (Owns(Mary,x) ∧ Cat(x)) |− Owns(Mary,MarysCat) ∧
Cat(MarysCat)

- Existential Introduction : α |- ∃v SUBST({g/v},α)
for any sentence, α, variable, v, that does not occur in α,
and ground term, g, that does occur in α

Loves(Ray, FOPC) |−  ∃x Loves(x, FOPC)
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Sample Proof

1) ∀x,y(Parent(x,y)∧ Male(x) ⇒ Father(x,y))
2) Parent(Tom,John)
3) Male(Tom)

Using Universal Elimination from 1)

4) ∀y(Parent(Tom,y)∧ Male(Tom) ⇒ Father(Tom,y))

Using Universal Elimination from 4)

5) Parent(Tom,John)∧ Male(Tom) ⇒Father(Tom,John)

Using And Introduction from 2) and 3)

6) Parent(Tom,John) ∧ Male(Tom)

Using Modes Ponens from 5) and 6)

7) Father(Tom,John)
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Generalized Modus Ponens

• Combines three steps of “natural deduction” (Universal
Elimination, And Introduction, Modus Ponens) into one.

• Provides direction and simplification to the proof process for
standard inferences.

• Generalized Modus Ponens:
p1´, p2´, ...pn´, (p1 ∧ p2 ∧...∧pn ⇒ q) |− SUBST(θ,q)

where θ is a substitution such that for all i
SUBST(θ,pi´)=SUBST(θ,pi)

• 1) ∀x,y(Parent(x,y)∧ Male(x) ⇒ Father(x,y))
2) Parent(Tom,John)
3) Male(Tom)

θ={x/Tom, y/John)

4) Father(Tom,John)
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Canonical Form

• In order to utilize generalized Modus Ponens, all sentences
in the KB must be in the form of Horn sentences:

∀v1,v2,...vn p1 ∧ p2 ∧...∧pm ⇒ q

• Also called Horn clauses , where a clause  is a disjunction
of literals, because they can be rewritten as disjunctions
with at most one non-negated literal.

∀v1,v2,...vn ¬p1 ∨ ¬p2∨ ... ∨ ¬ pn ∨ q

If θ is the constant False, this simplifies to

∀v1,v2,...vn ¬p1 ∨ ¬p2∨ ... ∨ ¬ pn

Otherwise the sentence is called a definite clause (exactly
one non-negated literal).

Single positive literals (facts) are Horn clauses with no
antecedent.

• Quantifiers can be dropped since all variables can be
assumed to be universally quantified by default.

• Many statements can be transformed into Horn clauses, but
many cannot (e.g. P(x)∨Q(x), ¬P(x))

7

Unification

• In order to match antecedents to existing literals in the KB,
need a pattern matching routine.

• UNIFY(p,q) takes two atomic sentences and returns a
substitution that makes them equivalent.

UNIFY(p,q)=θ where SUBST(θ,p)=SUBST(θ,q)

θ is called a unifier .

• Examples

UNIFY(Parent(x,y), Parent(Tom, John)) = {x/Tom, y/John}

UNIFY(Parent(Tom,x), Parent(Tom, John)) = {x/John})

UNIFY(Likes(x,y), Likes(z,FOPC)) = {x/z, y/FOPC}

UNIFY(Likes(Tom,y), Likes(z,FOPC)) = {z/Tom, y/FOPC}

UNIFY(Likes(Tom,y), Likes(y,FOPC)) = fail

UNIFY(Likes(Tom,Tom), Likes(x,x)) = {x/Tom}

UNIFY(Likes(Tom,Fred), Likes(x,x)) = fail
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Unification
(cont.)

• Exact variable names used in sentences in the KB should not
matter.

• But if Likes(x,FOPC) is a formula in the KB, it does not unify
with Likes(John,x) but does unify with Likes(John,y).

• To avoid such conflicts, one can standardize apart one of the
arguments to UNIFY to make its variables unique by
renaming them.

Likes(x,FOPC) ->  Likes(x1, FOPC)
UNIFY(Likes(John,x),Likes(x1,FOPC)) = {x1/John, x/FOPC}

• There are many possible unifiers for some atomic sentences.

