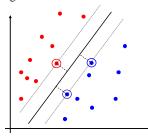


Maximum Margin Classification

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.



University of Texas at Austin

Machine Learning Group !

Linear SVMs Mathematically (cont.)

• Then we can formulate the quadratic optimization problem:

Find **w** and *b* such that
$$\rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximized}$$
 and for all $(\mathbf{x}_i, y_i), i=1..n: y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

 $\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$ is minimized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

University of Texas at Austin

Machine Learning Group

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbf{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathbf{T}}\mathbf{x}_{i} + b \le -\rho/2 \quad \text{if } y_{i} = -1 \\ \mathbf{w}^{\mathbf{T}}\mathbf{x}_{i} + b \ge \rho/2 \quad \text{if } y_{i} = 1 \quad \iff \quad y_{i}(\mathbf{w}^{\mathbf{T}}\mathbf{x}_{i} + b) \ge \rho/2$$

- For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is $r = \frac{\mathbf{y}_s(\mathbf{w}^T\mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$
- Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

University of Texas at Austin

Machine Learning Group

Solving the Optimization Problem

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

- Need to optimize a quadratic function subject to linear constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a dual problem where a Lagrange multiplier α_i is associated with every inequality constraint in the primal (original) problem:

Find $\alpha_1 \dots \alpha_n$ such that $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

University of Texas at Austin

The Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need \mathbf{w} explicitly):

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point \mathbf{x} and the support vectors \mathbf{x}_i we will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x, x, between all training points.

University of Texas at Austin

Machine Learning Group

Soft Margin Classification Mathematically

• The old formulation:

Find **w** and b such that $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w}$ is minimized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1$

• Modified formulation incorporates slack variables:

Find w and b such that

 $\Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} + C\Sigma \xi_{i}$ is minimized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$, $\xi_i \ge 0$

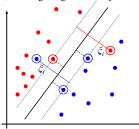
 Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data

University of Texas at Austin

11 =

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables \(\xi_i \) can be added to allow misclassification of difficult or noisy examples, resulting margin called \(soft. \)



University of Texas at Austin

Machine Learning Group

Machine Learning Group

Soft Margin Classification – Solution

Dual problem is identical to separable case (would *not* be identical if the 2-norm penalty for slack variables CΣξ_i² was used in primal objective, we would need additional Lagrange multipliers for slack variables):

Find $\alpha_1 \dots \alpha_N$ such that

 $\mathbf{Q}(\mathbf{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_i y_i y_i \mathbf{x}_i^T \mathbf{x}_i$ is maximized and

- (1) $\sum \alpha_i y_i = 0$
- (2) $0 \le \alpha_i \le C$ for all α_i
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

 $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$

 $b = y_k (1 - \zeta_k) - \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k$ for any k s.t. $\alpha_k > 0$

Again, we don't need to compute **w** explicitly for classification:

 $f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$

University of Texas at Austin

= 12 =

Theoretical Justification for Maximum Margins

· Vapnik has proved the following:

The class of optimal linear separators has VC dimension h bounded from above as $\lceil D^2 \rceil$

 $h \le \min \left\{ \left\lceil \frac{D^2}{\rho^2} \right\rceil, m_0 \right\} + 1$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_0 is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m₀ we can minimize the VC dimension by maximizing the margin ρ.
- Thus, complexity of the classifier is kept small regardless of dimensionality.

