Text Learning and Information Extraction

• Textual data is ubiquitous and ever-important
 – WWW, digital libraries, LexisNexis, Medline, news, ….
• Machine learning is required for high performance on key tasks for textual data
 – Retrieval (search, question answering, extraction)
 – Learn to (accurately) compute relevance between query and documents
 – Classification
 – Learn to (accurately) categorize documents
 – Clustering
 – Learn to (accurately) group documents
 – Object identification
 – Learn to (accurately) determine whether textual strings are equivalent

Text as Data

• Representing documents: a continuum of richness
 – Vector-space: text is a |V|-dimensional vector (V is vocabulary of all possible words), order is ignored (“bag-of-words”)
 – Sequence: text is a string of contiguous tokens/characters
 – Language-specific: text is a sequence of contiguous tokens along with various syntactic, semantic, and pragmatic properties (e.g. part-of-speech features, semantic roles, discourse models)
• Higher representation richness leads to higher computational complexity, more parameters to learn, etc., but may lead to higher accuracy

Natural Language Processing

• An entire field focused on tasks involving syntactic, semantic, and pragmatic analysis of natural language text
 – Examples: part-of-speech tagging, semantic role labeling, discourse analysis, text summarization, machine translation.
• Using machine learning methods for automating these tasks is a very active area of research, both for ML and NLP researchers
 – Text-related tasks rely on learning algorithms
 – Text-related tasks present great challenges and research opportunities for machine learning

Information Extraction

• Identify specific pieces of information (data) in a unstructured or semi-structured textual document
• Transform unstructured information in a corpus of documents or web pages into a structured database
• Can be applied to different types of text
 – Newspaper articles, web pages, scientific articles, newsgroup messages, classified ads, medical notes,…
• Can employ output of Natural Language Processing tasks for enriching the text representation (“NLP features”)

Sample Job Posting

Subject: US-TN-SOFTWARE PROGRAMMER
Date: 17 Nov 1996 17:37:29 GMT
Organization: Reference.Com Posting Service
Message-ID: <56Nigp$mrs@bilbo.reference.com>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-Based Voice Mail systems. Experienced in C Programming. Must be familiar with communicating with and controlling voice cards; preferable Dialogic, however, experience with others such as Martex and Natural Microsystems is okay. Prefer 3 years or more experience with PC Based Voice Mail, but will consider as little as 2 years. Need to find a Senior level person who can come on board and pick up code with very little training.

Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to:
Kim Anderson
AdNET
(901) 458-2888 fax
kimander@memphisonline.com
Medline Corpus

TI - Two potentially oncogenic cyclins, cyclin A and cyclin D1, share common properties of subunit configuration, tyrosine phosphorylation and physical association with the Rb protein

AB - Originally identified as a ‘mitotic cyclin’, cyclin A exhibits properties of growth factor sensitivity, susceptibility to viral subversion and association with a tumor-suppressor protein, properties which are indicative of an S-phase-promoting factor (SPF) as well as a candidate proto-oncogene ...

Moreover, cyclin D1 was found to be phosphorylated on tyrosine residues in vivo and, like cyclin A, was readily phosphorylated by pp60c-src in vitro.

In synchronized human osteosarcoma cells, cyclin D1 is induced in early G1 and becomes associated with p9Ckshs1, a Cdk-binding subunit.

Immunoprecipitation experiments with human osteosarcoma cells and Ewing’s sarcoma cells demonstrated that cyclin D1 is associated with both p34cdk2 and p33cdk2, and that cyclin D1 immune complexes exhibit appreciable histone H1 kinase activity ...

Medline Corpus: Relation Extraction

TI - Two potentially oncogenic cyclins, cyclin A and cyclin D1, share common properties of subunit configuration, tyrosine phosphorylation and physical association with the Rb protein

AB - Originally identified as a ‘mitotic cyclin’, cyclin A exhibits properties of growth factor sensitivity, susceptibility to viral subversion and association with a tumor-suppressor protein, properties which are indicative of an S-phase-promoting factor (SPF) as well as a candidate proto-oncogene ...

Moreover, cyclin D1 was found to be phosphorylated on tyrosine residues in vivo and, like cyclin A, was readily phosphorylated by pp60c-src in vitro.

