Efficient Rewriting of Operations on Finite Structures in
ACL2

Matt Kaufmann Rob Sumners
matt.kaufmann@amd.com robert.sumners@amd.com

Advanced Micro Devices
5900 E. Ben White Blvd.
Austin, Texas, USA 78741

Abstract

We give a useful set of unconditional rewrite rules for reasoning about record structures,
which are essentially finite functions. The problem, then, is to define functions for which
these rules are true and then prove the rules. We begin with a series of definitions that
attempt to satisfy these rules but fall short for various reasons. Then we give two solutions,
one of which generalizes to other finite structures. The definitions of our access and update
functions are somewhat subtle, complex, and ineffecient, but they return the expected
values and the theorems exported are elegant and efficient for automatic, unconditional
rewriting.

1 Introduction

It is common programming practice to abstract underlying data structures to the set of oper-
ators defined on the structures and the relationships between these operators. Indeed, most
C++ programmers use the Standard Template Library without ever looking at the underlying
source code defining the implementation of the objects in the library. Since the goal of the
implementation is execution efficiency, the implementation may be complex, but the result of
the execution should be consistent with the specification.

This programming practice has an analogy in ACL2. It is common practice to define op-
erations on finite structures such as lists, association lists, sets, and trees, and to accompany
these definitions with theorems that allow ACL2 to simplify terms involving the operations. In
analogy with programming practice, the goal is to provide efficient simplification routines. Users
of those routines generally do not need to be concerned with the source code (the definitions).

In this paper, we present techniques for providing definitions of operations on data structures
along with associated theorems that enable efficient simplification by ACL2. Since the goal
of these definitions is simplification efficiency, the definitions may be complex, but they are
consistent with the specification and afford elegant and efficient theorems.

We will focus on the example of so-called “record structures,” which can be thought of
as stores, memories, or finite functions: they associate non-default values to a finite number of
fields. We focus on records in this paper in order to provide a concrete example of the techniques
proposed and also because of the simplicity and general applicability of the record operations.



Why not simply use association lists? Imagine for example starting with the empty record
(function), then associating the field ’a with data value 1 and then field ’b with data value
2. Presumably the result would be >((b . 2) (a . 1)). But if the updates were done in
the other order, then the result would presumably be > ((a . 1) (b . 2)). Sometimes it is
convenient to have only one “canonical” representation for a finite function. The record books
we present in this paper provide such a representation.

We describe two approaches to providing these utilities, one of which is a generic recipe
for generating hypothesis-free equality-based rewrite rules that has also been applied to the
definition of a book on flat sets with operations such as intersection, union, membership, etc. In
each of the two approaches, we prove the following theorems about functions s (set, i.e., record
update) and g (get, i.e., record lookup).

(defthm g-same-s
(equal (g a (s a v r))
v))

(defthm g-diff-s
(implies (not (equal a b))
(equal (g a (s bvr))
(g a 1))

(defthm s-same-g
(equal (s a (g ar) r)
r))

(defthm s-same-s
(equal (s ay (s axr))
(sayr)))

(defthm s-diff-s
(implies (not (equal a b))
(equal (s by (s axr))
(sax (sbyr))))
:rule-classes ((:rewrite :loop-stopper ((b a s)))))

The supporting material for this paper includes two records books that provide proofs of
the above theorems as well as a book on finite flat sets. In the next section, we will present
some history of the development of the definitions for records and the desired theorems provided
above. While this history is somewhat tangential to the goal of proving the above theorems, we
feel the material is still useful for illustrating the different approaches to defining structures.

2 Defining Records

Most programming languages and logics provide some support for extending the set of built-in
types with user-defined structures. In C++ this is carried out by defining structs or classes, in
ML this is provided with datatypes, and even in NQTHM this was provided by shells. ACL2
is largely an exception in that the only “data” structure in the logic is the cons binary node.



Commonly, ACL2 users will “simulate” structures using lists built from cons nodes. For ex-
ample, consider a person record consisting of the fields name, address, and age. The following
ACL2 code would be a common implementation of a person record:

(defun person (name address age) (list name address age))

(defun name (person) (nth O person))
(defun address (person) (nth 1 person))
(defun age (person) (nth 2 person))
(defun update-name (name person) (update-nth O name person))

(defun update-address (address person) (update-nth 1 address person))
(defun update-age (age person) (update-nth 2 age person))

Note that the above definitions could easily be (and often are) generated by a macro for
defining records. For example, the ACL2 source code has such a macro called defrec and there
is a distributed book "books/data-structures/structures.lisp" that defines the macro
defstructure.

