CS391L: Machine Learning:
Computational Learning Theory

Raymond J. Mooney
University of Texas at Austin

Learning Theory

« Theorems that characterize classes of learning problems orj

specific algorithms in terms of computational complexity
or sample complexityi.e. the number of training examples
necessary or sufficient to learn hypotheses of a given
accuracy.

« Complexity of a learning problem depends on:

— Size or expressiveness of the hypothesis space.

— Accuracy to which target concept must be appro>éahat

— Probability with which the learner must produceiacessful
hypothesis.

— Manner in which training examples are presenteg ,randomly or
by query to an oracle.

Types of Results

Learning in thelimit: Is the learner guaranteed to
converge to the correct hypothesis In the limit as the
number of training examples increases indefinitely?
Sample Complexity: How many training examples are
needed for a learner to construct (with high probability) a
highly accurate concept?
Computational Complexity: How much computational
resources (time and space) are needed for a learner to
construct (with high probability) a highly accurate
concept?
— High sample complexity implies high computationainplexity,
since learner at least needs to read the input data
Mistake Bound: Learning incrementally, how many
training examples will the learner misclassify before
constructing a highly accurate concept.

Learning in the Limit

Given a continuous stream of examples where the learner
predicts whether each one is a member of the concept or
not and is then is told the correct answer, does the learner
eventually converge to a correct concept and never make a
mistake again.

No limit on the number of examples required or
computational demands, but must eventually learn the
concept exactly, although do not need to explicitly
recognize this convergence point.

By simple enumeration, concepts from any known finite
hypothesis space are learnable in the limit, although
typically requires an exponential (or doubly exponential)
number of examples and time.

Class of total recursive (Turing computable) functions is
not learnable in the limit.

Unlearnable Problem

Identify the function underlying an ordered seqeeotnatural
numberst{/— /'), guessing the next number in the sequence and
then being told the correct value.

For any given learning algorithin there exists a functioifn) that it
cannot learn in the limit.

Given the learning algorithinas a Turing machine:

o[} -0

Construct a function it cannot learn:
<t(0)t(2),...t(n-1)>

L
Example Trace (L]

Oracle: 1 3 6 11 h(n) +1
Learner:Q. 2 5 10
h: h(n)=h(n-1)+n+1

odd in

natural
pos in

Learning in the Limit vs.
PAC Model

Learning in the limit model is too strong.

— Requires learning correct exact concept

Learning in the limit model is too weak

— Allows unlimited data and computational resources.

PAC Model

— Only requires learning Brobably Approximately
CorrectConcept: Learn a decent approximation most of
the time.

— Requires polynomial sample complexity and
computational complexity.

Cannot Learn Exact Concepts
from Limited Data, Only Approximations

Positive

Learner

Cannot Learn Even Approximate Concepts
from Pathological Training Sets

Positive

Learner

Regiitiee

Wirany!

PAC Learning

» The only reasonable expectation of a learner
is that withhigh probability it learns eclose
approximationto the target concept.

¢ In the PAC model, we specify two small
parameters; andg, and require that with
probability at least (* 3) a system learn a
concept with error at most

Formal Definition of PAC-Learnable

< Consider a concept cla€sdefined over an instance space
X containing instances of length and a learnet,, using a
hypothesis spacé]. C is said to bé?AC-learnableby L
usingH iff for all cCIC, distributionsD over X, 0<e<0.5,
0<8<0.5; learnet by sampling random examples from
distributionD, will with probability at least 4 8 output a
hypothesiilH such that errgy(h)< ¢, in time polynomial
in 1/, 1/, n and sizeg).

* Example:
— X instances described Imbinary features
— C: conjunctive descriptions over these features
— H: conjunctive descriptions over these features
— L: most-specific conjunctive generalization algaritfFind-S)
— size(c): the number of literals in (i.e. length of the conjunction).

Issues of PAC Learnability

* The computational limitation also imposes a
polynomial constraint on the training set size,
since a learner can process at most polynomial
data in polynomial time.

* How to prove PAC learnability:

— First prove sample complexity of learni@gusingH is
polynomial.

— Second prove that the learner can train on a
polynomial-sized data set in polynomial time.

¢ To be PAC-learnable, there must be a hypothesis
in H with arbitrarily small error for every concept
in C, generallyCOH.

