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Text Categorization Applications

• Web pages 
– Recommending
– Yahoo-like classification

• Newsgroup/Blog Messages 
– Recommending
– spam filtering
– Sentiment analysis for marketing

• News articles 
– Personalized newspaper

• Email messages 
– Routing
– Prioritizing 
– Folderizing
– spam filtering
– Advertising on Gmail
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Text Categorization Methods

• Representations of text are very high dimensional 
(one feature for each word).

• Vectors are sparse since most words are rare.
– Zipf’s law and heavy-tailed distributions

• High-bias algorithms that prevent overfitting in 
high-dimensional space are best.
– SVMs maximize margin to avoid over-fitting in hi-D

• For most text categorization tasks, there are many 
irrelevant and many relevant features.

• Methods that sum evidence from many or all 
features (e.g. naïve Bayes, KNN, neural-net, 
SVM) tend to work better than ones that try to 
isolate just a few relevant features (decision-tree 
or rule induction). 4

Naïve Bayes for Text

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = { w1, w2,…wm} based on the 
probabilities P(wj | ci).

• Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|
– Equivalent to a virtual sample of seeing each word in 

each category exactly once.
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Naïve Bayes Classification 
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci ∈ C

Let Di be the subset of documents in D in category ci

P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di

Let ni be the total number of word occurrences in Ti

For each word wj ∈ V
Let nij be the number of occurrences of wj in Ti

Let P(wj | ci) = (nij + 1) / (ni + |V|)  
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Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X
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Underflow Prevention

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow.

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.

• Class with highest final un-normalized log 
probability score is still the most probable.
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Naïve Bayes Posterior Probabilities

• Classification results of naïve Bayes (the 
class with maximum posterior probability) 
are usually fairly accurate.

• However, due to the inadequacy of the 
conditional independence assumption, the 
actual posterior-probability numerical 
estimates are not.
– Output probabilities are generally very close to 

0 or 1.
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Textual Similarity Metrics

• Measuring similarity of two texts is a well-studied 
problem.

• Standard metrics are based on a “bag of words”
model of a document that ignores word order and 
syntactic structure.

• May involve removing common “stop words” and 
stemming to reduce words to their root form.

• Vector-space model from Information Retrieval 
(IR) is the standard approach.

• Other metrics (e.g. edit-distance) are also used.
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The Vector-Space Model

• Assumet distinct terms remain after preprocessing; 
call them index terms or the vocabulary.

• These “orthogonal” terms form a vector space.
Dimension = t = |vocabulary| 

• Each term, i,  in a document or query, j, is given a 
real-valued weight, wij.

• Both documents and queries are expressed as       
t-dimensional vectors:

dj = (w1j, w2j, …, wtj)
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Graphic Representation

Example:

D1 = 2T1 + 3T2 + 5T3

D2 = 3T1 + 7T2 +   T3

Q = 0T1 + 0T2 +  2T3

T3

T1

T2

D1 = 2T1+ 3T2 + 5T3

D2 = 3T1 + 7T2 +  T3

Q = 0T1 + 0T2 + 2T3
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• Is D1 or D2 more similar to Q?
• How to measure the degree of 

similarity? Distance? Angle? 
Projection?
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Document Collection

• A collection of n documents can be represented in the 
vector space model by a term-document matrix.

• An entry in the matrix corresponds to the “weight” of a 
term in the document; zero means the term has no 
significance in the document or it simply doesn’t exist in 
the document.

T1 T2 ….      Tt
D1 w11 w21 … wt1

D2 w12 w22 … wt2

: :      :               :
: :      :               :
Dn w1n w2n … wtn
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Term Weights: Term Frequency

• More frequent terms in a document are more 
important, i.e. more indicative of the topic.

fij = frequency of term i in document j

• May want to normalize term frequency(tf)  by 
dividing by the frequency of the most common 
term in the document:

tfij = f ij / maxi{ fij}
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Term Weights: Inverse Document Frequency

• Terms that appear in many different documents 
are lessindicative of overall topic.

df i = document frequency of termi  

= number of documents containing termi

idfi = inverse document frequency of termi, 

= log2 (N/ dfi)  

(N: total number of documents)

• An indication of a term’s discriminationpower.

