Learning Rules

- If-then rules in logic are a standard representation of knowledge that have proven useful in expert-systems and other AI systems.
 - In propositional logic a set of rules for a concept is equivalent to DNF.
- Rules are fairly easy for people to understand and therefore can help provide insight and comprehensible results for human users.
 - Frequently used in data mining applications where goal is discovering understandable patterns in data.
- Methods for automatically inducing rules from data have been shown to build more accurate expert systems than human knowledge engineering for some applications.
- Rule-learning methods have been extended to first-order logic to handle relational (structural) representations.
 - Inductive Logic Programming (ILP) for learning Prolog programs from I/O pairs.
 - Allows moving beyond simple feature-vector representations of data.

Rule Learning Approaches

- Translate decision trees into rules (C4.5)
- Sequential (set) covering algorithms
 - General-to-specific (top-down) (CN2, FOIL)
 - Specific-to-general (bottom-up) (GOLEM, CIGOL)
 - Hybrid search (AQ, Chillin, Progol)
- Translate neural-nets into rules (TREPAN)

Decision-Trees to Rules

- For each path in a decision tree from the root to a leaf, create a rule with the conjunction of tests along the path as an antecedent and the leaf label as the consequent.

<table>
<thead>
<tr>
<th>color</th>
<th>shape</th>
<th>class</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>circle</td>
<td>A</td>
</tr>
<tr>
<td>red</td>
<td>big</td>
<td>B</td>
</tr>
<tr>
<td>green</td>
<td>square</td>
<td>C</td>
</tr>
</tbody>
</table>

 Test case: <big, red, circle> assigned to class A

Sequential Covering

- A set of rules is learned one at a time, each time finding a single rule that covers a large number of positive instances without covering any negatives, removing the positives that it covers, and learning additional rules to cover the rest.

 Let P be the set of positive examples.
 Until P is empty do:
 - Learn a rule R that covers a large number of elements of P but no negatives.
 - Add R to the list of rules.
 - Remove positives covered by R from P.

 This is an instance of the greedy algorithm for minimum set covering and does not guarantee a minimum number of learned rules.
 - Minimum set covering is an NP-hard problem and the greedy algorithm is a standard approximation algorithm.
 - Methods for learning individual rules vary.

Post-Processing Decision-Tree Rules

- Resulting rules may contain unnecessary antecedents that are not needed to remove negative examples and result in over-fitting.
- Rules are post-pruned by greedily removing antecedents or rules until performance on training data or validation set is significantly harmed.
- Resulting rules may lead to competing conflicting conclusions on some instances.
- Sort rules by training (validation) accuracy to create an ordered decision list. The first rule in the list that applies is used to classify a test instance.

 red \land circle \rightarrow A (97% train accuracy)
 red \land big \rightarrow B (95% train accuracy)

 Test case: <big, red, circle> assigned to class A
Strategies for Learning a Single Rule

- **Top Down (General to Specific):**
 - Start with the most-general (empty) rule.
 - Repeatedly add antecedent constraints on features that eliminate negative examples while maintaining as many positives as possible.
 - Stop when only positives are covered.

- **Bottom Up (Specific to General)**
 - Start with a most-specific rule (e.g. complete instance description of a random instance).
 - Repeatedly remove antecedent constraints in order to cover more positives.
 - Stop when further generalization results in covering negatives.
Top-Down Rule Learning Example

Bottom-Up Rule Learning Example
Bottom-Up Rule Learning Example

Bottom-Up Rule Learning Example

Learning a Single Rule in FOIL

• Top-down approach originally applied to first-order logic (Quinlan, 1990).
• Basic algorithm for instances with discrete-valued features:

 Let \(A = \{ \} \) (set of rule antecedents)

 Let \(N \) be the set of negative examples

 Let \(P \) the current set of uncovered positive examples

 Until \(N \) is empty do

 For every feature-value pair (literal) \((F_i = V_{ij}) \) calculate

 Gain\((F_i = V_{ij}, P, N)\)

 Pick literal, \(L \), with highest gain.

 Add \(L \) to \(A \).

 Remove from \(N \) any examples that do not satisfy \(L \).

 Remove from \(P \) any examples that do not satisfy \(L \).

 Return the rule: \(A_1 \land A_2 \land \ldots \land A_n \rightarrow \text{Positive} \)

Foil Gain Metric

• Want to achieve two goals

 – Decrease coverage of negative examples

 • Measure increase in percentage of positives covered when literal is added to the rule

 – Maintain coverage of as many positives as possible.

