
1

Planning

2

Planning

• Planning is a particular type of problem solving in which actions
and goals are declaratively specified in logic and generally
concerns performing actions in the real world.

• By “opening up” the representation of states, goals, and actions
(instead of treating them as black boxes) a planner can make
more direct connections between them.

• Frequently, subgoals are independent and problems can be
solved by divide and conquer.

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

3

Sample Problem
Blocks World

B

A

C

Initial state

Goal State

A

B

C

4

Situation Calculus

• Formalization of actions in first-order logic (McCarthy &
Hayes, 1969). Search performed by logical inference.

• Situations are logical terms denoting states of the world.

• Actions and facts are represented as logical terms called
fluents .

 puton(A,B): The action of putting block A on block B.
 on(A,B): The proposition that block A is on block B.

• Propositional fluents are asserted to be true in a particular
state by using the predicate: holds

 holds(on(A,B), s): A is on B in situation s

• Situations resulting from performing an action in another
situation are represented using the function: result

 result(puton(A,B), s): The situation resulting from
 putting A on B in situation s.

5

Situation Calculus (cont)

• Axioms used to represent preconditions and effects
of actions.

∀s∀x∀y[holds(clear(x),s) ∧ holds(clear(y),s) →
 holds(on(x,y), result(puton(x,y),s))]

• However, must also explicitly state what does not change
when an action is performed.

∀s∀x∀y∀c[holds(color(x,c),s) →
holds(color(x,c),result(puton(x,y),s))]

• These are called frame axioms and the fact that so many
must be provided is called the frame problem .

• Other more sophisticated logics such as temporal and
modal logics have also been developed for reasoning about
actions.

6

Deductive Planning

• For situation calculus, prove a theorem of the following form
to construct a plan for initial state ϕ and goal ψ:

∀s[holds(ϕ,s) → ∃z(holds(ψ,z) ∧ reachable(z,s)]

• For goal of having A on B when initially both are on the
table:

∀s[holds(on(A,Table),s) ∧ holds(on(B,Table),s) →
∃z(holds(on(A,B),z) ∧ reachable(z,s))]

• Need a constructive prove that produces a value for
z that represents a plan.

 z= result(puton(A,B),s)

 z = result(puton(A,B),result(puton(B,C),s))

• Approach first implemented by Green (1969)

7

Situation Calculus in Prolog

 holds(on(A,B),result(puton(A,B),S)) :-
 holds(clear(A),S), holds(clear(B),S), neq(A,B).

holds(clear(C),result(puton(A,B),S)) :-
holds(clear(A),S), holds(clear(B),S), holds(on(A,C),S),

 neq(A,B).

holds(on(X,Y),result(puton(A,B),S)) :-
 holds(on(X,Y),S), neq(X,A), neq(Y,A), neq(A,B).

holds(clear(X),result(puton(_A,B),S)) :-
 holds(clear(X),S), neq(X,B).

holds(clear(table),_S).

neq(a,table).
neq(table,a).
neq(b,table).
neq(table,b).
neq(c,table).
neq(table,c).
neq(a,b).
neq(b,a).
neq(a,c).
neq(c,a).
neq(b,c).
neq(c,b).

8

Situation Calculus Planner

plan([],_,_).
plan([G1|Gs], S0, S) :-
 holds(G1,S),
 plan(Gs, S0, S),
 reachable(S,S0).

reachable(S,S).
reachable(result(_,S1),S) :-
 reachable(S1,S).

However, what will happen if we try to make plans using
normal Prolog depth-first search?

9

Situation Calculus Results

• Stack of 3 blocks

holds(on(a,b), s0).
holds(on(b,table), s0).
holds(on(c,table),s0).
holds(clear(a), s0).
holds(clear(c), s0).

| ?- cpu_time(db_prove(6,plan([on(a,b),on(b,c)],s0,S)), T).

S =
result(puton(a,b),result(puton(b,c),result(puton(a,table),s0)))
T = 1.3433E+01

• Invert stack

holds(on(a,table), s0).
holds(on(b,a), s0).
holds(on(c,b),s0).
holds(clear(c), s0).