UNIFY(Likes(x,y),Likes(z,FOPC)) = {x/z, y/FOPC}
                                                         {x/John, z/John, y/FOPC}
                                                         {x/Fred, z/Fred, y/FOPC}
                                                         ......
UNIFY should return the most general unifier which makes
the least commitment to variable values.
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Forward Chaining

• Use modus ponens to always deriving all consequences
from new information.

• Inferences cascade to draw deeper and deeper
conclusions

• To avoid looping and duplicated effort, must prevent
addition of a sentence to the KB which is the same as one
already present.

• Must determine all ways in which a rule (Horn clause) can
match existing facts to draw new conclusions.
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Forward Chaining Algorithm

• A sentence is a renaming of another if it is the same except for a
renaming of the variables.

• The composition of two substitutions combines the variable
bindings of both such that:

SUBST(COMPOSE(θ1,θ2),p) = SUBST(θ2,SUBST(θ1,p))

procedure FORWARD-CHAIN(KB, p)

if there is a sentence inKB that is a renaming ofp then return
Add p to KB
for each ( p1 ^ . . .^ pn ) q) in KB such that for somei, UNIFY( pi,p) = � succeedsdo

FIND-AND-INFER(KB, [p1, . . . ,pi�1, pi+1, . . . ,pn], q,�)
end

procedure FIND-AND-INFER(KB, premises, conclusion, �)

if premises = [ ] then
FORWARD-CHAIN(KB, SUBST(�,conclusion))

else for each p0 in KB such that UNIFY( p0, SUBST(�, FIRST( premises))) = �2 do
FIND-AND-INFER(KB, REST( premises),conclusion, COMPOSE(�,�2))

end
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Forward Chaining Example

Assume in KB
1) Parent(x,y)∧ Male(x) ⇒ Father(x,y)
2) Father(x,y)∧ Father(x,z)⇒ Sibling(y,z)

Add to KB
3) Parent(Tom,John)

Rule 1) tried but can’t “fire”

Add to KB
4) Male(Tom)

Rule 1) now satisfied and triggered and adds:
5) Father(Tom, John)

Rule 2) now triggered and adds:
6) Sibling(John, John)        {x/Tom, y/John, z/John}

Add to KB
7) Parent(Tom,Fred)

Rule 1) triggered again and adds:
8) Father(Tom,Fred)

Rule 2) triggered again and adds:
9) Sibling(Fred,Fred)           {x/Tom, y/Fred, z/Fred}

Rule 2) triggered again and adds:
10) Sibling(John, Fred)        {x/Tom, y/John, z/Fred}

Rule 2) triggered again and adds:
11) Sibling(Fred, John)        {x/Tom, y/Fred, z/John}
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Problems with Forward Chaining

• Inference can explode forward and may never terminate.

Even(x) ⇒ Even(plus(x,2))
Integer(x) ⇒ Even(times(2,x))
Even(x) ⇒ Integer(x)
Even(2)

• Inference is not directed towards any particular conclusion
or goal.  May draw lots of irrelevant conclusions.
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Backward Chaining

• Start from query or atomic sentence to be proven and look
for ways to prove it.

• Query can contain variables which are assumed to be
existentially quantified.

Sibling(x,John)  ?
Father(x,y)        ?

Inference process should return all sets of variable bindings
that satisfy the query.

• First try to answer query by unifying it to all possible facts in
the KB.

• Next try to prove it using a rule whose consequent unifies
with the query and then try to recursively prove all of it’s
antecedents.
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Backward Chaining Algorithm

• Given a conjunction of queries, first get all possible answers to
the first conjunct and then for each resulting substitution try to
prove all of the remaining conjuncts.

