
Consistently Adding Primitive Recursive

Definitions in ACL2

John Cowles
Department of Computer Science

University of Wyoming

Laramie, Wyoming 82071

cowles@uwyo.edu

February 25, 2002

Abstract

In [2, 3], P. Manolios and J Moore show that a tail recursive defining
equation for a new function can always be consistently added to ACL2.
This is done by “constructing” a function that satisfies the proposed
tail recursive defining equation. Their construction is extended to many
primitive recursive defining equations. This extends the known recursive
schemes that can be consistently introduced into ACL2’s logic. Exactly
what is meant by “primitive recursive” and the exact restrictions placed
on the definitions are explained below.

1 Tail Recursion

P. Manolios and J Moore [2, 3] describe a macro named defpun for consistently
introducing “partial functions” into ACL2. One of the many cases handled by
defpun is when the “defining equation” is tail recursive: Let test, base, and st
be arbitrary unary functions. There always is an ACL2 function f that satisfies

(equal (f x)
(if (test x)

(base x)
(f (st x)))).

As shown by Manolios and Moore, such a function f can be constructed, in
ACL2, as follows:

1. Define stn so that (stn x n) computes (stn x).

2. Use defchoose to define a Skolem (witnessing) function fch so that (fch
x) is an n such that (test (stn x n)) holds, if such an n exists. If no
such n exists, then ACL2 knows nothing about the value of (fch x). If
(test (stn x (fch x))) holds, then (fch x) need not be the smallest
n such that (test (stn x n)) holds.

3. Define a version of f, called fn, with an extra “clock-like” input parameter,
n, that ensures termination:

1



(defun fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (test x))

(base x)
(fn (st x) (1- n)))).

4. Finally define f:

(defun f (x)
(if (test (stn x (fch x)))

(fn x (fch x))
nil))

It is not difficult to believe (as ACL2 verifies) that f also satisfies the tail
recursive equation

(equal (f x)
(if (test x)

(base x)
(f (st x)))).

For this construction, any constant would do in place of nil in the defi-
nition of f.

2 Primitive Recursion

The class of all primitive recursive functions on the nonnegative integers is often
discussed in courses on the Theory of Computation [1]. This class of functions
is closed under primitive recursive definitions: If k and h are primitive recursive
functions, then so is the function f defined by the equations

f(x1, ..., xn, 0) = k(x1, ..., xn)
f(x1, ..., xn, t+ 1) = h(t, f(x1, ..., xn, t), x1, ..., xn).

Reducing the number of input parameters to one and slightly generalizing
this form of recursive definition leads to the following definition: Let h be a
binary function. A function f satisfying an equation of the form
(equal (f x)

(if (test x)
(base x)
(h x (f (st x)))))

is called primitive recursive, for the purposes of this paper.
The Manolios-Moore construction for any tail recursive defining equation

can be extended, for many h’s, to the case of a primitive recursive defining
equation. But, as shown by Manolios and Moore, there are h’s for which no
ACL2 function f exists that satisfies the primitive recursive defining equation.
Their example, showing such an f need not exist, is

(equal (g x)
(if (equal x 0)

nil
(cons nil (g (- x 1))))),

2



so in this case (test x) is (equal x 0), (base x) is nil, (h x y) is (cons
nil y), and (st x) is (- x 1).

A sufficient (but not necessary) condition on h for the existence of f is that
h have a right fixed point, i.e., there is some c such that (h x c) = c. The tail
recursion construction given above need only be modified, in steps 3 and 4,
to accommodate the additional function h in the primitive recursive defining
equation:

1. Define stn so that (stn x n) computes (stn x).

2. Use defchoose to define a Skolem (witnessing) function fch so that (fch
x) is an n such that (test (stn x n)) holds, if such an n exists.

3. Define a version of f, called fn, with an extra “clock-like” input parameter,
n, that ensures termination:

(defun fn (x n)
(declare (xargs :measure (nfix n)))
(if (or (zp n) (test x))

(base x)
(h x (fn (st x) (1- n))))).