When proving theorems about these record functions, we would like some basic relationships
to hold. In particular, we would like the access of a particular field to return the value from the
most recent update of that field. For example, the following theorems would define the rules for
reducing an access of the address field:

(defthm address-of-update-name
(equal (address (update-name n p))
(address p)))

(defthm address-of-update-address
(equal (address (update-address a p))

a))

(defthm address-of-update-age
(equal (address (update-age a p))
(address p)))

There are several problems with this approach. First, the number of theorems required for a
given record is quadratic in the number of fields in the record. We can address this problem by
enabling the field access and update function definitions and using the following rule (amongst
others) for reducing terms with nth and update-nth:

(defthm nth-diff-update-nth
(implies (and (integerp a) (>= a 0)
(integerp b) (>= b 0)
(not (equal a b)))
(equal (nth a (update-nth b v r))
(nth a r))))

Unfortunately, in the proof output from ACL2, all of the accesses and updates will be reduced
to nth and update-nth operations. For records with a large number of fields, it becomes a



very cumbersome task to match up the indices in the nth and update-nth terms with the
corresponding fields in the record. We can rectify this problem (somewhat) and allow a general
set of field names by using association lists instead. For example, we could define the record
accessors using assoc and record updating using acons as follows:

(defun rcd-access (field rcd) (cdr (assoc field rcd)))
(defun rcd-update (field value rcd) (acons field value rcd))

(defun name (person) (rcd-access ’name person))

(defun address (person) (rcd-access ’address person))

(defun age (person) (rcd-access ’age person))

(defun update-name (name person) (rcd-update ’name name person))
(defun update-address (address person) (rcd-update ’address address person))
(defun update-age (age person) (rcd-update ’age age person))

So, the proof output from ACL2 will now involve terms with rcd-update and rcd-access
operators, but now these operators will be tagged with quoted symbols in the field parameters
instead of natural numbers. Additionally, since the access is “positionless”, the same access
function can be used on records of different “types” but with fields that share names. We can
now prove the following theorem, which corresponds to the theorem nth-of-update-nth stated
before:

(defthm rcd-access—-diff-rcd-update
(implies (not (equal a b))
(equal (rcd-access a (rcd-update b v r))
(rcd-access a r))))

Note that the hypotheses requiring n and m to be non-negative integers have been removed.
Unfortunately, the best we can do for a theorem that reduces nested updates on the same key is
the following, for a suitable alist-equality relation, alist=; for example, the alists > ((a . 1)
(b . 2))and’((d . 2) (a . 1)) are not equal, but they are alist=.

(defthm rcd-update-same-rcd-update
(alist= (rcd-update a y (rcd-update a x 1))
(rcd-update a y r)))

Alist= is far more complex than equal, and its effective use may require numerous congru-
ence rules showing the preservation of alist=. Thus, we would like to define record access and
update so that the rule above used equal instead of alist=.

We can achieve this goal if we normalize the association lists by (a) ordering the entries by
the fields or keys, and (b) removing any entries where the value stored is nil. In ordering the
keys in the association list, we will make use of the total order << [3] distributed with ACL2
Version 2.6 in "books/misc/total-order.lisp". This use of a total order on all of the ACL2
objects avoids having to introduce hypotheses for the keys in the records. (For example, an
early version of this work restricted keys to be symbols so that we could use the total order
symbol-< on symbols.) This normalization of the record structures leads to the definitions and
theorems in Figure 1.



(include-book "total-order")

(defun rcd-access (field rcd)
(cond ((or (endp rcd)
(<< field (caar rcd)))
nil)
((equal field (caar rcd))
(cdar rcd))
(t (rcd-access field (cdr rcd)))))

(defun acons-if (field value rcd)
(if value (acons field value rcd) rcd))

(defun rcd-update (field value rcd)
(cond ((or (endp rcd)
(<< field (caar rcd)))
(acons-if field value rcd))
((equal field (caar rcd))
(acons-if field value (cdr rcd)))
(t (cons (car rcd)
(rcd-update field value (cdr rcd))))))

(defun rcdp (x)
(or (null x)
(and (consp x)
(consp (car x))
(cdar x)
(rcdp (cdr x))
(or (endp (cdr x))
(<< (caar x) (caadr x))))))

(defthm rcd-access-diff-rcd-update
(implies (and (rcdp r)
(not (equal a b)))
(equal (rcd-access a (rcd-update b v r))
(rcd-access a r))))

