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Need for Probabilistic Reasoning

• Most everyday reasoning is based on uncertain evidence 
and inferences.

• Classical logic, which only allows conclusions to be strictly 
true or strictly false, does not account for this uncertainty or 
the need to weigh and combine conflicting evidence.

• Straightforward application of probability theory is 
impractical since the large number of probability parameters 
required are rarely, if ever, available.

• Therefore, early expert systems employed fairly ad hoc 
methods for reasoning under uncertainty and for combining 
evidence.

• Recently, methods more rigorously founded in probability 
theory that attempt to decrease the amount of conditional 
probabilities required have flourished.
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Axioms of Probability Theory

• All probabilities between 0 and 1

• True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.

• The probability of  disjunction is:
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Conditional Probability 

• P(A | B) is the probability of A given B

• Assumes that B is all and only information 
known.

• Defined by:
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Independence

• A and B are independent iff:

• Therefore, if A and B are independent:
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These two constraints are logically equivalent
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Classification (Categorization)

• Given:
– A description of an instance, x∈X, where X is the 

instance language or instance space.

– A fixed set of categories: C={ c1, c2,…cn}

• Determine:
– The category of x: c(x)∈C, where c(x) is a 

categorization function whose domain is X and whose 
range is C.

– If c(x) is a binary function C={0,1} ({true,false}, 
{positive, negative}) then it is called a concept.
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Learning for Categorization

• A training example is an instance x∈X, 
paired with its correct category c(x):         
<x, c(x)> for an unknown categorization 
function, c. 

• Given a set of training examples, D.

• Find a hypothesized categorization function, 
h(x), such that:
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Sample Category Learning Problem

• Instance language: <size, color, shape>
– size ∈ {small, medium, large}

– color ∈ {red, blue, green}

– shape ∈ {square, circle, triangle}

• C = {positive, negative}

• D: Example Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negative

4 large blue circle negative
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Joint Distribution

• The joint probability distribution for a set of random variables, 
X1,…,Xn gives the probability of every combination of values (an n-
dimensional array with vn values if all variables are discrete with v
values, all vn values must sum to 1): P(X1,…,Xn)

• The probability of all possible conjunctions (assignments of values to 
some subset of variables) can be calculated by summing the 
appropriate subset of values from the joint distribution.

• Therefore, all conditional probabilities can also be calculated.

circle square

red 0.20 0.02

blue 0.02 0.01

circle square

red 0.05 0.30

blue 0.20 0.20

positive negative

25.005.020.0)( =+=∧ circleredP

80.0
25.0

20.0

)(

)(
)|( ==

∧
∧∧=∧

circleredP

circleredpositiveP
circleredpositiveP

57.03.005.002.020.0)( =+++=redP

10

Probabilistic Classification

• Let Y be the random variable for the class which takes values 
{ y1,y2,…ym}.

• Let X be the random variable describing an instance consisting 
of a vector of values for n features <X1,X2…Xn>, let xk be a 
possible value for X and xij a possible value for Xi.

• For classification, we need to compute P(Y=yi | X=xk) for i=1…m
• However, given no other assumptions, this requires a table 

giving the probability of each category for each possible instance 
in the instance space, which is impossible to accurately estimate 
from a reasonably-sized training set.
– Assuming Y and all Xi are binary, we need 2n entries to specify      

P(Y=pos | X=xk) for each of the 2n possible xk’s since
P(Y=neg | X=xk) = 1 – P(Y=pos | X=xk) 

– Compared to 2n+1 – 1 entries for the joint distribution P(Y,X1,X2…Xn)
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Bayes Theorem

Simple proof from definition of conditional probability:
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Bayesian Categorization

• Determine category of xk by determining for each yi

• P(X=xk) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)

• Need to know:
– Priors: P(Y=yi) 

– Conditionals: P(X=xk | Y=yi)

• P(Y=yi) are easily estimated from data. 
– If ni of the examples in D are in yi then P(Y=yi) =  ni / |D|

• Too many possible instances (e.g. 2n for binary 
features) to estimate all P(X=xk | Y=yi).

• Still need to make some sort of independence 
assumptions about the features to make learning 
tractable.
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Generative Probabilistic Models

• Assume a simple (usually unrealistic) probabilistic method 
by which the data was generated.

• For categorization, each category has a different 
parameterized generative model that characterizes that 
category.

• Training : Use the data for each category to estimate the 
parameters of the generative model for that category. 
– Maximum Likelihood Estimation (MLE) : Set parameters to 

maximize the probability that the model produced the given 
training data.

– If M
λ
denotes a model with parameter values λ and Dk is the 

training data for the kth class, find model parameters for class k
(λk) that maximize the likelihood of Dk:

• Testing: Use Bayesian analysis to determine the category 
model that most likely generated a specific test instance.
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Naïve Bayes Generative Model
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Naïve Bayes Inference Problem
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Naïve Bayesian Categorization

• If we assume features of an instance are independent given 
the category(conditionally independent).

• Therefore, we then only need to know P(Xi | Y) for each 
possible pair of a feature-value and a category.