• Assume variables in rules are renamed (standardized apart)
before each use of a rule.

function BACK-CHAIN(KB, q) returns a set of substitutions

BACK-CHAIN-LIST(KB, [q], fg)
function BACK-CHAIN-LIST(KB, qlist, �) returns a set of substitutions

inputs: KB, a knowledge base
qlist, a list of conjuncts forming a query (� already applied)�, the current substitution

static: answers, a set of substitutions, initially empty

if qlist is emptythen return f�g
q FIRST(qlist)

for each q0
i in KB such that�i UNIFY(q,q0

i ) succeedsdo
Add COMPOSE(�,�i) to answers

end
for each sentence (p1 ^ . . . ^ pn ) q0

i ) in KB such that�i UNIFY(q,q0
i ) succeedsdo

answers BACK-CHAIN-LIST(KB, SUBST(�i, [ p1 . . .pn]), COMPOSE(�,�i)) [ answers
end

return the union of BACK-CHAIN-LIST(KB, REST(qlist),�) for each� 2 answers
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Backchaining Examples

KB:
1) Parent(x,y)∧ Male(x) ⇒ Father(x,y)
2) Father(x,y)∧ Father(x,z)⇒ Sibling(y,z)
3) Parent(Tom,John)
4) Male(Tom)
7) Parent(Tom,Fred)

Query:  Parent(Tom,x)
Answers: ( {x/John}, {x/Fred})

Query: Father(Tom,s)
  Subgoal: Parent(Tom,s)∧ Male(Tom)
          {s/John}
                  Subgoal:  Male(Tom)
  Answer: {s/John}
          {s/Fred}
                  Subgoal: Male(Tom)
  Answer: {s/Fred}
Answers: ({s/John}, {s/Fred})
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Backchaining Examples
(cont)

Query: Father(f,s)
Subgoal: Parent(f,s)∧ Male(f)
          {f/Tom, s/John}
                  Subgoal:  Male(Tom)
  Answer: {f/Tom, s/John}
          {f/Tom, s/Fred}
                  Subgoal: Male(Tom)
  Answer: {f/Tom, s/Fred}
Answers: ({f/Tom,s/John}, {f/Tom,s/Fred})

Query: Sibling(a,b)
Subgoal: Father(f,a)∧ Father(f,b)

{f/Tom, a/John}
                  Subgoal: Father(Tom,b)
                          {b/John}
     Answer: {f/Tom, a/John, b/John}
                          {b/Fred}
     Answer: {f/Tom, a/John,  b/Fred}

{f/Tom, a/Fred}
                  Subgoal: Father(Tom,b)
                          {b/John}
     Answer: {f/Tom, a/Fred, b/John}
                          {b/Fred}
     Answer: {f/Tom, a/Fred,  b/Fred}
Answers: ({f/Tom, a/John, b/John},{f/Tom, a/John, b/Fred}

{f/Tom, a/Fred, b/John}, {f/Tom, a/Fred, b/Fred})
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Incompleteness

• Rule-based inference is not complete, but is reasonably
efficient and useful in many circumstances.

• Still can be exponential or not terminate in worst case.

• Incompleteness example:

P(x) ⇒ Q(x)
¬P(x) ⇒ R(x)          (not Horn)
Q(x) ⇒ S(x)
R(x) ⇒ S(x)

Entails S(A) for any constant A but not inferable from modus
ponens
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Completeness

• In 1930 GÖdel showed that a complete inference
procedure for FOPC existed, but did not demonstrate one
(non-constructive proof).

• In 1965, Robinson showed a resolution inference
procedure that was sound and complete for FOPC.

• However, the procedure may not halt if asked to prove a
thoerem that is not true, it is said to be semidecidable
(a type of undecidability).

If a conclusion C is entailed by the KB then the procedure
will eventually terminate with a proof.  However if it is not
entailed, it may never halt.

• It does not follow that either C or ¬C is entailed by a KB
(may be independent ). Therefore trying to prove both
a conjecture and its negation does not help.

• Inconsistency of a KB is also semidecidable.
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Resolution

• Propositional version.

{α ∨ β, ¬β ∨ γ} |− α ∨ γ OR   {¬α⇒ β, β ⇒ γ} |− ¬α ⇒ γ

Reasoning by cases      OR    transitivity of implication

• First-order form

For two literals pj and qk in two clauses

p1 ∨ ... pj ... ∨ pm
q1 ∨ ... qk ... ∨ qn

such that θ=UNIFY(pj, ¬qk), derive

SUBST(θ, p1 ∨...pj-1∨pj+1...∨pm ∨ q1∨... qk-1∨qk+1 ... ∨qn)

• Can also be viewed in implicational form where all negated
literals are in a conjunctive antecedent and all positive
literals in a disjunctive conclusion.