(defthm rcd-update-same-rcd-update
(implies (rcdp r)
(equal (rcd-update a y (rcd-update a x r))
(rcd-update a y r))))

Figure 1: Normalized Record Structure Definitions and Theorems



Using the normalized record structures, we have defined theorems and rewrite rules which
have resulted in equal-ity based theorems. Unfortunately, in the process we have introduced
(rcdp 1) hypotheses. As is common knowledge among ACL2 users, it is generally desirable to
eliminate hypotheses of rewrite rules when possible: even when it seems easy to relieve such
hypotheses, situations invariably arise where unforeseen work is required in the form of additional
lemmas in order to relieve hypotheses. We briefly report on two approaches for removing the
rcdp hypothesis in the next two sections while still maintaining the desired properties on record
access and update.!

In the following two sections we provide two implementations of records, with associated
rules. The first of these came first historically, and may have more intuitive computed results.
The second approach is more general and has application to other data structures. In both cases
we use the very short names g (record “get”) and s (record “set”) for readability of the ACL2
proof output, since the record operations tend to appear frequently.

3 Dealing with Non-Record objects

This section describes the book "recordsO.lisp" in the supporting materials, which is also
(essentially) "books/misc/records0.1lisp" distributed with ACL2 Version 2.6. This book con-
tains our first approach to eliminating the rcdp hypothesis. Its exported rules originally required
the keys to be symbols, but that restriction was removed when a total order was added for ACL2
As before, a record is an ordered alist whose value components are non-nil.
A lookup structure is the cons of a record onto any object, such that this object is (recur-
sively) not a lookup structure.

(defun 1sp (x)
(or (rcdp x)
(and (consp x)
(not (1sp (cdr x)))
(rcdp (car x))
(car x))))

So, the cdr of a lookup structure is “junk,” while the car is the record that holds the values.
However, if we have other than a lookup structure then we view its entirety as “junk.” Thus
every ACL2 object represents a record structure: a record represents itself, a lookup structure
represents the record in its car, and everything else represents the empty record.

G (“get”) returns nil on a non-lookup structure, else looks up in the record part (the car).

(defun g (a x)
(cond ((rcdp x)
(cdr (assoc-equal a x)))
((1sp x)
(cdr (assoc-equal a (car x))))

(t nil)))

1We posted this problem to the ACL2 mailing list after our initial solution. A reply from Dave Greve and
Matt Wilding gave another solution, quite similar to the one presented in Section 3.




The function s-aux updates a record by setting the value for a given key. We also need a
function delete-key that removes a key-value pair (if any) for a given key. Using these notions
we can define our record update function.

(defun s (a v x)
(cond ((rcdp x)
(if (null v)
(delete-key a x)
(s-aux a v x)))
((not (1sp x))
(if v
;; then make x into the cdr of the returned lookup structure
(cons (list (coms a v)) x)
;3 else x already is an appropriate result

x))
;; else we have (cons record junk)
((null v)

(if (and (null (cdr (car x)))
(equal (caar (car x)) a))
;; then return the junk; there is nothing left of the record
(cdr x)
;; else delete the key, a, from the record portion
(cons (delete-key a (car x))
(cdr x))))
(t
;; since (Ilsp x) and v is non-nil, we simply update the record portion
(cons (s-aux a v (car x))

(cdr x)))))

The theorems from the introduction follow from these definitions. The supporting materials
contain lemmas used by ACL2 to prove those results.

4 Mapping ACL2 objects into Records

This section describes the book "records.lisp" in the supporting materials, which is also
(essentially) "books/misc/records.lisp" distributed with ACL2 Version 2.6.

While the approach presented in the previous section achieves the desired results with respect
to properties on records, we found it difficult to apply to a different setting, namely flat sets,
where a larger number of functions and properties are required. In this section we define a
strategy for achieving unconditional rewrite rules on structures which we believe is more easily
applied to other contexts.

Before addressing the problem of removing the rcdp hypothesis, we first review and general-
ize the points in Section 2. In short, given a set of operations on some common data structure,
(1) determine a normal form for the data structure such that “equivalent” structures are equal
— the ACL2 total order is useful for this, (2) define the desired operations assuming well-formed
data structures, and (3) prove the desired theorems about the operations assuming well-formed
data structures. This leads to equal-based theorems with some hypothesis about normalized or
well-formed objects. In order to remove these well-formed object assumptions, we (4) define an



invertible mapping from all ACL2 objects into well-formed objects, (5) define “translated” ver-
sions of the “nice” operations from (2) using the mapping and inverse to translate ACL2 objects
into well-formed objects and back, and (6) prove the desired properties about the “translated”
operations removing the well-formed hypothesis.

