CS 343: Artificial Intelligence Probabilistic Reasoning and Naïve Bayes

Raymond J. Mooney University of Texas at Austin

Need for Probabilistic Reasoning

- Most everyday reasoning is based on uncertain evidence and inferences.
- Classical logic, which only allows conclusions to be strictly true or strictly false, does not account for this uncertainty or the need to weigh and combine conflicting evidence.
- Straightforward application of probability theory is impractical since the large number of probability parameters required are rarely, if ever, available.
- Therefore, early expert systems employed fairly *ad hoc* methods for reasoning under uncertainty and for combining evidence.
- Recently, methods more rigorously founded in probability theory that attempt to decrease the amount of conditional probabilities required have flourished.

Independence

- A and B are *independent* iff: P(A | B) = P(A) P(B | A) = P(B)These two constraints are logically equivalent
- Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

 $P(A \land B) = P(A)P(B)$

Classification (Categorization) Given: A description of an instance, x∈ X, where X is the *instance language* or *instance space*. A fixed set of categories: C={c₁, c₂,...c_n} Determine: The category of x: c(x)∈ C, where c(x) is a categorization function whose domain is X and whose range is C. If c(x) is a binary function C={0,1} ({true,false}, {positive, negative}) then it is called a *concept*.

Learning for Categorization

- A training example is an instance *x*∈ *X*, paired with its correct category *c*(*x*):
 <*x*, *c*(*x*)> for an unknown categorization function, *c*.
- Given a set of training examples, *D*.
- Find a hypothesized categorization function, *h*(*x*), such that:

 $\forall < x, c(x) \ge D : h(x) = c(x)$ Consistency

Bayesian Categorization (cont.)

- Need to know:
 - Priors: $P(Y=y_i)$
 - Conditionals: $P(X=x_k | Y=y_i)$
- $P(Y=y_i)$ are easily estimated from data. - If n_i of the examples in *D* are in y_i then $P(Y=y_i) = n_i / |D|$
- Too many possible instances (e.g. 2^{*n*} for binary features) to estimate all P(X=x_k | Y=y_i).
- Still need to make some sort of independence assumptions about the features to make learning tractable.

13

Naïve	e Bayes	Categor	ization Example
Probability	positive	negative]
P(Y)	0.5	0.5	
P(medium Y)	0.1	0.2	
P(red Y)	0.9	0.3	Test Instance:
P(circle Y)	0.9	0.3	<medium ,red,="" circle=""></medium>
$(\text{positive} \mid X) = P($ $= 0$ negative X) = P(1)	0.5 * .0405 / P(X) = negative)*P(me	0.1 * 0.0405 / 0.0495 *	* 0.9 * 0.9 = 0.8181 *P(red negative)*P(circle negative) / P(x)
= 0.	0.5 * 009 / P(X) = 0	0.2 0.009 / 0.0495 =	* 0.3 * 0.3 0.1818
$(\text{positive} \mid X) + P(r)$	negative $ X) = 0$	0.0405 / P(X) + 0	.009 / P(X) = 1
P(X) = (0.0405 + 0)	.009) = 0.0495		
			19

Naïve Bayes Diagnosis Example

- C = {allergy, cold, well}
- e_1 = sneeze; e_2 = cough; e_3 = fever
- $E = \{sneeze, cough, \neg fever\}$

Prob	Well	Cold	Allergy	
$P(c_i)$	0.9	0.05	0.05	
$P(\text{sneeze} c_i)$	0.1	0.9	0.9	
$P(\text{cough} c_i)$	0.1	0.8	0.7	
$P(\text{fever} c_i)$	0.01	0.7	0.4	

20

		Pro	babili	ity Est	timation E	Example	•
Ev	Size	Color	Shane	Category	Probability	positive	negative
LA	Size	COIO	Shape	Category	P(Y)	0.5	0.5
1	small	red	circle	positive	P(small Y)	0.5	0.5
					P(medium Y)	0.0	0.0
2	large	red	circle	positive	P(large Y)	0.5	0.5
3	small	red	triangle	negitive	P(red Y)	1.0	0.5
					$P(blue \mid Y)$	0.0	0.5
4	large	blue	circle	negitive	$P(\text{green} \mid Y)$	0.0	0.0
	0.0						
Test Instance Y: P(triangle Y) 0.0						0.0	0.5
<medium, circle="" red,=""></medium,>					P(circle Y)	1.0	0.5
P(p P(n	oositive 2 legative 1	X(X) = 0.5 X(X) = 0.5	* 0.0 * 1 * 0.0 * 0	.0 * 1.0 / H 0.5 * 0.5 /]	P(X) = 0 $P(X) = 0$		23

Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category $c_i \in C$

Let D_i be the subset of documents in D in category c_i $P(c_i) = |D_i| / |D|$

Let T_i be the concatenation of all the documents in D_i Let n_i be the total number of word occurrences in T_i For each word $w_i \in V$

Let n_{ij} be the number of occurrences of w_j in T_i Let $P(w_j | c_i) = (n_{ij} + 1) / (n_i + |V|)$

Text Naïve Bayes Algorithm
(Test)Given a test document XLet n be the number of word occurrences in XReturn the category: $\operatorname{argmax}_{c_i \in C} P(c_i) \prod_{i=1}^{n} P(a_i \mid c_i)$ where a_i is the word occurring the *i*th position in X

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(*xy*) = log(*x*) + log(*y*), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

33

31

Comments on Naïve Bayes

32

34

- Makes probabilistic inference tractable by making a strong assumption of conditional independence.
- Tends to work fairly well despite this strong assumption.
- Experiments show it to be quite competitive with other classification methods on standard datasets.
- Particularly popular for text categorization, e.g. spam filtering.