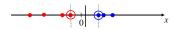
University of Texas at Austin

13

Machine Learning Group

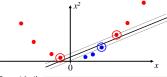
Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:



• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:



University of Texas at Austin

Machine Learning Group

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_r.
- Both in the dual formulation of the problem and in the solution training points appear only inside inner products:

Find $a_1...a_N$ such that $\mathbf{Q}(\mathbf{u}) = \sum a_i - \frac{1}{2} \sum \sum a_i a_j y_i \mathbf{x}_i^T \mathbf{x}_j$ is maximized and (1) $\sum a_i y_i = 0$ (2) $0 \le a_i \le C$ for all a_i

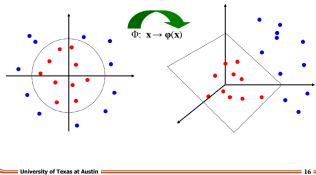
 $f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$

University of Texas at Austin

Machine Learning Group

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:



The "Kernel Trick"

- The linear classifier relies on inner product between vectors $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$
- If every datapoint is mapped into high-dimensional space via some transformation Φ: x→ φ(x), the inner product becomes:

$$K(\mathbf{x}_i,\mathbf{x}_i) = \mathbf{\varphi}(\mathbf{x}_i)^{\mathrm{T}}\mathbf{\varphi}(\mathbf{x}_i)$$

- A *kernel function* is a function that is eqiuvalent to an inner product in some feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$,

Need to show that $K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i)^T \varphi(\mathbf{x}_i)$:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = (1 + \mathbf{x}_{i}^{T}\mathbf{x}_{j})^{2} = 1 + x_{i1}^{2}x_{j1}^{2} + 2x_{i1}x_{j1}x_{i2}x_{j2} + x_{i2}^{2}x_{j2}^{2} + 2x_{i1}x_{j1} + 2x_{i2}x_{j2} = [1 \ x_{i1}^{2} \ \sqrt{2} \ x_{i1}x_{i2} \ x_{i2}^{2} \ \sqrt{2}x_{i1} \ \sqrt{2}x_{i2}]^{T}[1 \ x_{j1}^{2} \ \sqrt{2} \ x_{j1}x_{j2} \ x_{j2}^{2} \ \sqrt{2}x_{j1} \ \sqrt{2}x_{j2}] = = \mathbf{\varphi}(\mathbf{x}_{i})^{T}\mathbf{\varphi}(\mathbf{x}_{j}), \text{ where } \mathbf{\varphi}(\mathbf{x}) = [1 \ x_{j}^{2} \ \sqrt{2} \ x_{j}x_{2} \ x_{2}^{2} \ \sqrt{2}x_{j} \ \sqrt{2}x_{2}]$$

 Thus, a kernel function *implicitly* maps data to a high-dimensional space (without the need to compute each φ(x) explicitly).

University of Texas at Austin

17 =

Machine Learning Group

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^T \mathbf{x}_i$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^p$
 - Mapping Φ : $\mathbf{x} \to \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ has $\binom{d+p}{p}$ dimensions

$$-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2}$$

- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_j) = e$
 - Mapping Φ: x→ φ(x), where φ(x) is infinite-dimensional: every point is mapped to a function (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has *intrinsic* dimensionality *d* (the mapping is not *onto*), but linear separators in it correspond to *non-linear* separators in original space.

University of Texas at Austin

_

Machine Learning Group !

What Functions are Kernels?

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$ can be cumbersome.
- · Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

 Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	 $K(\mathbf{x}_1,\mathbf{x}_n)$
K=	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$	$K(\mathbf{x}_2,\mathbf{x}_n)$
	$K(\mathbf{x}_n, \mathbf{x}_1)$	$K(\mathbf{x}_n, \mathbf{x}_2)$	$K(\mathbf{x}_n, \mathbf{x}_3)$	 $K(\mathbf{x}_n, \mathbf{x}_n)$

University of Texas at Austin

18 =

Machine Learning Group

Non-linear SVMs Mathematically

• Dual problem formulation:

Find $\alpha_j ... \alpha_n$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

· The solution is:

 $f(\mathbf{x}) = \sum \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$

• Optimization techniques for finding a_i 's remain the same!

University of Texas at Austin

20 =

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs use decomposition to hillclimb over a subset of α_i's at a time, e.g. SMO [Platt '99] and [Joachims '99]
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.

University of Texas at Austin

1 =