 • Count number of positives covered.

Define Gain\((L, P, N)\)

 Let \(p \) be the subset of examples in \(P \) that satisfy \(L \).

 Let \(n \) be the subset of examples in \(N \) that satisfy \(L \).

 Return: \(|p|\log_2(|p|/(|p|+|n|)) - \log_2(|P|/(|P|+|N|))\)

Sample Disjunctive Learning Data

<table>
<thead>
<tr>
<th>Example</th>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>small</td>
<td>red</td>
<td>circle</td>
<td>positive</td>
</tr>
<tr>
<td>2</td>
<td>big</td>
<td>red</td>
<td>circle</td>
<td>positive</td>
</tr>
<tr>
<td>3</td>
<td>small</td>
<td>red</td>
<td>triangle</td>
<td>negative</td>
</tr>
<tr>
<td>4</td>
<td>big</td>
<td>blue</td>
<td>circle</td>
<td>negative</td>
</tr>
<tr>
<td>5</td>
<td>medium</td>
<td>red</td>
<td>circle</td>
<td>negative</td>
</tr>
</tbody>
</table>
Propositional FOIL Trace

New Disjunct:
- SIZE=BIG Gain: 0.322
- SIZE=MEDIUM Gain: 0.000
- SIZE=SMALL Gain: 0.322
- COLOR=BLUE Gain: 0.000
- COLOR=RED Gain: 0.644
- COLOR=GREEN Gain: 0.000
- SHAPE=SQUARE Gain: 0.000
- SHAPE=TRIANGLE Gain: 0.000
- SHAPE=CIRCLE Gain: 0.644
Best feature: COLOR=RED

Propositional FOIL Trace

New Disjunct:
- SIZE=BIG Gain: 0.000
- SIZE=MEDIUM Gain: 0.000
- SIZE=SMALL Gain: 1.000
- COLOR=BLUE Gain: 0.000
- COLOR=RED Gain: 0.415
- COLOR=GREEN Gain: 0.000
- SHAPE=SQUARE Gain: 0.000
- SHAPE=TRIANGLE Gain: 0.000
- SHAPE=CIRCLE Gain: 1.000
Best feature: SHAPE=CIRCLE

Learned Disjunct: SIZE=SMALL & SHAPE=CIRCLE

Learned Disjunct: SIZE=BIG & SHAPE=CIRCLE

Final Definition: COLOR=RED & SIZE=BIG v SIZE=SMALL & SHAPE=CIRCLE

Rule Pruning in FOIL

- Prepruning method based on minimum description length (MDL) principle.
- Postpruning to eliminate unnecessary complexity due to limitations of greedy algorithm.
 - For each rule, \(R \)
 - For each antecedent, \(A \) of rule
 - If deleting \(A \) from \(R \) does not cause negatives to become covered then delete \(A \)
 - For each rule, \(R \)
 - If deleting \(R \) does not uncover any positives (since they are redundantly covered by other rules) then delete \(R \)

Rule Learning Issues

- Which is better rules or trees?
 - Trees share structure between disjuncts.
 - Rules allow completely independent features in each disjunct.
 - Mapping some rules sets to decision trees results in an exponential increase in size.

- Which is better top-down or bottom-up search?
 - Bottom-up is more subject to noise, e.g. the random seeds that are chosen may be noisy.
 - Top-down is wasteful when there are many features which do not even occur in the positive examples (e.g. text categorization).

Rule Learning vs. Knowledge Engineering

- An influential experiment with an early rule-learning method (AQ) by Michalski (1980) compared results to knowledge engineering (acquiring rules by interviewing experts).
- People known for not being able to articulate their knowledge well.
- Knowledge engineered rules:
 - Weights associated with each feature in a rule
 - Method for summing evidence similar to certainty factors
 - No explicit disjunction
- Data for induction:
 - Examples of 15 soybean plant diseases described using 35 nominal and discrete ordered features, 630 total examples.
 - 290 "best" (diverse) training examples selected for training. Remainder used for testing
 - What is wrong with this methodology?
“Soft” Interpretation of Learned Rules

• Certainty of match calculated for each category.
• Scoring method:
 – Literals: 1 if match, -1 if not
 – Terms (conjunctions in antecedent): Average of literal scores.
 – DNF (disjunction of rules): Probabilistic sum: \(c_1 + c_2 - c_1^*c_2 \)
• Sample score for instance: \(A \land B \land \neg C \land D \land E \land F \)
 \((1 + 1 + -1)/5 = 0.333 \)
 \((1 + -1 + 1)/3 = 0.333 \)
 Total score for \(P \): \(0.333 + 0.333 - 0.333 \times 0.333 = 0.555 \)
• Threshold of 0.8 certainty to include in possible diagnosis set.