In synchronized human osteosarcoma cells, cyclin D1 is induced in early G1 and becomes associated with p9Ckshs1, a Cdk-binding subunit.

Immunoprecipitation experiments with human osteosarcoma cells and Ewing’s sarcoma cells demonstrated that cyclin D1 is associated with both p34cdk2 and p33cdk2, and that cyclin D1 immune complexes exhibit appreciable histone H1 kinase activity ...

Extracted Job Template

computer_science_job
id: 5mugslime@bilbo.reference.com
title: SOFTWARE PROGRAMMER
salary:
company:
recruit:
state: TN
city:
country: US
language:
platform: PC DOS OS-2 UNIX
application:
area: Voice Mail
req_years_experience: 2
desired_years_experience: 5
req_degree:
desired_degree:
post_date: 17 Nov 1996

Sample Job Posting

Subject: US-TN SOFTWARE PROGRAMMER
Date: 17 Nov 1996 17:37:29 GMT
Organization: Reference.Com Posting Service
Message-ID: <256@M666A51G57A2559.BU970A51300173F56@M666A51G57A2559.BU970A51300173F56>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-based Voice Mail systems. Experienced in C Programming. Must be familiar with communicating with and controlling voice cards; preferably Dialogic, however, experience with others such as Rhetorix and Natural Microsystems is okay. Prefer 5 years or more experience with PC-based Voice Mail, but will consider as little as 2 years. Need to find a junior level person who can come on board and pick up code with very little training. Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to:
Kim Anderson
AdNET
(901) 678-2089 fax
kimanda@morphousea.com
IE History: from MUC to Biology

- DARPA funded significant efforts in IE in the early to mid 1990's
- Message Understanding Conference (MUC) was an annual event/competition where results were presented
 - Terrorist events
 - Industrial joint ventures
 - Company management changes
- Information extraction has many applications for particular interest to the intelligence community (CIA, NSA)
- Recently, much interest from .com’s and biologists

Other Applications

- Smarter email
 - GMail shows links for address maps and tracking UPS packages
- Web classifieds and internet shopping
 - Craigslist aggregators, Froogle
- Job postings
 - Newsgroups (Rattrap from austin.jobs), Web pages: Flipdog
- Job resumes
 - BurningGlass, Mohomine
- Seminar announcements
- Company/university information from the web
- Apartment rental ads
- Molecular biology information from MEDLINE

IE via Extraction Patterns

- In many domains, documents are semi-structured: text has regularities that allow hand-constructing extraction rules for selecting fields of interest
- Example: extracting book pages from amazon.com

Simple Extraction Patterns

- Specify an item to extract for a slot using a regular expression pattern.
 - Price pattern: \b\$\d+(\d\d\d)?\b
- May require preceding (pre-filler) pattern to identify proper context.
 - Amazon list price:
 - Pre-filler pattern: "\bList Price:\b" or "\bList-Price:\b"
 - Filler pattern: \d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+
- May require succeeding (post-filler) pattern to identify the end of the filler.
 - Amazon list price:
 - Pre-filler pattern: "\bList Price:\b" or "\bList-Price:\b"
 - Filler pattern: "\b\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+
 - Post-filler pattern: "\b\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+\d+

Web Extraction

- Web pages are often generated automatically based on an underlying database
- An IE system for such generated pages allows the web site to be viewed as a structured database
- An extractor for a semi-structured web site is sometimes referred to as a wrapper
- While manual pattern construction may be easy, the problem of wrapper maintenance arises with website changes
- Wrapper adaptation is similar to the problem of extraction from unstructured text: the task is to learn a wrapper given training examples

Learning for IE

- Given examples of labeled text, learn how to label tokens (or groups of tokens).
- Basic approach: token classification
 - Treat each token as an isolated instance to be classified.
 - Features include token word, neighbors, capitalization, …
 - Use labeled data as a training set: fields to extract are positive examples, other tokens are negative examples
- Example: biomedical text, protein name extraction
 - To map the interaction of PTHrP with importin beta using a...
IE via Token Classification (1)

- Each token is represented by a feature vector
- Possible features: token value, is_dictionary_word, has_uppercase, ends_with_"-in", is_noun

Mathematical semantics (probability-based or optimization-based) can be formulated for the graph, leading to a clean problem formulation.

- Key tasks for any graphical model: (1) learning (2) inference (labeling)
- How do we represent dependency structure for Information Extraction?