 ?- cpu_time(db_prove(6,plan([on(b,c),on(a,b)],s0,S)),T).

S =
result(puton(a,b),result(puton(b,c),result(puton(c,table),s0)))
,T = 7.034E+00

10

Situation Calculus Results (Cont)

• O.K. Let’s try a simple four block stack.

holds(on(a,table), s0).
holds(on(b,table), s0).
holds(on(c,table),s0).
holds(on(d,table),s0).
holds(clear(c), s0).
holds(clear(b), s0).
holds(clear(a), s0).
holds(clear(d), s0).

| ?-
cpu_time(db_prove(7,plan([on(b,c),on(a,b),on(c,d)],s0,S)),T
).

S =
result(puton(a,b),result(puton(b,c),result(puton(c,d),s0))),
T = 2.765935E+04

7.5 hours!

11

STRIPS

• Developed at SRI (Stanford Research Institute) in early
1970’s.

• Just using theorem proving with situation calculus was
found to be too inefficient.

• Introduced STRIPS action representation.

• Combines ideas from problem solving and theorem
proving.

• Basic backward chaining in state space but solves
subgoals independently and then tries to reachieve any
clobbered subgoals at the end.

12

STRIPS Representation

• Attempt to address the frame problem by defining actions
by a precondition, and add list, and a delete list. (Fikes &
Nilsson, 1971).

 Precondition: logical formula that must be true
 in order to execute the action.
 Add list: List of formulae that become true as a
 result of the action.
 Delete list: List of formulae that become false as
 result of the action.

 Puton(x,y)
 Precondition: Clear(x) ∧ Clear(y) ∧ On(x,z)
 Add List: {On(x,y), Clear(z)}
 Delete List: {Clear(y), On(x,z)}

• STRIPS assumption: Every formula that is satisfied before
an action is performed and does not belong to the delete list
is satisfied in the resulting state.

Although Clear(z) implies that On(x,z) must be false, it must
still be listed in the delete list explicitly.

For action Kill(x,y) must put Alive(y), Breathing(y), Heart-
Beating(y), etc. must all be included in the delete list
although these deletions are implied by the fact of adding
Dead(y)

13

Subgoal Independence

• If the goal state is a conjunction of subgoals, search
is simplified if goals are assumed independent and solved
separately (divide and conquer)

A
B D

A
B

AB

C

C

AB C

C

D

D

D

14

Subgoal Interaction

Achieving different subgoals may interact, the order in
which subgoals are solved in this case is important.

A
B
C

A
B

AB

B

C

C

B

AB C

If do puton(B,C) first, no problem.
If do puton(A,B) first, cannot do
puton(B,C) without undoing (clobbering)
subgoal: on(A,B)

15

Sussman Anomoly

A
B
C

A
B

AB

B

C

C

B

AB

C

Either way of ordering the subgoals causes
clobbering.

AB
C

16

STRIPS Approach

• Use resolution theorem prover to try and prove that goal or
subgoal is statisfied in the current state.

• If it is not, use the incomplete proof to find a set of
differences between the current and goal state (a set of
subgoals).

• Pick a subgoal to solve and an operator that will achieve
that subgoal.

• Add the precondition of this operator as a new goal
and recursively solve it.

17

STRIPS Algorithm

STRIPS(init-state, goals, ops)
 Let current-state be init-state;
 For each goal in goals do
 If goal cannot be proven in current state
 Pick an operator instance, op, s.t. goal∈ adds(op);
 ;; Solve preconditions
 STRIPS(current-state, preconds(op), ops);
 ;; Apply operator
 current-state := current-state + adds(op) - dels(ops);
 ;; Patch any clobbered goals
 Let rgoals be any goals which are not provable in
 current-state;
 STRIPS(current-state, rgoals, ops).

The “pick operator instance” step involves a
nondeterministic choice that is backtracked to if a dead-end
is ever encountered.

Employschronological backtracking (depth-first search),
when reach dead-end, backtrack to last decision point and
pursue the next option.

