NAME: ________________________________

This exam has 11 problems and 16 pages. Before beginning, be sure your exam is complete.

In order to maximize your chance of getting partial credit, show all of your work and intermediate results.

Final grades will be available on Canvas on or before Dec. 21.

Good luck and have a good break!
1. (8 points) Assuming simple term frequency weights (no IDF factor), no length normalization, and NO stop words compute the cosine similarity of the following two simple documents:

(a) “five thousand five hundred and fifty five dollars”
(b) “fifty six thousand five hundred sixty five dollars”
2. (8 points) Graphically illustrate with an array of linked list diagrams, the basic inverted index constructed for the following simple corpus.

- Doc1: “school of business”
- Doc2: “school of social work”
- Doc3: “school of public affairs”

You are given the following list of stop words:

- at
- in
- of
- on

Perform stop word removal and order tokens in the inverted index alphabetically. You need to include TF information, but not IDF nor document-vector lengths.
3. (8 points) Consider the following web pages and the set of web pages that they link to:

 Page A points to pages B, D, and E.
 Page B points to pages C and E.
 Page C points to pages F and G.
 Page D points to page G.
 Page G points to page E.

Show the order in which the pages are indexed when starting at page A and using a breadth-first spider (with duplicate page detection) as implemented in the course Spider class. Assume links on a page are examined in the orders given above.
4. (9 points) Consider the following web pages and the set of web pages that they link to:

Page A points to pages B, C, and E.
Page D points to pages B, and C.

All other pages have no outgoing links.

Consider running the HITS (Hubs and Authorities) algorithm on this subgraph of pages. Simulate the algorithm for three iterations. Show the authority and hub scores for each page twice for each iteration, both before and after normalization, order the elements in the vectors in the sequence: A, B, C, D, E.
5. (9 points) Consider the following web pages and the set of web pages that they link to:

 Page A points to pages B and C.
 Page B points to page C.

 All other pages have no outgoing links.

Consider running the PageRank algorithm on this subgraph of pages. Assume $\alpha = 0.15$. Simulate the algorithm for three iterations. Show the page rank scores for each page twice for each iteration, both before and after normalization, order the elements in the vectors in the sequence: A, B, C.
6. (8 points) Consider the problem of learning to classify a name as being Food or Beverage. Assume the following training set:

- Food: “cherry pie”
- Food: “buffalo wings”
- Beverage: “cream soda”
- Beverage: “orange soda”

Apply 3-nearest-neighbor text categorization to the name “cherry soda”. Show all the similarity calculations needed to classify the name, and the final categorization. Assume simple term-frequency weights (no IDF) with cosine similarity. Would the result be guaranteed to be the same with 1-nearest-neighbor? Why or why not?
7. (10 points) Assume we want to categorize science texts into the following categories: Physics, Biology, Chemistry. Consider performing naive Bayes classification with a simple model in which there is a binary feature for each significant word indicating its presence or absence in the document. The following probabilities have been estimated from analyzing a corpus of preclassified web pages gathered from Yahoo:

<table>
<thead>
<tr>
<th>c</th>
<th>Physics</th>
<th>Biology</th>
<th>Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(c)</td>
<td>0.35</td>
<td>0.4</td>
<td>0.25</td>
</tr>
<tr>
<td>P(\text{atom}</td>
<td>c)</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>P(\text{carbon}</td>
<td>c)</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>P(\text{proton}</td>
<td>c)</td>
<td>0.1</td>
<td>0.001</td>
</tr>
<tr>
<td>P(\text{life}</td>
<td>c)</td>
<td>0.001</td>
<td>0.2</td>
</tr>
<tr>
<td>P(\text{earth}</td>
<td>c)</td>
<td>0.005</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Assuming the probability of each evidence word is independent given the category of the text, compute the posterior probability for each of the possible categories for each of the following short texts. Assume the categories are disjoint and complete for this application. Assume that words are first stemmed to reduce them to their base form, and ignore any words that are not in the table.

(a) The carbon atom is the foundation of life on earth.
(b) The carbon atom contains 12 protons.
8. (9 points) Consider the problem of clustering the following documents using K-means with $K = 2$ and cosine similarity.

 Doc1: go Longhorns go
 Doc2: go Texas
 Doc3: Texas Longhorns
 Doc4: Longhorns Longhorns

Assume Doc1 and Doc3 are chosen as the initial seeds. Assume simple term-frequency weights (no IDF, no length normalization). Show all similarity calculations needed to cluster the documents, centroid computations for each iteration, and the final clustering. The algorithm should converge after only 2 iterations.
9. (8 points) Consider the following item ratings to be used by collaborative filtering.

<table>
<thead>
<tr>
<th>Item</th>
<th>User1</th>
<th>User2</th>
<th>User3</th>
<th>User4</th>
<th>Active User</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$c_{a,u}$</td>
<td>0.88</td>
<td>-0.21</td>
<td>1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

The Pearson correlation of each of the existing users with the active user ($c_{a,u}$) is already given in the table. Compute the predicted rating for the active user for items D and E using standard significance weighting and the two most similar neighbors to make predictions using the method discussed in class.
10. (6 points) Write a regular expression in PERL syntax for matching a time and date expression such as “12:07 PM 9/27/61” and “7AM 12/2/15”, specifically a word boundary, followed by a one or two digit hour, followed optionally by a colon and two digits for the minutes, followed by an optional space, then AM or PM, followed by some amount of whitespace, then a one or two digit month, slash, a one or two digit day, slash, a two-digit year, ending in a word boundary.
11. (17 points) Provide short answers (1–3 sentences) for each of the following questions (1 point each):

What is IDF and what role does it play in vector-space retrieval?

Why is there typically a trade-off between precision and recall?

What is pseudo relevance feedback?

Why is Zipf’s law important to the significant performance advantage achieved by using an inverted index?
Why is having a **multi-threaded** spider important, even if it is run on a single processor?

What is a “robots.txt” file for?

What is the “Random Surfer” model and why is it relevant to web search?

In machine learning, what is over-fitting?

What is a potential advantage (with respect to classification accuracy) of k nearest neighbor over Rocchio for text categorization?
What is “smoothing” (e.g. Laplace estimate) with respect to probabilistic categorization and why is it important?

How does the language model approach use Naive Bayes text classification to solve the ad-hoc document retrieval problem?

What is the primary advantage of K-means clustering over hierarchical agglomerative clustering?

What is semi-supervised learning for text categorization?
What is Word2Vec?

What is a “visual word”?

Name and define two problems with collaborative filtering for recommending?

Briefly describe two different approaches to combining collaborative filtering and content-based recommending.
(Extra credit) What is the “Six Degrees of Kevin Bacon” game?

(Extra credit) Digital Equipment Corp. (DEC) which developed the Alta Vista search engine is now effectively a part of what large tech company (after 2 separate corporate acquisitions)?

(Extra credit) The statistical techniques now generally referred to as “Bayesian” really owe their development more to what French scientist and mathematician?

(Extra credit) Why did Netflix decide not to have a second followup competition to their $1M prize for improving their recommender system?