Consistent Learners

« AlearnerL using a hypothesid and training data
D is said to be a consistent learner if it always
outputs a hypothesis with zero errorn
wheneveH contains such a hypothesis.
By definition, a consistent learner must produce a
hypothesis in the version space lfbgivenD.
Therefore, to bound the number of examples
needed by a consistent learner, we just need to
bound the number of examples needed to ensure

that the version-space contains no hypotheses with
unacceptably high error.

e-Exhausted Version Space

The version space, V$, is said to be-exhaustediff every
hypothesis in it has true error less than or equal to

In other words, there are enough training examples to
guarantee than any consistent hypothesis has error at. most
One can never be sure that the version-spacexbausted,
but one can bound the probability that it is not.

Theorem 7.1 (Haussler, 1988): If the hypothesis spatis
finite, andD is a sequence afi>1 independent random
examples for some target concepthen for any 8¢ <1,
the probability that the version space,3s not &-
exhausted is less than or equal to:

[Hje-m

Proof

e LetHp,#~{h,,...h} be the subset of H with errorez The VS
is note-exhausted if any of these are consistent witimall
examples.

* Asingleh, OH,,q4is consistent wittone example with
probability:

P(consis(h,g,)) < 1-¢)

* Asingleh, OH,,q4is consistent witfall mindependent random

examples with probability:
P(consish,D)) < @-&)"

« The probability thaany h; OH,_4is consistent with aln
examples is:

P(consist(H,,4, D)) = P(consisi(h,, D) O--- Oconsis{h,, D))

Proof (cont.)

 Since the probability of a disjunction of eventatisnost
the sum of the probabilities of the individual eteen

P(consisi(H ., D)) <|Hy| A= €)"

* Since: Hd<H| and (le)"<e*m 0<e<1,m>0
P(consisi(H,,,, D)) < |H|e™"

QED

Sample Complexity Analysis

« Letd be an upper bound on the probabilitynot
exhausting the version space. So:
P(consis{H,,y, D)) <|H|e™" < &
eMg o
IH]
)
-em<in(-—)
H]

m2 [—In ﬁ]/s (flip inequality)

{4
(

In1+ln\H\j/€
o

m2

Sample Complexity Result

« Therefore, any consistent learner, given at least:
In£+ln\H\jls
o
examples will produce a result that is PAC.

« Just need to determine the size of a hypothesiegpa
instantiate this result for learning specific ctsef
concepts.

« This gives asufficient number of examples for PAC
learning, bunhot anecessannumber. Several

approximations like that used to bound the proligtmf a
disjunction make this a gross over-estimate intm@c

Sample Complexity of Conjunction Learning

« Consider conjunctions overboolean features. There areothese
since each feature can appear positively, appemtinely, or not
appear in a given conjunction. Therefore |Hfs@®a sufficient
number of examples to learn a PAC concept is:

[In1+ln3"]/52[Inl+nln3j/€
J o

« Concrete examples:
— 8=¢=0.05,n=10 gives 280 examples
— 8=0.01,6=0.05,n=10 gives 312 examples
— 8=¢=0.01,n=10 gives 1,560 examples
— 8=¢=0.01,n=50 gives 5,954 examples
« Result holds for any consistent learner, includirgdS.

Sample Complexity of Learning
Arbitrary Boolean Functions

= Consider any boolean function ovemboolean features such as the
hypothesis space of DNF or decision trees. Theré®&rof these, so a
sufficient number of examples to learn a PAC conisep

[In%+ln22"j/€=[ln%+2”ln2]/5

« Concrete examples:
— 8=¢=0.05,n=10 gives 14,256 examples
— 8=¢=0.05,n=20 gives 14,536,410 examples
— 8=¢=0.05,n=50 gives 1.564101¢ examples

Other Concept Classes

k-term DNF: Disjunctions of at moktunbounded
conjunctive termsT, OT, O---OT,

= In(H)=0n)

k-DNF: Disjunctions of any number of terms each limited to
at mosk literals: (L, OL, 0---0OL) O(M, OM, O---0O0M,) O--+

= In(HN=0@")

k-clause CNF: Conjunctions of at méstinbounded
disjunctive clauses, OC, O---0C,

= In(H)=0n)

k-CNF: Conjunctions of any number of clauses each limited
to at mosk literals:((L, OL, O---OL,) O(M, OM, O---OM,) O---

= In(HN=0@")

Therefore, all of these classes have polynomial sample
complexity given a fixed value & %

Basic Combinatorics Counting

dups allowed | dups not allowed

order relevant | samples permutations
order irrelevant | selections combinations
samples | permutations | selections | combinations
Pick 2 from| 8@ ab aa ab
{a,b} ab ba ab
ba bb
bb
. n+k-1) _(n+k-1)!
k -samples n® k - selections == 7
p K K(n-1)!