Experimental Results

• Rule construction time:
 – Human: 45 hours of expert consultation
 – AQ11: 4.5 minutes training on IBM 360/75
 • What doesn’t this account for?
• Test Accuracy:

<table>
<thead>
<tr>
<th></th>
<th>1st choice correct</th>
<th>Some choice correct</th>
<th>Number of diagnoses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ11</td>
<td>97.6%</td>
<td>100.0%</td>
<td>2.64</td>
</tr>
<tr>
<td>Manual KE</td>
<td>71.8%</td>
<td>96.9%</td>
<td>2.90</td>
</tr>
</tbody>
</table>

Relational Learning and Inductive Logic Programming (ILP)

• Fixed feature vectors are a very limited representation of instances.
• Examples or target concept may require relational representation that includes multiple entities with relationships between them (e.g. a graph with labeled edges and nodes).
• First-order predicate logic is a more powerful representation for handling such relational descriptions.
• Horn clauses (i.e. if-then rules in predicate logic, Prolog programs) are a useful restriction on full first-order logic that allows decidable inference.
• Allows learning programs from sample I/O pairs.

ILP Examples

• Learn definitions of family relationships given data for primitive types and relations.
 \(\text{uncle}(A,B) :\text{ brother}(A,C), \text{ parent}(C,B). \)
 \(\text{uncle}(A,B) :\text{ husband}(A,C), \text{ sister}(C,D), \text{ parent}(D,B). \)
• Learn recursive list programs from I/O pairs.
 \(\text{member}(X,[X | Y]). \)
 \(\text{member}(X, [Y | Z]) :\text{ member}(X,Z). \)
 \(\text{append}([],L,L). \)
 \(\text{append}([X | L1,L2,[X | L12]:}\text{--append}(L1,L2,L12). \)

ILP Systems

• Top-Down:
 – FOIL (Quinlan, 1990)
• Bottom-Up:
 – CIGOL (Muggleton & Buntine, 1988)
 – GOLEM (Muggleton, 1990)
• Hybrid:
 – CHILLIN (Mooney & Zelle, 1994)
 – PROGOL (Muggleton, 1995)
 – ALEPH (Srinivasan, 2000)
FOIL First-Order Inductive Logic

- Top-down sequential covering algorithm “upgraded” to learn Prolog clauses, but without logical functions.
- Background knowledge must be provided extensionally.
- Initialize clause for target predicate \(P \) to \(P(X_1, \ldots, X_T) :- \).
- Possible specializations of a clause include adding all possible literals:
 - \(Q(V_1, \ldots, V_T) \)
 - \(\neg Q(V_1, \ldots, V_T) \)
 - \(X_i = X_j \)
 - \(\neg (X_i = X_j) \)
 where \(X_i \)'s are “bound” variables already in the existing clause; at least one of \(V_1, \ldots, V_T \) is a bound variable, others can be new.
- Allow recursive literals \(P(V_1, \ldots, V_T) \) if they do not cause an infinite regress.
- Handle alternative possible values of new intermediate variables by maintaining examples as tuples of all variable values.

FOIL Training Data

- For learning a recursive definition, the positive set must consist of all tuples of constants that satisfy the target predicate, given some fixed universe of constants.
- Background knowledge consists of complete set of tuples for each background predicate for this universe.

Example: Consider learning a definition for the target predicate \(\text{path} \):

\[
\text{path}(X,Y) :- \text{edge}(X,Y).
\]

\[
\text{path}(X,Y) :- \text{edge}(X,Z), \text{path}(Z,Y).
\]

\[
\text{edge}: \{<1,2>,<1,3>,<3,6>,<4,2>,<4,6>,<6,5>\}
\]

\[
\text{path}: \{<1,2>,<1,3>,<1,6>,<1,5>,<3,6>,<3,5>,<4,2>,<4,6>,<6,5>\}
\]

FOIL Negative Training Data

- Negative examples of target predicate can be provided directly, or generated indirectly by making a closed world assumption.
 - Every pair of constants \(X, Y \) not in positive tuples for \(\text{path} \) predicate.