• Log used to dampen the effect relative to tf.
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TF-IDF Weighting

• A typical combined term importance indicator is 
tf-idf weighting:

wij =  tfij idfi =  tfij log2 (N/ dfi)
• A term occurring frequently in the document but 

rarely in the rest of the collection is given high 
weight.

• Many other ways of determining term weights 
have been proposed.

• Experimentally, tf-idf has been found to work well.
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Cosine Similarity Measure

• Cosine similarity measures the cosine of 
the angle between two vectors.

• Inner product normalized by the vector 
lengths.

D1 = 2T1 + 3T2 + 5T3     CosSim(D1 , Q) = 10 / √(4+9+25)(0+0+4) = 0.81
D2 = 3T1 + 7T2 + 1T3     CosSim(D2 , Q) =  2 / √(9+49+1)(0+0+4) = 0.13
Q = 0T1 + 0T2 + 2T3
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D1 is 6 times better than D2 using cosine similarity but only 5 times better using 
inner product.
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Relevance Feedback in IR

• After initial retrieval results are presented, 
allow the user to provide feedback on the 
relevance of one or more of the retrieved 
documents.

• Use this feedback information to reformulate 
the query.

• Produce new results based on reformulated 
query.

• Allows more interactive, multi-pass process.
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Relevance Feedback Architecture
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Using Relevance Feedback (Rocchio)

• Relevance feedback methods can be adapted for 
text categorization.

• Use standard TF/IDF weighted vectors to 
represent text documents (normalized by 
maximum term frequency).

• For each category, compute a prototypevector by 
summing the vectors of the training documents in 
the category.

• Assign test documents to the category with the 
closest prototype vector based on cosine 
similarity.
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Illustration of Rocchio Text Categorization

23

Rocchio Text Categorization Algorithm
(Training)

Assume the set of categories is {c1, c2,…cn}
For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)
For each training example <x, c(x)> ∈ D

Let d be the frequency normalized TF/IDF term vector for doc x
Let i =  j: (cj = c(x))
(sum all the document vectors in ci to get pi)
Let pi = pi + d     
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Rocchio Text Categorization Algorithm
(Test)

Given test document x
Let d be the TF/IDF weighted term vector for x
Let m= –2      (init. maximum cosSim)
For i from 1 to n:

(compute similarity to prototype vector)
Let s= cosSim(d, pi)
if s> m

let m= s
let r = ci (update most similar class prototype)

Return class r
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Rocchio Properties 

• Does not guarantee a consistent hypothesis.
• Forms a simple generalization of the 

examples in each class (a prototype).
• Prototype vector does not need to be 

averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

• Classification is based on similarity to class 
prototypes.
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Rocchio Anomoly

• Prototype models have problems with 
polymorphic (disjunctive) categories.
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Illustration of 3 Nearest Neighbor for Text
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K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> ∈ D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> ∈ D

Let sx = cosSim(d, dx)
Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D.     (get most similar neighbors)
Return the majority class of examples in N
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3 Nearest Neighbor Comparison

• Nearest Neighbor tends to handle 
polymorphic categories well. 
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Inverted Index

• Linear search through training texts is not 
scalable.

• An index that points from words to 
documents that contain them allows more 
rapid retrieval of similar documents.

• Once stop-words are eliminated, the 
remaining words are rare, so an inverted 
index narrows attention to a relatively small 
number of documents that share meaningful 
vocabulary with the test document.
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Conclusions

• Many important applications of 
classification to text.

• Requires an approach that works well with 
large, sparse features vectors, since 
typically each word is a feature and most 
words are rare.
– Naïve Bayes

– kNN with cosine similarity

– SVMs