18

Norvig’s Implementation

• Simple propositional (no variables) Lisp implementation of
STRIPS.

#S(OP ACTION (MOVE C FROM TABLE TO B)
 PRECONDS ((SPACE ON C) (SPACE ON B) (C ON TABLE))
 ADD-LIST ((EXECUTING (MOVE C FROM TABLE TO B)) (C ON B))
 DEL-LIST ((C ON TABLE) (SPACE ON B)))

• Commits to first sequence of actions that achieves a
subgoal (incomplete search).

• Prefers actions with the most preconditions satisfied in the
current state.

• I modified to to try and reachieve any clobbered subgoals
(only once).

19

STRIPS Results

; Invert stack (good goal ordering)
> (gps ’((a on b)(b on c) (c on table) (space on a) (space on table))
 ’((b on a) (c on b)))
Goal: (B ON A)
Consider: (MOVE B FROM C TO A)
 Goal: (SPACE ON B)
 Consider: (MOVE A FROM B TO TABLE)
 Goal: (SPACE ON A)
 Goal: (SPACE ON TABLE)
 Goal: (A ON B)
 Action: (MOVE A FROM B TO TABLE)
 Goal: (SPACE ON A)
 Goal: (B ON C)
Action: (MOVE B FROM C TO A)
Goal: (C ON B)
Consider: (MOVE C FROM TABLE TO B)
 Goal: (SPACE ON C)
 Goal: (SPACE ON B)
 Goal: (C ON TABLE)
Action: (MOVE C FROM TABLE TO B)
((START)
 (EXECUTING (MOVE A FROM B TO TABLE))
 (EXECUTING (MOVE B FROM C TO A))
 (EXECUTING (MOVE C FROM TABLE TO B)))

A
B
C A

B
C

initial goal

20

More STRIPS Results

; Invert stack (bad goal ordering)
> (gps ’((a on b)(b on c) (c on table) (space on a) (space on table))
 ’((c on b)(b on a)))
Goal: (C ON B)
Consider: (MOVE C FROM TABLE TO B)
 Goal: (SPACE ON C)
 Consider: (MOVE B FROM C TO TABLE)
 Goal: (SPACE ON B)
 Consider: (MOVE A FROM B TO TABLE)
 Goal: (SPACE ON A)
 Goal: (SPACE ON TABLE)
 Goal: (A ON B)
 Action: (MOVE A FROM B TO TABLE)
 Goal: (SPACE ON TABLE)
 Goal: (B ON C)
 Action: (MOVE B FROM C TO TABLE)
 Goal: (SPACE ON B)
 Goal: (C ON TABLE)
Action: (MOVE C FROM TABLE TO B)
Goal: (B ON A)
Consider: (MOVE B FROM TABLE TO A)
 Goal: (SPACE ON B)
 Consider: (MOVE C FROM B TO TABLE)
 Goal: (SPACE ON C)
 Goal: (SPACE ON TABLE)
 Goal: (C ON B)
 Action: (MOVE C FROM B TO TABLE)
 Goal: (SPACE ON A)
 Goal: (B ON TABLE)
Action: (MOVE B FROM TABLE TO A)

21

Must reachieve clobbered goals: ((C ON B))
Goal: (C ON B)
Consider: (MOVE C FROM TABLE TO B)
 Goal: (SPACE ON C)
 Goal: (SPACE ON B)
 Goal: (C ON TABLE)
Action: (MOVE C FROM TABLE TO B)
((START)
 (EXECUTING (MOVE A FROM B TO TABLE))
 (EXECUTING (MOVE B FROM C TO TABLE))
 (EXECUTING (MOVE C FROM TABLE TO B))
 (EXECUTING (MOVE C FROM B TO TABLE))
 (EXECUTING (MOVE B FROM TABLE TO A))
 (EXECUTING (MOVE C FROM TABLE TO B)))