¬p1 ∨ ...∨ ¬pm ∨ q1 ∨ ...∨ qn ⇔

 p1∧... ∧ pm  ⇒ q1 ∨ ...∨ qn
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Conjunctive Normal Form
(CNF)

• For resolution to apply, all sentences must be in
conjunctive normal form , a conjunction of disjunctions of
literals

(a1 ∨ ...∨ am) ∧
(b1 ∨ ... ∨ bn) ∧
.....                    ∧
(x1 ∨ ... ∨ xv)

• Representable by a set of clauses (disjunctions of literals)

• Also representable as a set of implications (INF).

• Example

      Initial                   CNF                           INF
P(x) ⇒ Q(x) ¬P(x) ∨ Q(x)            P(x) ⇒ Q(x)
¬P(x) ⇒ R(x)           P(x) ∨ R(x)            True ⇒ P(x) ∨R(x)
Q(x) ⇒ S(x) ¬Q(x) ∨ S(x)            Q(x) ⇒ S(x)
R(x) ⇒ S(x) ¬R(x) ∨ S(x)            R(x) ⇒ S(x)
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Resolution Proofs

• INF (CNF) is more expressive than Horn clauses.

• Resolution is simply a generalization of modus ponens.

• As with modus ponens, chains of resolution steps can be
used to construct proofs.

• Factoring  removes redundant literals from clauses

S(A) ∨ S(A) −>   S(A)

>=P(w) Q(w) >=Q(y) S(y)

>=R(z) S(z)

>=P(w) S(w)

{y/w}

>= >True P(x) R(x)

{w/x}

>=True S(A)

{x/A, z/A}

>= >

True S(x) R(x)
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Refutation Proofs

• Unfortunately, resolution proofs in this form are still
incomplete.

• For example, it cannot prove any tautology (e.g. P∨¬P)
from the empty KB since there are no clauses to resolve.

• Therefore, use proof by contradiction (refutation,
reductio ad absurdum). Assume the negation of the
theorem P and try to derive a contradiction (False, the
empty clause).

(KB ∧ ¬P ⇒  False)  ⇔          KB ⇒ P

>=P(w) Q(w) >=Q(y) S(y)

>=R(z) S(z)

>=P(w) S(w)

{y/w}

>= >True P(x) R(x)

{w/x}

>= >

True S(x) R(x)

{z/x}

>=S(A) False

>=True False

{x/A}

S(x)>=True
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Resolution Theorem Proving

• Convert sentences in the KB to CNF (clausal form)

• Take the negation of the poposed theorem (query), convert
it to CNF, and add it to the KB.

• Repeatedly apply the resolution rule to derive new clauses.

• If the empty clause (False) is eventually derived, stop and
conclude that the proposed theorem is true.
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Conversion to Clausal Form

• Eliminate implications and biconditionals  by rewriting
them.

p ⇒ q −> ¬p ∨ q               p ⇔ q  -> (¬p ∨ q) ∧ (p ∨ ¬q)

• Move ¬ inward  to only be a part of literals by using
deMorgan’s laws and quantifier rules.

- ¬(p ∨ q) −> ¬p ∧ ¬q

- ¬(p ∧ q) −>   ¬p ∨¬q

- ¬∀x p −>   ∃x ¬p

- ¬∃x p −>    ∀x ¬p

- ¬¬p         −> p

• Standardize variables  to avoid use of the same variable
name by two different quantifiers.

∀x P(x) ∨ ∃x P(x) −> ∀x1 P(x1) ∨ ∃x2 P(x2)

• Move quantifiers left while maintaining order. Renaming
above guarantees this is a truth-preserving transformation.