. n
- [— Il
k - permutatios: -k K - combinati S{Ej k!(nn. 3

All O(nk) 21

Computational Complexity of Learning

« However, determining whether or not there exidtderm DNF ork-

clause CNF formula consistent with a given trairsegis NP-hard.
Therefore, these classes are not PAC-learnablgodtemputational
complexity.

« There are polynomial time algorithms for learnia@NF andk-DNF.

Construct all possible disjunctive clauses (conjuaderms) of at

mostk literals (there are @f) of these), add each as a new constructed
feature, and then use FIND-S (FIND-G) to find agyiconjunctive
(disjunctive) concept in terms of these complexufess.

Sample complexity of learning k-DNF and k-CNF are O(n¥)
Training on O(nk) examples with O(n¥) features takes O(n%) time

Enlarging the Hypothesis Space to Make
Training Computation Tractable

* However, the languadeCNF is a superset of the languagierm-
DNF since ank-term-DNF formula can be rewritten ak-&NF
formula by distributing AND over OR.

« ThereforeC = k-term DNF can be learned usihig= k-CNF as the
hypothesis space, but it is intractable to leaendbncept in the form
of ak-term DNF formula (also thieCNF algorithm might learn a
close approximation ik-CNF that is not actually expressiblekiterm
DNF).

— Can gain an exponential decrease in computati@mapexity with only a
polynomial increase in sample complexity.

Data for k-CNF
k-term DNF Approximatio
concept

« Dual result holds for learningclause CNF using-DNF as the
hypothesis space.

Probabilistic Algorithms

» Since PAC learnability only requires an
approximate answer withigh probability, a
probabilistic algorithm that only halts and returns
a consistent hypothesis in polynomial time with a
high-probability is sufficient.

* However, it is generally assumed that NP

complete problems cannot be solved even with

high probability by a probabilistic polynomial-
time algorithm, i.e. R NP.

Therefore, given this assumption, classesKike

term DNF andk-clause CNF are not PAC

learnable in that form.

Infinite Hypothesis Spaces

« The preceding analysis was restricted to finite hypothesis
spaces.

« Some infinite hypothesis spaces (such as those including
real-valued thresholds or parameters) are more expressive
than others.

— Compare a rule allowing one threshold on a contisufeature
(length<3cm) vs one allowing two thresholds (1cmgtér3cm).

* Need some measure of the expressiveness of infinite
hypothesis spaces.

* TheVapnik-ChervonenkigVC) dimensionprovides just
such a measure, denoted VAJ(

* Analagous to I{|, there are bounds for sample
complexity using VOf).

Shattering Instances

« A hypothesis space is said to shatter a set of instances iff
for every partition of the instances into positive and
negative, there is a hypothesis that produces that partition.

< For example, consider 2 instances described using a single
real-valued feature being shattered by intervals.

| X Y e

H' ' Xy

oy |
1 x

Shattering Instances (cont)

< But 3 instances cannot be shattered by a single interval.

Pt

H XY,z

! o

|—| y X,z

| Xy | z
—

[A

1z | xy

Cannot do Xz |y

« Since there are"artitions ofm instances, in order fat
to shatter instances|| > 2™

VC Dimension

An unbiased hypothesis space shatters the entire instanee sp
The larger the subset ¥fthat can be shattered, the more
expressive the hypothesis space is, i.e. the less biased.
The Vapnik-Chervonenkis dimension,) of hypothesis
spaceH defined over instance spakas the size of the largest
finite subset o shattered byA. If arbitrarily large finite
subsets oK can be shattered then Mg)(= o«

If there exists at least one subseKadf sized that can be
shattered then V&) > d. If no subset of sizd can be
shattered, then VE{) <d.

For a single intervals on the real line, all sets of 2 itsta can
be shattered, but no set of 3 instances can, sél/€@.

Since H| > 2™, to shatter m instances, &)< log,|H|

HC

VC Dimension Example

« Consider axis-parallel rectangles in the real-plane, i.e.
conjunctions of intervals on two real-valued features.
Some 4 instances can be shattered.

G LTS Y o B el
Fl B Il e

Some 4 instances cannot be shattered:

|

VC Dimension Example (cont)

< No five instances can be shattered since there can be at
most 4 distinct extreme points (min and max on each of the
2 dimensions) and these 4 cannot be included without
including any possibletspoint.

i)

« Therefore VCH) = 4
« Generalizes to axis-parallel hyper-rectangles (conjunctions
of intervals inn dimensions): VQf)=2n.

Upper Bound on Sample Complexity with VC

« Using VC dimension as a measure of expressiveness, the
following number of examples have been shown to be
sufficient for PAC Learning (Blumest al., 1989).