Negative \(\text{path} \) tuples:

\[
\{<1,1>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,
<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<5,1>,
<5,2>,<5,3>,<5,4>,<5,5>,<5,6>,<6,1>,<6,2>,<6,3>,
<6,4>,<6,5>\}
\]

Sample FOIL Induction

\[
\text{Pos}: \{<1,2>,<1,3>,<1,6>,<1,5>,<3,6>,<3,5>,
<4,2>,<4,6>,<4,5>,<6,5>\}
\]

\[
\text{Neg}: \{<1,3>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,
<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<5,1>,
<5,2>,<5,3>,<5,4>,<5,5>,<5,6>,<6,1>,<6,2>,<6,3>,
<6,4>,<6,5>\}
\]

Start with clause:

\[
\text{path}(X,Y) :- \]

Possible literals to add:

\[
\text{edge}(X,X), \text{edge}(Y,Y), \text{edge}(X,Y), \text{edge}(Y,X), \text{edge}(X,Z), \text{edge}(Y,Z), \text{edge}(Z,X), \text{edge}(Z,Y),
\text{path}(X,X), \text{path}(Y,Y), \text{path}(X,Y), \text{path}(X,Z), \text{path}(Y,Z), \text{path}(Z,X), \text{path}(Z,Y), X=Y,
\text{plus negations of all of these.}
\]

Test:

\[
\text{path}(X,Y) :- \text{edge}(X,X).
\]

Covers 0 positive examples
Covers 6 negative examples
Not a good literal.
Sample FOIL Induction

Pos: \{<1,6>,<1,5>,<3,5>,<4,5>\}
Neg: \{<1,1>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<5,1>,<5,2>,<5,3>,<5,4>,<5,5>,<5,6>,<6,1>,<6,2>,<6,3>,<6,4>,<6,6>\}
Test: path(X,Y) :- edge(X,Y).
Covers 6 positive examples
Cover 0 negative examples
Chosen as best literal. Result is base clause.
Remove covered positive tuples.

Sample FOIL Induction

Pos: \{<1,6>,<1,5>,<3,5>,<4,5>\}
Neg: \{<1,1>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<5,1>,<5,2>,<5,3>,<5,4>,<5,5>,<5,6>,<6,1>,<6,2>,<6,3>,<6,4>,<6,6>\}
Test: path(X,Y) :- edge(X,Y).
Start new clause

Sample FOIL Induction

Pos: \{<1,6>,<1,5>,<3,5>,<4,5>\}
Neg: \{<1,1>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<2,5>,<2,6>,<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<5,1>,<5,2>,<5,3>,<5,4>,<5,5>,<5,6>,<6,1>,<6,2>,<6,3>,<6,4>,<6,6>\}
Test: path(X,Y) :- edge(X,Y).
Covers 0 positive examples
Covers 0 negative examples
Not a good literal.

Sample FOIL Induction

Pos: \{<1,6>,<1,5>,<3,5>,<4,5>\}
Neg: \{<1,1>,<1,4>,<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<6,1>,<6,2>,<6,3>,<6,4>,<6,6>\}
Test: path(X,Y) :- edge(X,Y).
Covers all 4 positive examples
Covers 15 of 26 negative examples
Eventually chosen as best possible literal
Negatives still covered, remove uncovered examples.

Sample FOIL Induction

Pos: \{<1,6>,<1,5>,<3,5>,<4,5>\}
Neg: \{<1,1>,<1,4>,<3,1>,<3,2>,<3,3>,<3,4>,<4,1>,<4,3>,<4,4>,<6,1>,<6,2>,<6,3>,<6,4>,<6,6>\}
Test: path(X,Y) :- edge(X,Y).
Covers all 4 positive examples
Covers 15 of 26 negative examples
Eventually chosen as best possible literal
Negatives still covered, remove uncovered examples.
Expand tuples to account for possible Z values.
Sample FOIL Induction

Pos: \{(1, 6, 2), (1, 6, 3), (1, 5, 2), (1, 5, 3), (3, 5, 6)\}

Neg: \{(1, 1, 2), (1, 4), (3, 1, 2), (3, 3, 2), (4, 1, 2), (4, 3, 2), (4, 4, 2), (5, 1, 2), (5, 3, 2)\}

Test: \textit{path}(X, Y) \leftarrow \textit{edge}(X, Z).