∀x1 P(x1) ∨ ∃x2 P(x2) −> ∀x1∃x2 (P(x1) ∨ P(x2))
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Conversion to Clausal Form
(cont)

• Skolemize : Remove existential quantifiers by replacing
each existentially quantified variable with a Skolem
constant or Skolem function  as appropriate.

- If an existential variable is not within the scope of any
universally quantified variable, then replace every
instance of the variable with the same unique constant
that does not appear anywhere else.

∃x (P(x) ∧ Q(x)) −>    P(C1) ∧ Q(C1)

- If it is within the scope of n universally quantified
variables, then replace it with a unique n-ary function over
these universally quantified variables.

∀x1∃x2 (P(x1) ∨ P(x2)) −> ∀x1(P(x1) ∨ P(f1(x1)))

∀x(Person(x) ⇒ ∃y(Heart(y) ∧ Has(x,y))) −>
∀x(Person(x) ⇒ Heart(HeartOf(x)) ∧
                          Has(x,HeartOf(x)))

- Afterwards, all variables can be assumed to be
universally quantified, so remove all quantifiers.
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Conversion to Clausal Form
(cont)

• Distribute ∧ over ∨ to convert to conjunctions of clauses

(a ∧ b) ∨ c −>  (a ∨ c) ∧ (b ∨ c)
(a ∧ b) ∨ (c ∧ d) −>  (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ d) ∧ (b ∨ d)

Can exponentially expand size of sentence.

• Flatten nested conjunctions and disjunctions to get
final CNF

(a ∨ b) ∨ c −>   (a ∨ b ∨ c)
(a ∧ b) ∧ c −>   (a ∧ b ∧ c)

• Convert clauses to implications  if desired for readability

(¬a ∨ ¬b ∨ c ∨ d) −>   a ∧ b ⇒ c ∨ d
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Sample Clausal Conversion

∀x((Prof(x) ∨ Student(x))⇒ (∃y(Class(y) ∧ Has(x,y))∧
∃y(Book(y) ∧ Has(x,y))))

∀x(¬(Prof(x) ∨ Student(x)) ∨ (∃y(Class(y) ∧ Has(x,y))∧
∃y(Book(y) ∧ Has(x,y))))

∀x((¬Prof(x) ∧ ¬Student(x)) ∨ (∃y(Class(y) ∧ Has(x,y))∧
∃y(Book(y) ∧ Has(x,y))))

∀x((¬Prof(x) ∧ ¬Student(x)) ∨ (∃y(Class(y) ∧ Has(x,y))∧
∃z(Book(z)∧ Has(x,z))))

∀x∃y∃z((¬Prof(x)∧¬Student(x))∨ ((Class(y) ∧ Has(x,y))∧
                                                          (Book(z)∧ Has(x,z))))

(¬Prof(x)∧¬Student(x))∨ (Class(f(x)) ∧ Has(x,f(x))∧
                                             Book(g(x))∧ Has(x,g(x))))

(¬Prof(x) ∨ Class(f(x))) ∧
(¬Prof(x) ∨ Has(x,f(x)))∧
(¬Prof(x) ∨ Book(g(x)))∧
(¬Prof(x) ∨ Has(x,g(x)))∧
(¬Student(x) ∨ Class(f(x))) ∧
(¬Student(x) ∨ Has(x,f(x)))∧
(¬Student(x) ∨ Book(g(x)))∧
(¬Student(x) ∨ Has(x,g(x))))
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Sample Resolution Proof

• Jack owns a dog.
Every dog owner is an animal lover.
No animal lover kills an animal.
Either Jack or Curiosity killed Tuna the cat.
Did Curiosity kill the cat?

