
1

1

CS 391L: Machine Learning
Text Categorization

Raymond J. Mooney
University of Texas at Austin

2

Text Categorization Applications

• Web pages
– Recommending
– Yahoo-like classification

• Newsgroup/Blog Messages
– Recommending
– spam filtering
– Sentiment analysis for marketing

• News articles
– Personalized newspaper

• Email messages
– Routing
– Prioritizing
– Folderizing
– spam filtering
– Advertising on Gmail

3

Text Categorization Methods

• Representations of text are very high dimensional
(one feature for each word).

• Vectors are sparse since most words are rare.
– Zipf’s law and heavy-tailed distributions

• High-bias algorithms that prevent overfitting in
high-dimensional space are best.
– SVMs maximize margin to avoid over-fitting in hi-D

• For most text categorization tasks, there are many
irrelevant and many relevant features.

• Methods that sum evidence from many or all
features (e.g. naïve Bayes, KNN, neural-net,
SVM) tend to work better than ones that try to
isolate just a few relevant features (decision-tree
or rule induction). 4

Naïve Bayes for Text

• Modeled as generating a bag of words for a
document in a given category by repeatedly
sampling with replacement from a
vocabulary V = { w1, w2,…wm} based on the
probabilities P(wj | ci).

• Smooth probability estimates with Laplace
m-estimates assuming a uniform distribution
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in

each category exactly once.

5

nude
dealNigeria

Naïve Bayes Generative Model for Text

spam legit

hot

$
Viagra

lottery

!!
!

win
Friday

exam

computer

May

PM

test
March

scienceViagra

homework
score

!

spam
legit
spam

spam
legit

spam

legit

legit
spam

Category

Viagra

deal
hot !!

6

Naïve Bayes Classification

nude
dealNigeria

spam legit

hot

$
Viagra

lottery

!!
!

win
Friday

exam

computer

May

PM

test
March

scienceViagra

homework
score

!

spam
legit
spam

spam
legit

spam

legit

legit
spam

Category

Win lotttery $!

?? ??

2

7

Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci ∈ C

Let Di be the subset of documents in D in category ci

P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di

Let ni be the total number of word occurrences in Ti

For each word wj ∈ V
Let nij be the number of occurrences of wj in Ti

Let P(wj | ci) = (nij + 1) / (ni + |V|)

8

Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X

)|()(argmax
1

∏
=∈

n

i
iii

Cic

caPcP

9

Underflow Prevention

• Multiplying lots of probabilities, which are
between 0 and 1 by definition, can result in
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to
perform all computations by summing logs
of probabilities rather than multiplying
probabilities.

• Class with highest final un-normalized log
probability score is still the most probable.

10

Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes (the
class with maximum posterior probability)
are usually fairly accurate.

• However, due to the inadequacy of the
conditional independence assumption, the
actual posterior-probability numerical
estimates are not.
– Output probabilities are generally very close to

0 or 1.

11

Textual Similarity Metrics

• Measuring similarity of two texts is a well-studied
problem.

• Standard metrics are based on a “bag of words”
model of a document that ignores word order and
syntactic structure.

• May involve removing common “stop words” and
stemming to reduce words to their root form.

• Vector-space model from Information Retrieval
(IR) is the standard approach.

• Other metrics (e.g. edit-distance) are also used.

12

The Vector-Space Model

• Assumet distinct terms remain after preprocessing;
call them index terms or the vocabulary.

• These “orthogonal” terms form a vector space.
Dimension = t = |vocabulary|

• Each term, i, in a document or query, j, is given a
real-valued weight, wij.

• Both documents and queries are expressed as
t-dimensional vectors:

dj = (w1j, w2j, …, wtj)

3

13

Graphic Representation

Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 + T3

Q = 0T1 + 0T2 + 2T3

7

32

5

• Is D1 or D2 more similar to Q?
• How to measure the degree of

similarity? Distance? Angle?
Projection?

14

Document Collection

• A collection of n documents can be represented in the
vector space model by a term-document matrix.

• An entry in the matrix corresponds to the “weight” of a
term in the document; zero means the term has no
significance in the document or it simply doesn’t exist in
the document.