1 2 13
;[mogz[gj +8VC(H) Iogz[?jj

« Compared to the previous result usingi|nthis bound has
some extra constants and an extrg(lfg) factor. Since
VC(H) <log,[H|, this can provide a tighter upper bound on
the number of examples needed for PAC learning.

Conjunctive Learning
with Continuous Features

« Consider learning axis-parallel hyper-rectangles,
conjunctions on intervals amcontinuous features.
— 1.2<length< 10.502.4 < weight< 5.7

« Since VCH)=2n sample complexity is

2002 raemog 2]

« Since the most-specific conjunctive algorithm can easily
find the tightest interval along each dimension that covers
all of the positive instance§ (, <f< f) and runs in
linear time, OP|n), axis-parallel hyper-rectangles are
PAC learnable.

Sample Complexity Lower Bound with VC

=

* There is also a general lower bound on the minimum number
examples necessary for PAC learning (Ehrenfewtiat,,
1989):
Consider any concept claSssuch that VOf)>2 any learnet
and any 0€<1/8, 0<6<1/100. Then there exists a distribution
and target concept @ such that ifL observes fewer than:

1 [1] VC(C)-1
max =log,| = [————
£ o) 32
examples, then with probability at le@stL outputs a
hypothesis having error greater than
« Ignoring constant factors, this lower bound is the same as the

upper bound except for the extra Jdd) factor in the upper
bound.

Analyzing a Preference Bias

« Unclear how to apply previous results to an algorithm with a
preference bias such as simplest decisions tree or sinfipi-.

If the size of the correct conceptnisand the algorithm is
guaranteed to return the minimum sized hypothesis consisten|
with the training data, then the algorithm will always retarn
hypothesis of size at mostand the effective hypothesis space
is all hypotheses of size at most

All hypotheses

Hypotheses of
size at mosh

CalculateHl| or VCH) of hypotheses of size at masto
determine sample complexity.

Computational Complexity and
Preference Bias

However, finding a minimum size hypothesis for most
languages is computationally intractable.

If one has an approximation algorithm that can bound the sizg
of the constructed hypothesis to some polynomial functfo,

of the minimum siza, then can use this to define the effective

hypothesis space.
vp P All hypotheses

g Hypotheses of
size at mosh

Hypotheses of size
at mostf(n).

However, no worst case approximation bounds are known for
practical learning algorithms (e.qg. ID3).

“Occam’s Razor” Result
(Blumeret al., 1987)

« Assume that a concept can be represented using ahmost
bits in some representation language.

< Given a training set, assume the learner returns the
consistent hypothesis representable with the least number
of bits in this language.

« Therefore the effective hypothesis space is all concepts
representable with at masbits.

« Sincen bits can code for at most Bypotheses, |H|£2so
sample complexity if bounded by:

[In1+ln2"j/£=[ln1+nln2j/€
J J

This result can be extended to approximation algorithms
that can bound the size of the constructed hypothesis to at

mostnk for some fixed constamt(just replacen with n)
36

Interpretation of “Occam’s Razor” Result

Since the encoding is unconstrained it fails to
provide any meaningful definition of “simplicity.”
Hypothesis space could be any sufficiently small
space, such as “thé@ost complex boolean
functions, where the complexity of a function is
the size of its smallest DNF representation”
Assumes that the correct concept (or a close
approximation) is actually in the hypothesis space,
so assumea priori that the concept is simple.
Does not provide a theoretical justification of
Occam'’s Razor as it is normally interpreted.

COLT Conclusions

The PAC framework provides a theoretical framework for
analyzing the effectiveness of learning algorithms.

The sample complexity for any consistent learner using
some hypothesis spade, can be determined from a
measure of its expressivendsdgdr VCH), quantifying

bias and relating it to generalization.

If sample complexity is tractable, then the computational
complexity of finding a consistent hypothesidHrgoverns

its PAC learnability.

Constant factors are more important in sample complexity
than in computational complexity, since our ability to
gather data is generally not growing exponentially.
Experimental results suggest that theoretical sample
complexity bounds over-estimate the number of training
instances needed in practice since they are worst-case
upper bounds.

COLT Conclusions (cont)

Additional results produced for analyzing:
— Learning with queries
— Learning with noisy data

— Average case sample complexity given assumptioostahe data
distribution.

— Learning finite automata

— Learning neural networks

Analyzing practical algorithms that use a preference bias i
difficult.

Some effective practical algorithms motivated by
theoretical results:

— Boosting

— Support Vector Machines (SVM)