Covers all 4 positive examples
Covers 15 of 26 negative examples
Eventually chosen as best possible literal
Negatives still covered, remove uncovered examples.
Expand tuples to account for possible \(Z \) values.

Sample FOIL Induction

Pos: \{(1, 6, 2), (1, 6, 3), (1, 5, 2), (1, 5, 3), (3, 5, 6)\}

Neg: \{(1, 1, 2), (1, 4), (3, 1, 2), (3, 3, 2), (4, 1, 2), (4, 3, 2), (4, 4, 2), (5, 1, 2), (5, 3, 2)\}

Test: \textit{path}(X, Y) \leftarrow \textit{edge}(X, Z).

Covers all 4 positive examples
Covers 15 of 26 negative examples
Eventually chosen as best possible literal
Negatives still covered, remove uncovered examples.
Expand tuples to account for possible \(Z \) values.

Sample FOIL Induction

Pos: \{(1, 6, 2), (1, 6, 3), (1, 5, 2), (1, 5, 3), (3, 5, 6)\}

Neg: \{(1, 1, 2), (1, 4), (3, 1, 2), (3, 3, 2), (4, 1, 2), (4, 3, 2), (4, 4, 2), (5, 1, 2), (5, 3, 2)\}

Test: \textit{path}(X, Y) \leftarrow \textit{edge}(X, Z).

Covers 3 positive examples
Covers 0 negative examples

Sample FOIL Induction

Pos: \{(1, 6, 2), (1, 6, 3), (1, 5, 2), (1, 5, 3), (3, 5, 6)\}

Neg: \{(1, 1, 2), (1, 4), (3, 1, 2), (3, 3, 2), (4, 1, 2), (4, 3, 2), (4, 4, 2), (5, 1, 2), (5, 3, 2)\}

Test: \textit{path}(X, Y) \leftarrow \textit{edge}(X, Z), \textit{edge}(Z, Y).

Covers 3 positive examples
Covers 0 negative examples
Sample FOIL Induction

Pos: \{<1, 6, 2>, <1, 6, 3>, <1, 5, 2>, <1, 5, 3>, <3, 5, 6>,
<4, 5, 2>, <4, 5, 6>,
<1, 5, 6>, <1, 4, 6>,
<3, 4, 2>, <3, 4, 6>,
<4, 1, 2>, <4, 1, 6>,
<3, 1, 6>, <3, 2, 6>,
<4, 4, 2>, <4, 4, 6>,
<6, 3, 5>, <6, 2, 5>,
<6, 3, 5>, <6, 4, 5>, <6, 6, 5>\}

Neg: \{<1, 1, 2>, <1, 1, 3>, <1, 4, 2>, <1, 4, 3>, <3, 1, 6>, <3, 2, 6>,
<3, 3, 6>, <3, 4, 2>, <3, 4, 6>, <4, 1, 2>, <4, 1, 6>,
<4, 4, 2>, <4, 4, 6>,
<6, 1, 5>, <6, 2, 5>, <6, 3, 5>,
<6, 4, 5>, <6, 6, 5>\}

Test: path(X,Y):- edge(X,Z), path(Z,Y).

Covers 4 positive examples
Covers 0 negative examples
Eventually chosen as best literal: completes clause.
Definition complete, since all original <X,Y> tuples are covered
(by way of covering some <X,Y,Z> tuple.)

Picking the Best Literal

• Same as in propositional case but must account for
multiple expanding tuples.

P is the set of positive tuples before adding literal L
N is the set of negative tuples before adding literal L
p is the set of expanded positive tuples after adding literal L
n is the set of expanded negative tuples after adding literal L
p+ is the subset of positive tuples before adding L that satisfy
L and are expanded into one or more of the resulting set
of positive tuples, p

Recursion Limitation

• Must not build a clause that results in an infinite regress.
 - path(X,Y) :- path(X,Y).
 - path(X,Y) :- path(Y,X).

 To guarantee termination of the learned clause, must “reduce”
 at least one argument according some well-founded partial
 ordering.
 • A binary predicate, R, is a well-founded partial ordering if the
 transitive closure does not contain R(a,a) for any constant a.
 - rest(A,B)
 - edge(A,B) for an acyclic graph

Ensuring Termination in FOIL

• First empirically determines all binary-predicates in the
 background that form a well-founded partial ordering by
 computing their transitive closures.