4. Finally define f: Here (h-fix) is a right fixed point for h.

(defun f (x)
(if (test (stn x (fch x)))

(fn x (fch x))
(h-fix)))

ACL2 verifies that f also satisfies the primitive recursive equation

(equal (f x)
(if (test x)

(base x)
(h x (f (st x))))).

An example, also due Manolios and Moore, showing that h having a right
fixed point is not necessary for the existence of f is
(equal (g1 x)

(if (equal x 0)
0
(+ 1 (g1 (- x 1))))),

so (test x) is (equal x 0), (base x) is 0, (h x y) is (+ 1 y), and (st x)
is (- x 1). The ACL2 function fix satisfies this primitive recursive equation.
Here (fix x) returns x if x is an ACL2 number and returns 0 otherwise.

2.1 Examples

Example 1. Modified cons example.
This example illustrates what to do when h lacks a right fixed point. The
“problem” with the defining equation, given above, for g, from the point
of view of this paper, is that cons does not have a right fixed point, so
one is provided by the following:

3



(defstub
cons-fix () => *)

(defun
cons$ (x y)
(if (equal y (cons-fix))

(cons-fix)
(cons x y)))

Then the following primitive recursive equation has an ACL2 solution for
g:

(equal (g x)
(if (equal x 0)

nil
(cons$ nil (g (- x 1))))).

Example 2. Naive Factorial.
This example illustrates that any fixed point will do: Multiplication al-
ready has a right fixed point, namely zero. That is (* x 0) = 0. The
following primitive recursive equation has an ACL2 solution for fact.

(equal (fact x)
(if (equal x 0)

1
(* x (fact (- x 1)))))

Note that ACL2’s definitional principle would accept the definition that
uses the zero-test idiom (zp x) in place of the test (equal x 0):

(defun
fact (x)
(if (zp x)

1
(* x (fact (- x 1))))).

Example 3. Example with multiple input parameters.
This example illustrates, as shown by Manolios and Moore, that knowing
how to deal with a defining equation of an unary function means that a
defining equation of a function with multiple input parameters can also
be dealt with systematically.

The following primitive recursive equation has an ACL2 solution for k.

(equal (k a b)
(if (equal b 0)

1
(* a b (k a (- b 1)))))

First construct an unary version, k1, of k.

4



(defun
k1-test (x)
(let ((a (car x))

(b (cadr x)))
(equal b 0)))

(defun
k1-base (x)
(let ((a (car x))

(b (cadr x)))
1))

(defun
k1-st (x)
(let ((a (car x))

(b (cadr x)))
(list a (- b 1))))

(defun
k1-h (x y)
(let ((a (car x))

(b (cadr x)))
(* a b y)))

Using the primitive recursive version of the constructions outlined above
allows the construction of an unary function k1 such that
(equal (k1 x)

(if (k1-test x)
(k1-base x)
(k1-h x (k1 (k1-st x))))).

Then k defined by
(defun
k (a b)
(k1 (list a b)))

has the desired property,
(equal (k a b)

(if (equal b 0)
1
(* a b (k a (- b 1))))).

3 Conclusion

Recursive equations of the form
(equal (f x)

(if (test x)
(base x)
(h x (f (st x)))))

are satisfiable in ACL2’s logic whenever h has a right fixed point. Proving h has
a right fixed point ensures the systematic construction of such a function f.

References

[1] M. Davis, R. Sigal, and E. Weyuker. Computability, Complexity, and Lan-
guages. Academic Press, second edition, 1994.

[2] P. Manolios and J S. Moore. Partial Functions in ACL2. In M. Kaufmann
and J S. Moore, Editors, ACL2 Workshop 2000 Proceedings, October 30–31,
2000, University of Texas at Austin.

[3] P. Manolios and J S. Moore. Partial Functions in ACL2. January 2001,
submitted for publication.

5