• A) ∃x Dog(x) ∧ Owns(Jack,x)
B) ∀x (∃y Dog(y) ∧ Owns(x,y)) ⇒ AnimalLover(x))
C) ∀x AnimalLover(x) ⇒ (∀y Animal(y) ⇒ ¬Kills(x,y))
D) Kills(Jack,Tuna) ∨ Kills(Cursiosity,Tuna)
E) Cat(Tuna)
F) ∀x(Cat(x) ⇒ Animal(x))

Query: Kills(Curiosity,Tuna)

• A1) Dog(D)
A2) Owns(Jack,D)
B) Dog(y) ∧ Owns(x,y) ⇒ AnimalLover(x)
C) AnimalLover(x) ∧ Animal(y) ∧ Kills(x,y)  ⇒ False
D) Kills(Jack,Tuna) ∨ Kills(Curiosity,Tuna)
E) Cat(Tuna)
F) Cat(x) ⇒ Animal(x)

Query:  Kills(Curiosity,Tuna) ⇒ False
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Resolution Proof

{y/D}

{x/Jack} {x/Tuna}

{y/Tuna}

{x/Jack}

{ }

{ }

Dog(D)

Owns(Jack,D)

AnimalLover(Jack)

Cat(Tuna)

Animal(Tuna)

Kills(Jack,Tuna)

False

>=Kills(Jack,Tuna) False>=Kills(Curiosity,Tuna) False

>=Owns(x,D) AnimalLover(x)

> >=AnimalLover(x) Kills(x,Tuna) False

>=Cat(x) Animal(x)

>> >=AnimalLover(x) Animal(y) Kills(x,y) False

>

Kills(Jack,Tuna} Kills(Curiosity,Tuna)

> >=Dog(y) Owns(x,y) AnimalLover(x)

30

Answer Extraction

• If the query contains existentially quantified variables, these
become universally quantified in the negation.

∃w Kills(w,Tuna) −>  Kills(w,Tuna) ⇒ False

• If you compose the substitutions from all unifications made
in the course of a proof, you obtain an answer substitution
that gives a binding for the query variables.

• To find all answers, must find all distinct resolution proofs
since each one may provide a different answer.
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Resolution Strategies

• Need heuristics and strategies to decide what resolutions to
make in order to control the search for a proof.

• Unit preference :  Prefer to make resolutions with single
literals (facts, unit clauses) since this generates a shorter
clause and the goal is to derive the empty clause.

P   + ¬P ∨ Q1∨...∨ Qn  −>      Q1∨...∨ Qn

• Set of Support :  Always resolve with a clause from the
query or a clause previously generated from such a
resolution. Directs search towards answering the query
rather than deducing arbitrary consequences of the KB.
Assuming the original KB is consistent, this strategy is
complete.

• Input Resolution : One of the resolving clauses should
always be from the input (i.e. from the KB or the negated
query).  Complete for Horn clauses but not in general.
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Resolution Strategies
(cont)

• Linear Resolution :  Generalization of input resolution.
Allow resolutions of clauses P and Q if P is in the input or is
an ancestor of Q in the proof tree.

• Subsumption :  Clauses that are more specific than other
clauses should be eliminated as redundant.  Such clauses
are said to be subsumed .

P(x)      subsumes    P(A)
P          subsumes    P ∨ Q
P(x,y)   subsumes    P(z,z) ∨ Q(y)

Clause A subsumes  clause B is there exists a substitution
θ such that the literals in SUBST(θ,A) are a subset of the
literals in B.
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GÖdel’s Incompleteness Theorem

• If FOPC is extended to allow for the use of mathematical
induction for showing that statements are true for all natural
numbers, there are true statements that can never be
proven.

• The logical theory of numbers starts with a single constant
0, the function S (successor) for generating the natural
numbers, and axioms defining  functions for multiplication,
addition, and exponentiation.

• Proof relies on producing a unique number for each
sentence in the logic (GÖdel number ) and constructing a
sentence whose number is n which states “Sentence
number n is not provable.”

• If this sentence is provable from the axioms, then it is a
false statement which is provable and therefore the axioms
are inconsistent.

• If this sentence is not provable from the axioms, then it is a
true statement which is not provable and inference is
incomplete.
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Logicist Program

• Encode general knowledge about the world and/or any
given domain as a set of sentences in first-order logic.

• Use general logical inference to solve problems and answer
questions.

• Focus on epistemological problems  of what and how to
represent knowledge rather than the heuristic problems of
how to efficiently conduct search.

• Problems with the logicist program:

- Knowledge representation problem

- Knowledge acquisition problem

- Intractable search problem