As an example, we return to the problem of removing the rcdp hypothesis. Our goal is to
define an invertible mapping of ACL2 objects into records. The simplest approach is to map
any non-rcdp ACL2 object X into a record with a single association of some default key (say
nil) to this object X. Unfortunately, since we want the mapping to be invertible, we cannot
map singleton records with nil keys to themselves, and so we stuff these objects into other
records. This process leads to the following definitions of our mappings between ACL2 objects
and records (along with the desired properties of the mappings):

(defun ifrp (x) ;; ill-formed rcdp
(or (not (rcdp x))
(and (consp x)
(null (cdr x))
(consp (car x))
(null (caar x))
(ifrp (cdar x)))))

(defun acl2->rcd (x)
(if (ifrp x) (1list (coms nil x)) x))

(defun rcd->acl2 (x)
(if (ifrp x) (cdar x) x))

(defthm acl2->rcd-returns-rcdp
(rcdp (acl2->rcd x)))

(defthm acl2->rcd-rcd->acl2-of-rcdp
(implies (rcdp x)
(equal (acl2->rcd (rcd->acl2 x))
x)))

(defthm rcd->acl2-acl2->rcd-inverse
(equal (rcd->acl2 (acl2->rcd x)) x))

We can now define the “translated” versions of our record access and update operations and
prove the desired properties without rcdp hypotheses.

(defun g (field obj)
(rcd-access field (acl2->rcd obj)))

(defun s (field value obj)
(rcd->acl2 (rcd-update field value (acl2->rcd obj))))

Once a few simple theorems have been proven about the inverse mappings and the “nice”
operations, the theorems from the introduction are automatically proven by ACL2.



A downside to this approach of using an invertible mapping to transform the “nice” functions
to handle all ACL2 objects is that the resulting definitions may have unintuitive executable-
counterparts. For example:

(rcd-get nil 2) = 2
(rcd-get nil ’((nil . 2))) = ’((nil . 2))
(rcd-set nil 2 () = 2

Evaluations such as these may occur during ACL2 simplification and may lead to confusing proof
output. This problem can be mitigated substantially by “tagging” the mapping of the ill-formed
ACL2 objects so that they do not interfere with the normal evaluations of the operations. In
the case of records, we could simply change the definitions of ifrp and acl2->rcd as follows
(and indeed, we have certified the resulting book).

(defun ifrp-tag () ’very-unlikely-to-occur-in-any-evaluation-of-ifrp)

(defun ifrp (x) ;; ill-formed rcdp
(or (not (rcdp x))
(and (consp x)
(null (cdr x))
(consp (car x))
(equal (caar x) (ifrp-tag)) ;; instead of (null (caar x))
(ifrp (cdar x)))))

(defun acl2->rcd (x)
(if (ifrp x) (list (coms (ifrp-tag) x)) x))

5 Conclusions

We considered in this paper the problem of optimizing theorems about operations on data struc-
tures. We addressed this problem for the simple but generally useful case of record structures
where the operations are field access and update. We presented two approaches to addressing
this problem where we feel the latter approach has more general application with the potential
downside of an unintuitive executable-counterpart. The records books have been used in several
applications including the proof of a concurrent program [4] which used the records in various
nestings and with different types of keys. We have also applied the latter approach to the prob-
lem of defining an elegant set of reduction rules for operations on flat sets. Although we did not
discuss this application, we nevertheless provide a commented, certified book in the supporting
materials for this paper.

Some possible areas of future work are worth mentioning. It would be useful to define and
maintain a library of data structures with optimized (hypothesis-free and equal-based) reduc-
tion rules. Finite partitions and relations are clear candidates for future work, but numerous
other candidates may exist. In addition, it would be useful to define computationally efficient
versions of the logically efficient functions and show that these computationally efficient ver-
sions (in the appropriate contexts) coincide with the logically efficient versions. There have
been discussions of a “defexec” proposal for ACL2, where the user can substitute a computa-
tionally efficient definition for execution while the logically efficient definition is used for proofs,



where an appropriate proof obligation is generated by ACL2 to ensure the appropriateness of
the substitution for execution.

Finally, it may be interesting to compare our handling of records to the handling of finite
functions in a higher-order theorem prover. Functions are first-class objects in a higher-order
logic, so, unlike the case with ACL2, there is no need to pick out a unique object to represent
a functional relationship. We still suspect, however, that normalization rules are necessary in
order to simplify terms efficiently that involve function updates.
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