T1 T2 …. Tt
D1 w11 w21 … wt1

D2 w12 w22 … wt2

: : : :
: : : :
Dn w1n w2n … wtn

15

Term Weights: Term Frequency

• More frequent terms in a document are more
important, i.e. more indicative of the topic.

fij = frequency of term i in document j

• May want to normalize term frequency(tf) by
dividing by the frequency of the most common
term in the document:

tfij = f ij / maxi{ fij}

16

Term Weights: Inverse Document Frequency

• Terms that appear in many different documents
are lessindicative of overall topic.

df i = document frequency of termi

= number of documents containing termi

idfi = inverse document frequency of termi,

= log2 (N/ dfi)

(N: total number of documents)

• An indication of a term’s discriminationpower.

• Log used to dampen the effect relative to tf.

17

TF-IDF Weighting

• A typical combined term importance indicator is
tf-idf weighting:

wij = tfij idfi = tfij log2 (N/ dfi)
• A term occurring frequently in the document but

rarely in the rest of the collection is given high
weight.

• Many other ways of determining term weights
have been proposed.

• Experimentally, tf-idf has been found to work well.

18

Cosine Similarity Measure

• Cosine similarity measures the cosine of
the angle between two vectors.

• Inner product normalized by the vector
lengths.

D1 = 2T1 + 3T2 + 5T3 CosSim(D1 , Q) = 10 / √(4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3 CosSim(D2 , Q) = 2 / √(9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3

θ2

t3

t1

t2

D1

D2

Q

θ1

D1 is 6 times better than D2 using cosine similarity but only 5 times better using
inner product.

∑ ∑∑
= =

=•

⋅

⋅
=

⋅
t

i

t

i

t

i

ww

ww

qd

qd

iqij

iqij

j

j

1 1

22

1

)(rr rr
CosSim(dj, q) =

4

19

Relevance Feedback in IR

• After initial retrieval results are presented,
allow the user to provide feedback on the
relevance of one or more of the retrieved
documents.

• Use this feedback information to reformulate
the query.

• Produce new results based on reformulated
query.

• Allows more interactive, multi-pass process.

20

Relevance Feedback Architecture

Rankings
IR

System

Document
corpus

Ranked
Documents

1. Doc1
2. Doc2
3. Doc3

.

.
1. Doc1 ⇓
2. Doc2 ⇑
3. Doc3 ⇓

.

.
Feedback

Query
String

Revised
Query

ReRanked
Documents

1. Doc2
2. Doc4
3. Doc5

.

.

Query
Reformulation

21

Using Relevance Feedback (Rocchio)

• Relevance feedback methods can be adapted for
text categorization.

• Use standard TF/IDF weighted vectors to
represent text documents (normalized by
maximum term frequency).

• For each category, compute a prototypevector by
summing the vectors of the training documents in
the category.

• Assign test documents to the category with the
closest prototype vector based on cosine
similarity.

22

Illustration of Rocchio Text Categorization

23

Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0> (init. prototype vectors)
For each training example <x, c(x)> ∈ D

Let d be the frequency normalized TF/IDF term vector for doc x
Let i = j: (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d

24

Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m= –2 (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s= cosSim(d, pi)
if s> m

let m= s
let r = ci (update most similar class prototype)

Return class r

5

25

Rocchio Properties

• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the

examples in each class (a prototype).
• Prototype vector does not need to be

averaged or otherwise normalized for length
since cosine similarity is insensitive to
vector length.

• Classification is based on similarity to class
prototypes.

26

Rocchio Anomoly

• Prototype models have problems with
polymorphic (disjunctive) categories.

27

Illustration of 3 Nearest Neighbor for Text

28

K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> ∈ D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> ∈ D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D. (get most similar neighbors)
Return the majority class of examples in N

29

3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle
polymorphic categories well.

30

Inverted Index

• Linear search through training texts is not
scalable.

• An index that points from words to
documents that contain them allows more
rapid retrieval of similar documents.

• Once stop-words are eliminated, the
remaining words are rare, so an inverted
index narrows attention to a relatively small
number of documents that share meaningful
vocabulary with the test document.

6

31

Conclusions

• Many important applications of
classification to text.

• Requires an approach that works well with
large, sparse features vectors, since
typically each word is a feature and most
words are rare.
– Naïve Bayes

– kNN with cosine similarity

– SVMs