22

STRIPS on the Sussman Anomaly

> (gps ’((c on a)(a on table)(b on table) (space on c) (space on b)
 (space on table)) ’((a on b)(b on c)))
Goal: (A ON B)
Consider: (MOVE A FROM TABLE TO B)
 Goal: (SPACE ON A)
 Consider: (MOVE C FROM A TO TABLE)
 Goal: (SPACE ON C)
 Goal: (SPACE ON TABLE)
 Goal: (C ON A)
 Action: (MOVE C FROM A TO TABLE)
 Goal: (SPACE ON B)
 Goal: (A ON TABLE)
Action: (MOVE A FROM TABLE TO B)
Goal: (B ON C)
Consider: (MOVE B FROM TABLE TO C)
 Goal: (SPACE ON B)
 Consider: (MOVE A FROM B TO TABLE)
 Goal: (SPACE ON A)
 Goal: (SPACE ON TABLE)
 Goal: (A ON B)
 Action: (MOVE A FROM B TO TABLE)
 Goal: (SPACE ON C)
 Goal: (B ON TABLE)
Action: (MOVE B FROM TABLE TO C)
Must reachieve clobbered goals: ((A ON B))
Goal: (A ON B)
Consider: (MOVE A FROM TABLE TO B)
 Goal: (SPACE ON A)
 Goal: (SPACE ON B)
 Goal: (A ON TABLE)
Action: (MOVE A FROM TABLE TO B)
((START) (EXECUTING (MOVE C FROM A TO TABLE))
 (EXECUTING (MOVE A FROM TABLE TO B)) (EXECUTING (MOVE A
FROM B TO TABLE)) (EXECUTING (MOVE B FROM TABLE TO C))
(EXECUTING (MOVE A FROM TABLE TO B)))

23

Larger Problems

How long do four block problems take?

;; Stack four clear blocks (good goal ordering)
> (time (gps ’((a on table)(b on table) (c on table) (d on table)(space on a)
 (space on b) (space on c) (space on d)(space on table))
 ’((c on d)(b on c)(a on b))))
User Run Time = 0.00 seconds
((START)
(EXECUTING (MOVE C FROM TABLE TO D))
 (EXECUTING (MOVE B FROM TABLE TO C))
 (EXECUTING (MOVE A FROM TABLE TO B)))

;; Stack four clear blocks (bad goal ordering)
> (time (gps ’((a on table)(b on table) (c on table) (d on table)(space on a)
 (space on b) (space on c) (space on d)(space on table))
 ’((a on b)(b on c) (c on d))))
User Run Time = 0.06 seconds
((START)
 (EXECUTING (MOVE A FROM TABLE TO B))
 (EXECUTING (MOVE A FROM B TO TABLE))
 (EXECUTING (MOVE B FROM TABLE TO C))
 (EXECUTING (MOVE B FROM C TO TABLE))
 (EXECUTING (MOVE C FROM TABLE TO D))
 (EXECUTING (MOVE A FROM TABLE TO B))
 (EXECUTING (MOVE A FROM B TO TABLE))
 (EXECUTING (MOVE B FROM TABLE TO C))
 (EXECUTING (MOVE A FROM TABLE TO B)))

24

A Problem STRIPS Cannot Solve

• Due to the “hack” used to solve clobbered goals, STRIPS
cannot even solve certain problems.

• Consider the problem of switching the contents of two
program variables.

Operator: Assign(X,Y)
 Preconditions: Value(X,A), Value(Y,B)
 Delete List: Value(X,A)
 Add List: Value(X,B)

Initial state: Value(M,1), Value(N,0), Value(L,2)
Goal state: Value(M,0), Value(N,1)

STRIPS will first do Assign(M,N) to achieve Value(M,0);
however, then it is unable to achieve Value(N,1) since
the 1 value has already been lost.

Of course the other goal ordering has an analagous
problem.

Need the “white knight” action Assign(L,M) first to save the
1 value for later use by Assign(N,L).

25

Partial-Order Planners

• Don’t commit to ordering of actions until necessary by
allowing partially ordered plans.

puton(A,B) puton(B,C)

clear(A) clear(B) clear(B) clear(C)

on(A,B) on(B,C)

AB
C

clobber

puton(C,Table)

clear(C) clear(Table)

clobber

Clobberer must come
after cloberee

A
B
C

initial goal