IE via Token Classification – Example 1

- Decision Trees
- Ensembles of decision trees ...
 - Multiple models (e.g., Boosting, Bagging)

IE via Token Classification – Example 2

- Naïve Bayes classifier: assuming features are independent, find probability of class using Bayes theorem:

\[
p(y_i | x_i) = \frac{p(y_i)p(x_i | y_i)}{p(x_i)}
\]

- Feature independence means that for each \(x_i \):

\[
p(x_i) = \prod_{a=1}^{N} p(x_{i_a})
\]

- For individual features, probabilities can be obtained from training data frequencies:

\[
p(x_{i_1} = \text{"PTHrP"}, y_i = \text{I}) = 0.9, p(x_{i_2} = \text{"beta"}, y_i = \text{I}) = 0.7, ...
\]

- Probability of labeling is computed for each token:

\[
p(y_i = \text{I} | x_i = \{x_{i_1}, \ldots, x_{i_N}\}) = \frac{p(y_i = \text{I}) \prod_{a=1}^{N} p(x_{i_a} | y_i = \text{I})}{\prod_{a=1}^{N} p(x_{i_a})}
\]

Relational Learning and Graphical Models

- Collective, or relational learning: instances cannot be treated as independent, dependencies between them must be considered

- Graphical models provide an intuitive and principled framework

IE and Relational Learning

- Strongest dependencies in text are between adjacent words

- Labeling task: find “best” label configuration:

\[
y' \
\]

- What defines “best” configurations?

 - Need to select a mathematical formulation, from which to derive algorithms for learning and inference
IE and Relational Learning – HMMs (1)

- Hidden Markov Models (HMMs): a generative model
- Assumes data is produced by a generative process

 For each word:
 1. Given the label of the current word, generate a label for next word from a distribution (roll a “next label die” for current label value)
 2. Given next word’s label, generate its features from a feature distribution (roll a “feature die” for next label value from previous step)

- If natural text was generated like this…

 to map the interaction of PTHrP with importin beta using a

IE and Relational Learning – HMMs (2)

- Learning HMM parameters: Baum-Welch algorithm
 - Parameters are “next label” and “feature” die probabilities
 - E.g. \(p(y_i | y_{i-1} = O) \) is the PTHrP
 - “Optimal” probabilities maximize likelihood of observed training data

- Inference in HMMs: Viterbi algorithm
 - Most likely label configuration can be computed in linear time

- Shortcomings of HMMs
 - No easy way to include overlapping, co-dependent features (e.g., “has_uppercase AND NOT is_in_dictionary”): generative model cannot have arbitrary features due to probabilistic semantics
 - “Label bias problem”: during inference (and training) decisions are made locally: no way to trade off decisions at different positions against each other.

- All details on HMMs coming a few weeks!

IE and Relational Learning – CRFs (1)

- Conditional Random Fields (CRFs) overcome the problems of HMMs
 - A generative model is replaced by the log-linear discriminative model for both features and inter-label dependencies; this allows arbitrary (possibly overlapping) features
 - Label bias problem is solved by normalizing probabilities of labels for the entire sequence, leading to better performance
 - CRFs are undirectional graphical models
 - Bad news: no simple “dice-driven” semantics, difficult learning
 - Good news: a much richer, stronger model

IE and Relational Learning – CRFs (2)

- The log-linear model decomposes the conditional probability of each label through an exponentiated sum of weighted features
 - The overall probability is normalized jointly over the entire label sequence
 - Learning is difficult: methods find optimal \(\lambda \) values by gradient-based search for values that maximize likelihood of training data
 - Inference can still be performed using Viterbi algorithm

Conclusions

- Textual data
 - Provides many important challenges for machine learning that inspire new research in representation, models, algorithms
 - Presents many applications for evaluating algorithms
- Information extraction
 - A machine learning task that bridges classification, relational learning, and natural language processing
 - High performance requires complicated models and algorithms, employs many features (\(O(10^4) \) and higher)
 - Active area of current research: richness of natural text and many applications leave much space for new ideas

Interested in learning more?

- WekaIE: add-on to Weka in the making, email mbilenko@cs.utexas.edu for latest updates
- Several project suggestions are related to IE and record linkage—ask or email mbilenko@cs.utexas.edu