 • Only allows recursive calls in which one of the arguments
 is reduced according to a known well-founded partial
 ordering.
 - path(X,Y) :- edge(X,Z), path(Z,Y).
 X is reduced by edge so this recursive call is OK

 • May prevent legal recursive calls that terminate for some
 other more-complex reason.

 • Due to halting problem, cannot determine if an arbitrary
 recursive definition is guaranteed to halt.

Learning Family Relations

• FOIL can learn accurate Prolog definitions of family relations
 such as wife, husband, mother, father, daughter, son, sister,
 brother, aunt, uncle, nephew and niece, given basic data on
 parent, spouse, and gender for a particular family.

 Produces significantly more accurate results than feature-
 based learners (e.g. neural nets) applied to a “flattened”
 (“propositionalized”) and restricted version of the problem.

 Input: 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
 Output: 0, 1, 0, 0, 0

 One bit per person
 One bit per relation
 One binary concept
 per person

 FOIL can learn simple Prolog programs from I/O pairs.

 • In Prolog, lists are represented using a logical function
 cons(Head, Tail) written as [Head | Tail].

 • Since FOIL cannot handle functions, this is re-
 represented as a predicate:
 components(List, Head, Tail)

 • In general, an m-ary function can be replaced by a
 (m+1)-ary predicate.

Inducing Recursive List Programs

• FOIL can learn simple Prolog programs from I/O pairs.

 In Prolog, lists are represented using a logical function
 cons(Head, Tail) written as [Head | Tail].

 Since FOIL cannot handle functions, this is re-
 represented as a predicate:
 components(List, Head, Tail)

 In general, an m-ary function can be replaced by a
 (m+1)-ary predicate.
Example: Learn Prolog Program for List Membership

• Target:
 - member:
 (a, [a]), (b, [b]), (a, [a,b]), (b, [a,b]), ...

• Background:
 - components:
 ([a], a, []), ([b], b, []), ([a,b], a, [b]),
 ([b,a], b, [a]), ([a,b,c], a, [b,c]), ...

• Definition:
 member(A, B) :- components(B, A, C).
 member(A, B) :- components(B, C, D),
 member(A, D).

Logic Program Induction in FOIL

• FOIL has also learned
 - append given components and null
 - reverse given append, components, and null
 - quicksort given partition, append, components, and null
 - Other programs from the first few chapters of a Prolog text.

• Learning recursive programs in FOIL requires a complete set of positive examples for some constrained universe of constants, so that a recursive call can always be evaluated extensionally.
 - For lists, all lists of a limited length composed from a small set of constants (e.g., all lists up to length 3 using {a,b,c}).
 - Size of extensional background grows combinatorially.

• Negative examples usually computed using a closed-world assumption.
 - Grows combinatorially large for higher arity target predicates.
 - Can randomly sample negatives to make tractable.

More Realistic Applications

• Classifying chemical compounds as mutagenic (cancer causing) based on their graphical molecular structure and chemical background knowledge.

• Classifying web documents based on both the content of the page and its links to and from other pages with particular content.
 - A web page is a university faculty home page if:
 • It contains the words “Professor” and “University”, and
 • It points to a page with the words “course” and “exam”

FOIL Limitations

• Search space of literals (branching factor) can become intractable.
 - Use aspects of bottom-up search to limit search.

• Requires large extensional background definitions.
 - Use intensional background via Prolog inference.

• Hill-climbing search gets stuck at local optima and may not even find a consistent clause.
 - Use limited backtracking (beam search)
 - Include determinate literals with zero gain.
 - Use relational pathfinding or relational clichés.

• Requires complete examples to learn recursive definitions.
 - Use intensional interpretation of learned recursive clauses.

FOIL Limitations (cont.)

• Requires a large set of closed-world negatives.
 - Exploit “output completeness” to provide “implicit” negatives.
 - past-tense(s, t, n, g), [s, a, n, g]}

• Inability to handle logical functions.
 - Use bottom-up methods that handle functions

• Background predicates must be sufficient to construct definition, e.g. cannot learn reverse unless given append.
 - Predicate invention
 • Learn reverse by inventing append
 • Learn sort by inventing insert

Rule Learning and ILP Summary

• There are effective methods for learning symbolic rules from data using greedy sequential covering and top-down or bottom-up search.

• These methods have been extended to first-order logic to learn relational rules and recursive Prolog programs.

• Knowledge represented by rules is generally more interpretable by people, allowing human insight into what is learned and possible human approval and correction of learned knowledge.