• If Y and all Xi and binary, this requires specifying only 2n
parameters:
– P(Xi=true | Y=true) and P(Xi=true | Y=false) for each Xi

– P(Xi=false | Y) = 1 – P(Xi=true | Y)

• Compared to specifying 2n parameters without any 
independence assumptions.
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Naïve Bayes Categrization Example

Probability positive negative

P(Y) 0.5 0.5

P(small | Y) 0.4 0.4

P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4

P(red | Y) 0.9 0.3

P(blue | Y) 0.05 0.3

P(green | Y) 0.05 0.4

P(square | Y) 0.05 0.4

P(triangle | Y) 0.05 0.3

P(circle | Y) 0.9 0.3

Test Instance:
<medium ,red, circle>
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Naïve Bayes Categorization Example

Probability positive negative

P(Y) 0.5 0.5

P(medium | Y) 0.1 0.2

P(red | Y) 0.9 0.3

P(circle | Y) 0.9 0.3

P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)
0.5        *               0.1              *        0.9            *        0.9

=  0.0405 / P(X) 

P(negative | X) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5       *              0.2               *        0.3             *     0.3

=  0.009 / P(X)

P(positive | X) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1

P(X) = (0.0405 + 0.009) = 0.0495 

= 0.0405 / 0.0495 = 0.8181

= 0.009 / 0.0495 = 0.1818

Test Instance:
<medium ,red, circle>
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Naïve Bayes Diagnosis Example

• C = {allergy, cold, well}

• e1 = sneeze; e2 = cough; e3 = fever

• E = {sneeze, cough, ¬fever}

Prob Well Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze|ci) 0.1 0.9 0.9

P(cough|ci) 0.1 0.8 0.7

P(fever|ci) 0.01 0.7 0.4

21

Naïve Bayes Diagnosis Example (cont.)

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)

P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)

P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy

P(E) = 0.0089 + 0.01 + 0.019 = 0.0379

P(well | E) = 0.23

P(cold | E) = 0.26

P(allergy | E) = 0.50

Probability Well Cold Allergy

P(ci) 0.9 0.05 0.05

P(sneeze | ci) 0.1 0.9 0.9

P(cough | ci) 0.1 0.8 0.7

P(fever | ci) 0.01 0.7 0.4

E={sneeze, cough, ¬fever}
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Estimating Probabilities

• Normally, probabilities are estimated based on observed 
frequencies in the training data.

• If D contains nk examples in category yk, and nijk of these nk
examples have the jth value for feature Xi, xij, then:

• However, estimating such probabilities from small training 
sets is error-prone.

• If due only to chance, a rare feature, Xi, is always false in 
the training data, ∀yk :P(Xi=true | Y=yk) = 0.

• If  Xi=true then occurs in a test example, X, the result is that 
∀yk: P(X | Y=yk) = 0 and ∀yk: P(Y=yk | X) = 0
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Probability Estimation Example

Probability positive negative

P(Y) 0.5 0.5

P(small | Y) 0.5 0.5

P(medium | Y) 0.0 0.0

P(large | Y) 0.5 0.5

P(red | Y) 1.0 0.5

P(blue | Y) 0.0 0.5

P(green | Y) 0.0 0.0

P(square | Y) 0.0 0.0

P(triangle | Y) 0.0 0.5

P(circle | Y) 1.0 0.5

Ex Size Color Shape Category

1 small red circle positive

2 large red circle positive

3 small red triangle negitive

4 large blue circle negitive

Test Instance X:
<medium, red, circle>

P(positive | X) = 0.5 * 0.0 * 1.0 * 1.0 / P(X) = 0

P(negative | X) = 0.5 * 0.0 * 0.5 * 0.5 / P(X) = 0 24

Smoothing

• To account for estimation from small samples, 
probability estimates are adjusted or smoothed.

• Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

• For binary features, p is simply assumed to be 0.5.
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Laplace Smothing Example

• Assume training set contains 10 positive examples:
– 4: small

– 0: medium

– 6: large

• Estimate parameters as follows (if m=1, p=1/3)
– P(small | positive) = (4 + 1/3) / (10 + 1) =     0.394

– P(medium | positive) = (0 + 1/3) / (10 + 1) = 0.03

– P(large | positive) = (6 + 1/3) / (10 + 1) =      0.576

– P(small or medium or large | positive) =        1.0
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Text Categorization Applications

• Web pages 
– Recommending
– Yahoo-like classification

• Newsgroup/Blog Messages 
– Recommending
– spam filtering
– Sentiment analysis for marketing

• News articles 
– Personalized newspaper

• Email messages 
– Routing
– Prioritizing 
– Folderizing
– spam filtering
– Advertising on Gmail
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Text Categorization Methods

• Most common representation of a document 
is a “bag of words,” i.e. set of words with 
their frequencies, word order is ignored.

• Gives a high-dimensional vector 
representation (one feature for each word).

• Vectors are sparse since most words are 
rare.
– Zipf’s law and heavy-tailed distributions
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Naïve Bayes for Text

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = { w1, w2,…wm} based on the 
probabilities P(wj | ci).

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in 

each category exactly once.

29

nude
dealNigeria

Naïve Bayes Generative Model for Text

spam legit

hot

$
Viagra

lottery

!!
!

win
Friday

exam

computer

May

PM

test
March

scienceViagra

homework
score

!

spam
legit
spam

spam
legit

spam

legit

legit
spam

Category

Viagra

deal
hot !!

30

Naïve Bayes Text Classification 
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci  ∈ C

Let Di be the subset of documents in D in category ci

P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di

Let ni be the total number of word occurrences in Ti

For each word wj ∈ V
Let nij be the number of occurrences of wj in Ti

Let P(wj | ci) = (nij + 1) / (ni + |V|)  
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Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X
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Underflow Prevention

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.

• Class with highest final un-normalized log 
probability score is still the most probable.
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Comments on Naïve Bayes

• Makes probabilistic inference tractable by 
making a strong assumption of conditional 
independence.

• Tends to work fairly well despite this strong 
assumption.

• Experiments show it to be quite competitive 
with other classification methods on 
standard datasets.

• Particularly popular for text categorization, 
e.g. spam filtering.


